The Grand Canyon Trust and other environmental groups are pressing for tighter pollution controls on the coal-burning power plant near Page.
They say air pollution from the plant is marring views at Grand Canyon National Park even after the power station underwent improvements in the 1990s. But the owners of the plant contend it is one of the cleanest in the West and that further reductions in pollutants are scheduled.
The National Parks Conservation Association, Sierra Club, Grand Canyon Trust, San Juan Citizens Alliance, To Nizhoni Ani and Dine CARE filed a petition with the Interior Department on Tuesday seeking to have Interior and the Environmental Protection Agency require state-of-the-art pollution devices on the Navajo Generating Station.
The 2,250-megawatt plant is one of the larger coal-fired plants in the country and employs 545.
A similar petition filed a decade ago by conservation groups resulted in the EPA requiring new controls at the Mohave Generating Station in Laughlin, Nev.
The owners of that plant said the improvements were cost-prohibitive and the facility has been shut down.
In essence, the groups are pressing the National Park Service to state that air in the Grand Canyon is not as clean as the Clean Air Act requires in a national park, and that the power plant near Page is one reason why.
The Park Service is already on board, following years of air quality modeling.
"There's ample data that shows that Navajo Generating Station contributes to visibility impairment at the park," said Chris Shaver, chief of the Park Service division that monitors air quality in the nation's parks.
Researchers at the Grand Canyon say smog emitted in Southern California, Las Vegas, and Phoenix also likely contributes to poor visibility in the Grand Canyon.
The ultimate goal is to have the plant convert partly to being run from renewable energy, or to close, said Roger Clark, of the Grand Canyon Trust.
"It's had a good run. It's time to go to pasture," Clark said of Navajo Generating Station, scheduled to operate to 2026.
The power plant discharges 34,000 tons of nitrogen oxides, 1,900 tons of particulate matter and 3,690 tons of sulfur dioxide and 20 million tons of carbon dioxide into the air annually, the groups say in their petition.
They are pressing for expensive, top-notch pollution controls.
But those would not reduce greenhouse gases, like carbon dioxide.
The U.S. Bureau of Reclamation, Salt River Project, Los Angeles Department of Water and Power, Arizona Public Service, Nevada Power, and Tucson Electric Power own the Navajo Generating Station, which generates enough electricity to supply more than 500,000 homes in Arizona, Nevada and California and pump Colorado River water to Phoenix via the Central Arizona Project.
Operating costs for the plant, located on the Navajo Nation, run $200 million annually, not including coal purchased from the Kayenta Mine and Peabody Coal to feed it.
The plant is also supplied with a little less than 27,000 acre-feet of water per year from Lake Powell — or more than twice as much water as the city of Flagstaff consumes annually.
The owners of Navajo Generating Station spent more than $400 million in the 1990s to greatly cut some of the farthest-traveling air pollution from the plant, under pressure from the Grand Canyon Trust and the EPA.
SRP calls the plant, operating since 1974, among the cleanest coal-fired power stations in the West.
"The emissions at Navajo Generating Station are at rates that are comparable to what have been set for new plants," said Kevin Wanttaja, manager of environmental services at Salt River Project, which operates the Navajo Generating Station.
The utility plans to add more equipment to remove nitrogen oxides, Wanttaja said, but the groups filing the petition say that doesn't go far enough.
"Maybe it will need to shut down if it can't be cleaned up, but we think a transition from coal to renewables in the next 10 years is going to have to happen one way or another," said Andy Bessler, of the Sierra Club office in Flagstaff.
Hinkley Point C delays highlight EDF cost overruns, energy security risks, and wholesale power prices, complicating UK net zero plans, Sizewell C financing, and small modular reactor adoption across the grid.
Key Points
Delays at EDF's 3.2GW Hinkley Point C push operations to 2031, lift costs to £46bn, and risk pricier UK electricity.
✅ First unit may slip to 2031; second unit date unclear.
✅ LSEG sees 6% wholesale price impact in 2029-2032.
✅ Sizewell C replicates design; SMR contracts expected soon.
Vincent de Rivaz, former CEO of EDF, confidently announced in 2016 the commencement of the UK's first nuclear power station since the 1990s, Hinkley Point C. However, despite milestones such as the reactor roof installation, recent developments have belied this optimism. The French state-owned utility EDF recently disclosed further delays and cost overruns for the 3.2 gigawatt plant in Somerset.
These complications at Hinkley Point C, which is expected to power 6 million homes, have sparked new concerns about the UK's energy strategy and its ambition to decarbonize the grid by 2050.
The UK government's plan to achieve net zero by 2050 includes a significant role for nuclear energy, reflecting analyses that net-zero may not be possible without nuclear and aiming to increase capacity from the current 5.88GW to 24GW by mid-century.
Simon Virley, head of energy at KPMG in the UK, stressed the importance of nuclear energy in transitioning to a net zero power system, echoing industry calls for multiple new stations to meet climate goals. He pointed out that failing to build the necessary capacity could lead to increased reliance on gas.
Hinkley Point C is envisioned as the pioneer in a new wave of nuclear plants intended to augment and replace Britain's existing nuclear fleet, jointly managed by EDF and Centrica. Nuclear power contributed about 14 percent of the UK's electricity in 2022, even as Europe is losing nuclear power across the continent. However, with the planned closure of four out of five plants by March 2028 and rising electricity demand, there is concern about potential power price increases.
Rob Gross, director of the UK Energy Research Centre, emphasized the link between energy security and affordability, highlighting the risk of high electricity prices if reliance on expensive gas increases.
The first 1.6GW reactor at Hinkley Point C, initially set for operation in 2027, may now face delays until 2031, even after first reactor installation milestones were reported. The in-service date for the second unit remains uncertain, with project costs possibly reaching £46bn.
LSEG analysts predict that these delays could increase wholesale power prices by up to 6 percent between 2029 and 2032, assuming the second unit becomes operational in 2033.
Martin Young, an analyst at Investec, warned of the price implications of removing a large power station from the supply side.
In response to these delays, EDF is exploring the extension of its four oldest plants. Jerry Haller, EDF’s former decommissioning director, had previously expressed skepticism about extending the life of the advanced gas-cooled reactor fleet, but EDF has since indicated more positive inspection results. The company had already decided to keep the Heysham 1 and Hartlepool plants operational until at least 2026.
Nevertheless, the issues at Hinkley Point C raise doubts about the UK's ability to meet its 2050 nuclear build target of 24GW.
Previous delays at Hinkley were attributed to the COVID-19 pandemic, but EDF now cites engineering problems, similar to those experienced at other European power stations using the same technology.
The next major UK nuclear project, Sizewell C in Suffolk, will replicate Hinkley Point C's design, aligning with the UK's green industrial revolution agenda. EDF and the UK government are currently seeking external investment for the £20bn project.
Compared with Hinkley Point C, Sizewell C's financing model involves exposing billpayers to some risk of cost overruns. This, coupled with EDF's track record, could affect investor confidence.
Additionally, the UK government is supporting the development of small modular reactors, while China's nuclear program continues on a steady track, with contracts expected to be awarded later this year.
ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.
Key Points
ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.
✅ Tokamak magnetic confinement with high-temp superconducting coils
✅ Deuterium-tritium fuel cycle with on-site tritium breeding
✅ Targets net energy gain and grid-scale, low-carbon electricity
It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.
Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.
But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.
“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.
Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.
Constructing a nuclear fusion reactor ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.
The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.
When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.
Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.
In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.
A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.
One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat
The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.
“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.
The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.
“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.
Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.
Choosing a fuel Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.
Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.
At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.
The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.
“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”
SaskPower 2019-20 Annual Report highlights $205M net income, grid capacity upgrades, emissions reduction progress, Chinook Power Station natural gas baseload, and wind and solar renewable energy to support Saskatchewan's Growth Plan and Prairie Resilience.
Key Points
SaskPower's 2019-20 results: $205M income, grid upgrades, emissions cuts, and new gas baseload with wind and solar.
✅ $205M net income, up $8M year-over-year
✅ Chinook Power Station adds stable natural gas baseload
✅ Increased grid capacity enables more wind and solar
SaskPower presented its annual report on Monday, with a net income of $205 million in 2019-20, even as Manitoba Hydro's financial pressures highlight regional market dynamics.
“Reliable, sustainable and cost-effective electricity is crucial to achieving the economic goals laid out in the Government of Saskatchewan’s Growth Plan and the emissions reductions targets outlined in Prairie Resilience, our made-in-Saskatchewan climate change strategy,” Minister Responsible for SaskPower Dustin Duncan said.
In the last year, SaskPower has repaired and upgraded old infrastructure, invested in growth projects and increased grid capacity, including plans to buy more electricity from Manitoba Hydro to support reliability and benefiting from new turbine investments across the region.
“During the past year, we continued to move toward our target to reduce carbon dioxide emissions 40 per cent from 2005 levels by 2030, as part of efforts to double renewable electricity by 2030 across Saskatchewan,” SaskPower President and CEO Mike Marsh said. “The newly commissioned natural gas-fired Chinook Power Station will provide a stable source of baseload power while enabling the ongoing addition of intermittent renewable generation capacity, and exploring geothermal power alongside wind and solar generation.”
Blood Nickel spotlights ethical sourcing in the EV supply chain, linking nickel mining to human rights, environmental impact, ESG standards, and Canadian leadership in sustainable extraction, transparency, and community engagement across global battery materials markets.
Key Points
Blood Nickel is nickel mined under unethical or harmful conditions, raising ESG, human rights, and environmental risks.
✅ Links EV battery supply chains to social and environmental harm
✅ Calls for transparency, traceability, and ethical sourcing standards
✅ Highlights Canada's role in sustainable mining and community benefits
The rise of electric vehicles (EVs) has sparked a surge in demand for essential battery components, particularly nickel, and related cobalt market pressures essential for their batteries. This demand has ignited concerns about the environmental and social impacts of nickel mining, particularly in regions where standards may not meet global sustainability benchmarks. This article explores the concept of "blood nickel," its implications for the environment and communities, and Canada's potential role in promoting sustainable mining practices.
The Global Nickel Boom
As the automotive industry shifts towards electric vehicles, nickel has emerged as a critical component for lithium-ion batteries due to its ability to store energy efficiently. This surge in demand has led to a global scramble for nickel, with major producers ramping up extraction efforts to meet market needs amid EV shortages and wait times that underscore supply constraints. However, this rapid expansion has raised alarms about the environmental consequences of nickel mining, including deforestation, water pollution, and carbon emissions from energy-intensive extraction processes.
Social Impacts: The Issue of "Blood Nickel"
Beyond environmental concerns, the term "blood nickel" has emerged to describe nickel mined under conditions that exploit workers, disregard human rights, or fail to uphold ethical labor standards. In some regions, nickel mining has been linked to issues such as child labor, unsafe working conditions, and displacement of indigenous communities. This has prompted calls for greater transparency and accountability in global supply chains, with initiatives like U.S.-ally efforts to secure EV metals aiming to align sourcing standards, to ensure that the benefits of EV production do not come at the expense of vulnerable populations.
Canada's Position and Potential
Canada, home to significant nickel deposits, stands at a pivotal juncture in the global EV revolution, supported by EV assembly deals in Canada that strengthen domestic manufacturing. With its robust regulatory framework, commitment to environmental stewardship, and advanced mining technologies, Canada has the potential to lead by example in sustainable nickel mining practices. Canadian companies are already exploring innovations such as cleaner extraction methods, renewable energy integration, and community engagement initiatives to minimize the environmental footprint and enhance social benefits of nickel mining.
Challenges and Opportunities
Despite Canada's potential, the mining industry faces challenges in balancing economic growth with environmental and social responsibility and building integrated supply chains, including downstream investments like a battery plant in Niagara that can connect materials to markets. Achieving sustainable mining practices requires collaboration among governments, industry stakeholders, and local communities to establish clear guidelines, monitor compliance, and invest in responsible resource development. This approach not only mitigates environmental impacts but also fosters long-term economic stability and social well-being in mining regions.
Pathways to Sustainability
Moving forward, Canada can play a pivotal role in shaping the global nickel supply chain by promoting transparency, ethical sourcing, and environmental stewardship. This includes advocating for international standards that prioritize sustainable mining practices, supporting research and development of cleaner technologies, and leveraging adjacent resources such as Alberta lithium potential to diversify battery supply chains, while fostering partnerships with global stakeholders to ensure a fair and equitable transition to a low-carbon economy.
Conclusion
The rapid growth of electric vehicles has propelled nickel into the spotlight, highlighting both its strategic importance and the challenges associated with its extraction. As global demand for "green" metals intensifies, addressing the concept of "blood nickel" becomes increasingly urgent, even as trade measures like tariffs on Chinese EVs continue to reshape market incentives. Canada, with its rich nickel reserves and commitment to sustainability, has an opportunity to lead the charge towards ethical and responsible mining practices. By leveraging its strengths in innovation, regulation, and community engagement, Canada can help forge a path towards a more sustainable future where electric vehicles drive progress without compromising environmental integrity or social justice.
2019 Global CO2 Emissions stayed flat, IEA reports, as renewable energy growth, wind and solar deployment, nuclear output, and coal-to-gas switching in advanced economies offset increases elsewhere, supporting climate goals and clean energy transitions.
Key Points
33 gigatonnes, unchanged YoY, as advanced economies cut power emissions via renewables, gas, and nuclear.
✅ IEA reports emissions flat at 33 Gt despite 2.9% GDP growth
✅ Advanced economies cut power-sector CO2 via wind, solar, gas
✅ Nuclear restarts and mild weather aided reductions
Despite widespread expectations of another increase, global energy-related CO2 emissions stopped growing in 2019, according to International Energy Agency (IEA) data released today. After two years of growth, global emissions were unchanged at 33 gigatonnes in 2019, a notable marker in the global energy transition narrative even as the world economy expanded by 2.9%.
This was primarily due to declining emissions from electricity generation in advanced economies, thanks to the expanding role of renewable sources (mainly wind and solar across many markets), fuel switching from coal to natural gas, and higher nuclear power generation, the Paris-based organisation says in the report.
"We now need to work hard to make sure that 2019 is remembered as a definitive peak in global emissions, not just another pause in growth," said Fatih Birol, the IEA's executive director. "We have the energy technologies to do this, and we have to make use of them all."
Higher nuclear power generation in advanced economies, particularly in Japan and South Korea, avoided over 50 Mt of CO2 emissions. Other factors included milder weather in several countries, and slower economic growth in some emerging markets. In China, emissions rose but were tempered by slower economic growth and higher output from low-carbon sources of electricity. Renewables continued to expand in China, and 2019 was also the first full year of operation for seven large-scale nuclear reactors in the country.
A significant decrease in emissions in advanced economies in 2019 offset continued growth elsewhere. The USA recorded the largest emissions decline on a country basis, with a fall of 140 million tonnes, or 2.9%. US emissions are now down by almost 1 gigatonne from their peak in 2000. Emissions in the European Union fell by 160 million tonnes, or 5%, in 2019 driven by reductions in the power sector as electricity producers move away from coal in the generation mix. Japan’s emissions fell by 45 million tonnes, or around 4%, the fastest pace of decline since 2009, as output from recently restarted nuclear reactors increased.
Emissions in the rest of the world grew by close to 400 million tonnes in 2019, with almost 80% of the increase coming from countries in Asia where coal-fired power generation continued to rise, and in Australia emissions rose 2% due to electricity and transport. Coal-fired power generation in advanced economies declined by nearly 15%, reflecting a sharp fall in coal-fired electricity across multiple markets, as a result of growth in renewables, coal-to-gas switching, a rise in nuclear power and weaker electricity demand.
The IEA will publish a World Energy Outlook Special Report in June that will map out how to cut global energy-related carbon emissions by one-third by 2030 and put the world on track for longer-term climate goals, a pathway that, in Canada, will require more electricity to hit net-zero. It will also hold an IEA Clean Energy Transitions Summit in Paris on 9 July, bringing together key government ministers, CEOs, investors and other major stakeholders.
Birol will discuss the results published today tomorrow at an IEA Speaker Series event at its headquarters with energy and climate ministers from Poland, which hosted COP24 in Katowice; Spain, which hosted COP25 in Madrid; and the UK, which will host COP26 in Glasgow this year, as greenhouse gas concentrations continue to break records worldwide.
BNEF 2019 New Energy Outlook projects surging renewable energy demand, aggressive decarbonization, wind and solar cost declines, battery storage growth, coal phase-out, and power market reform to meet Paris Agreement targets through 2050.
Key Points
Bloomberg's NEO 2019 forecasts power demand, renewables growth, and decarbonization pathways through 2050.
✅ Predicts wind/solar to ~50% of global electricity by 2050
✅ Foresees coal decline; Asia transitions slower than Europe
✅ Calls for power market reform and battery integration
In a report that examines the ways in which renewable energy demand is expected to increase, Bloomberg New Energy Finance (BNEF) finds that “aggressive decarbonization” will be required beyond 2030 to meet the temperature goals of the Paris Agreement on climate change.
Focusing on electricity, BNEF’s 2019 New Energy Outlook (NEO) predicts a 62% increase in global power demand, leading to global generating capacity tripling between now and 2050, when wind and solar are expected to make up almost 50% of world electricity, as wind and solar gains indicate, due to decreasing costs.
The report concludes that coal will collapse everywhere except Asia, and, by 2032, there will be more wind and solar electricity than coal-fired electricity. It forecasts that coal’s role in the global power mix will decrease from 37% today, as renewables surpass 30% globally, to 12% by 2050 with the virtual elimination of oil as a power-generating source.
Highlighting regional differences, the report finds that:
Western European economies are already on a strong decarbonization path due to carbon pricing and strong policy support, with offshore wind costs dropping bolstering progress;
by 2040, renewables will comprise 90% of the electricity mix in Europe, with wind and solar accounting for 80%;
the US, with low-priced natural gas, and China, with its coal-fired plants, will transition more slowly even as 30% from wind and solar becomes feasible; and
China’s power sector emissions will peak in 2026 and then fall by more than half over the next 20 years, as solar PV growth accelerates, with wind and solar increasing from 8% to 48% of total electricity generation by 2050.
Power markets must be reformed to ensure wind, solar and batteries are properly remunerated for their contributions to the grid.
The 2019 report finds that wind and solar now represent the cheapest option for adding new power-generating capacity in much of the world, amid record-setting momentum, which is expected to attract USD 13.3 trillion in new investment. While solar, wind, batteries and other renewables are expected to attract USD 10 trillion in investment by 2050, the report warns that curbing emissions will require other technologies as well.
Speaking about the report, Matthias Kimmel, NEO 2019 lead analyst, said solar photovoltaic modules, wind turbines and lithium-ion batteries are set to continue on aggressive cost reduction curves of 28%, 14% and 18%, respectively, for every doubling in global installed capacity. He explained that by 2030, energy generated or stored and dispatched by these technologies will undercut electricity generated by existing coal and gas plants.
To achieve this level of transition and decarbonization, the report stresses, power markets must be reformed to ensure wind, solar and batteries are “properly remunerated for their contributions to the grid.”
Additionally, the 2019 NEO includes a number of updates such as:
new scenarios on global warming of 2°C above preindustrial levels, electrified heat and road transport, and an updated coal phase-out scenario;
new sections on coal and gas power technology, the future grid, energy access, and costs related to decarbonization technology such as carbon capture and storage (CCS), biogas, hydrogen fuel cells, nuclear and solar thermal;
sub-national results for China;
the addition of commercial electric vehicles;
an expanded air-conditioning analysis; and
modeling of Brazil, Mexico, Chile, Turkey and Southeast Asia in greater detail.
Every year, the NEO compares the costs of competing energy technologies, informing projections like US renewables at one-fourth in the near term. The 2019 report brought together 65 market and technology experts from 12 countries to provide their views on how the market might evolve.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.