Wind turbines and bats donÂ’t mix

By Toronto Star


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
ItÂ’s no secret that wind turbines kill bats, just as cars run over squirrels and transport trucks hit moose.

Bat deaths from turbines are well-documented, and represent one of several issues the wind industry must address head-on sooner rather than later.

How many bats are killed by wind turbines each year? There have been several studies, and estimates vary. It has been estimated, for example, that each of the 86 wind turbines on Wolfe Island just outside Kingston kill an average of 30 bats a year.

John Goodrich-Mahoney, a senior project manager with the Electric Power Research Institute, a research group based in California and funded by North AmericaÂ’s big utilities, says the mortality rate per turbine can run as high as 50 per year.

With more than 20,000 turbines installed across North America — and growing — the numbers start to add up.

The turbine deaths are a concern, but bats are battling another great threat these days, a fungal infection that causes a condition called white nose syndrome.

How this fungus infects and causes bats to become sick is still a bit of a mystery, but its impact is clear: more than a million, if not millions, of bats have been killed since the disease surfaced in 2006. It was detected in the Bancroft/Minden area of Ontario a year ago.

Both turbine deaths and fungus-related deaths could have a big impact on the economy. Bats are a natural pesticide because they gobble up flying insects that threaten crops. Fewer bats means more insects more insects means greater application of nasty industrial pesticides to keep bug populations under control.

A study published in this month’s issue of the journal Science estimated that bats save the agricultural sector many billions of dollars a year in pest-control services — in fact, as much as $53 billion US. It warned that over the next five years the sector will begin feeling the financial impact of bat deaths.

“That’s why there’s a lot of focus on bats right now,” says Goodrich-Mahoney. “Anything that can reduce mortality is of interest.”

Goodrich-Maloney has taken the problem into his own hands. A couple of years ago he came up with the idea of a bat detection system that could be installed within the nacelles of wind turbines. Each system would consist of four ultrasonic microphones that could detect bat echolocation calls near the sweep area of a turbineÂ’s blades.

Ground-level field tests have so far been encouraging. The next step, likely to start this year, is to mount the ultrasonic microphone system onto the nacelle of a GE wind turbine located at the U.S. Department of EnergyÂ’s National Renewable Energy Laboratory in Colorado.

A tiny remote-controlled helicopter will be modified to make bat calls as it flies around the turbine. “Then we’ll see if we can detect the calls,” says Goodrich-Maloney, explaining that the system will be designed to eventually integrate with the control system of a turbine. This would give turbines the capability of automatically slowing down or completely stopping blade rotation whenever bats are detected nearby.

“We’re not going to be able to save all the bats, but we’ll be able to reduce the bat deaths significantly,” he says.

Major wind-turbine manufacturers such as Siemens and Vestas are watching the research closely because they know that the system, if it works as promised, represents the best way to protect bat populations without reducing the productivity of wind projects.

ItÂ’s conceivable that future generations of wind turbines will have some variation of Goodrich-MaloneyÂ’s system built directly into a turbineÂ’s nacelle.

Of course, it wonÂ’t solve every problem. Wind farms still need to be sited carefully, away from the migration routes of birds and at a reasonable distance from homes.

And even then, there is a small contingent of the population that dislikes wind power — period. There’s no arguing with them.

It’s not a perfect source of energy, but as one of many clean options it is far better— and more sustainable over the long run — than continuing to rely on fossil fuels, particularly coal.

You canÂ’t make everyone happy. You can, however, continue to improve on what you have to address the problems that are addressable. Goodrich-MaloneyÂ’s bat detection system is but one example of innovation in action.

But there are more. The machines are getting quieter, more efficient, and less expensive to maintain. Efforts to anticipate and respond to changing wind conditions are becoming more advanced and effective. And options for storing and dispatching wind energy on demand are becoming more affordable.

The trend is encouraging.

Related News

Duke Energy installing high-tech meters for customers

Duke Energy Smart Meters enable remote meter reading, daily energy usage data, and two-way outage detection via AMI, with encrypted data, faster restoration, and remote connect/disconnect for Indiana customers in Howard County.

 

Key Points

Advanced meters that support remote readings, daily usage insights, two-way outage detection, and secure, encrypted data.

✅ Daily energy usage available online the next day

✅ Two-way communications speed outage detection and restoration

✅ Remote connect/disconnect; manual reads optional with opt-out fee

 

Say goodbye to your neighborhood meter reader. Say hello to your new smart meter.

Over the next three months, Duke Energy will install nearly 43,000 new high-tech electric meters for Howard County customers that will allow the utility company to remotely access meters via the digital grid instead of sending out employees to a homeowner's property for walk-by readings.

That means there's no need to estimate bills when meters can't be easily accessed, such as during severe weather or winter storms.

Other counties serviced by Duke Energy slated to receive the meters include Miami, Tipton, Cass and Carroll counties.

Angeline Protogere, Duke Energy's lead communication consultant, said besides saving the company money and manpower, the new smart meters come with a host of benefits for customers enabled by smart grid solutions today.

The meters are capable of capturing daily energy usage data, which is available online the next day. Having this information available on a daily basis can help customers make smarter energy decisions and support customer analytics that avoid billing surprises at the end of the month, she said.

"The real advantage is for the consumer, because they can track their energy usage and adjust their usage before the bills come," Protogere said.

When it comes to power outages, the meters are capable of two-way communications. That allows the company to know more about an outage through synchrophasor monitoring, which can help speed up restoration. However, customers will still need to notify Duke Energy if their power goes out.

If a customer is moving, they don't have to wait for a Duke Energy representative to come to the premises to connect or disconnect the energy service because requests can be performed remotely.

Protogere said when it comes to installing the meters, the changeover takes less than 5 minutes to complete. Customers should receive advance notices from the company, but the technician also will knock on the door to let the customer know they are there.

If no one is available and the meter is safely accessible, the technician will go ahead and change out the meter, Protogere said. There will be a momentary outage between the time the old meter is removed and the new meter is installed.

Kokomo and the surrounding areas are one of the last parts of the state to receive Duke Energy's new, high-tech meters, which are commonly used by other utility companies and in smart city initiatives across the U.S.

Protogere said statewide, the company started installing smart meters in August 2016 as utilities deploy digital transformer stations to modernize the grid. To date, they have installed 694,000 of the 854,000 they have planned for the state.

The company says the information stored and transmitted on the smart meters is safe, protected and confidential. Duke Energy said on its website that it does not share data with anyone without customers' authorization. The information coming from the meters is encrypted and protected from the moment it is collected until the moment it is purged, the company said.

Digital smart meter technology uses radio frequency bands that have been used for many years in devices such as baby monitors and medical monitors. The radio signals are far below the levels emitted by common household appliances and electronics, including cellphones and microwave ovens.

According to the World Health Organization, FCC, U.S. Food and Drug Administration and Electric Power Research Institute, no adverse health effects have been shown to occur from the radio frequency signals produced by smart meters or other such wireless networks.

However, customers can still opt-out of getting a smart meter and continue to have their meter manually read.

Those who choose not to get a smart meter must pay a $75 initial opt-out fee and an additional $17.50 monthly meter reading charge per account.

If smart meters have not yet been installed, Duke Energy will waive the $75 initial opt-out fee if customers notify the company they want to opt out within 21 days of receiving the installation postcard notice.

 

Related News

View more

Can Europe's atomic reactors bridge the gap to an emissions-free future?

EU Nuclear Reactor Life Extension focuses on energy security, carbon-free electricity, and safety as ageing reactors face gas shortages, high power prices, and regulatory approvals across the UK and EU amid winter supply risks.

 

Key Points

EU Nuclear Reactor Life Extension is the policy to keep ageing reactors safely generating affordable, low-carbon power.

✅ Extends reactor operation via inspections and component upgrades

✅ Addresses gas shortages, price volatility, and winter supply risks

✅ Requires national regulator approval and cost-benefit analysis

 

Shaken by the loss of Russian natural gas since the invasion of Ukraine, European countries are questioning whether they can extend the lives of their ageing nuclear reactors to maintain the supply of affordable, carbon-free electricity needed for net-zero across the bloc — but national regulators, companies and governments disagree on how long the atomic plants can be safely kept running.

Europe avoided large-scale blackouts last winter despite losing its largest supplier of natural gas, and as Germany temporarily extended nuclear operations to bolster stability, but industry is still grappling with high electricity prices and concerns about supply.

Given warnings from the International Energy Agency that the coming winters will be particularly at risk from a global gas shortage, governments have turned their attention to another major energy source — even as some officials argue nuclear would do little to solve the gas issue in the near term — that would exacerbate the problem if it too is disrupted: Europe’s ageing fleet of nuclear power plants.

Nuclear accounts for nearly 10% of energy consumed in the European Union, with transport, industry, heating and cooling traditionally relying on coal, oil and natural gas.

Historically nuclear has provided about a quarter of EU electricity and 15% of British power, even as Germany shut down its last three nuclear plants recently, underscoring diverging national paths.

Taken together, the UK and EU have 109 nuclear reactors running, even as Europe is losing nuclear power in several markets, most of which were built in the 1970s and 1980s and were commissioned to last about 30 years.

That means 95 of those reactors — nearly 90% of the fleet — have passed or are nearing the end of their original lifespan, igniting debates over how long they can safely continue to be granted operating extensions, with some arguing it remains a needed nuclear option for climate goals despite age-related concerns.

Regulations differ across borders, with some countries such as Germany turning its back on nuclear despite an ongoing energy crisis, but life extension discussions are usually a once-a-decade affair involving physical inspections, cost/benefit estimates for replacing major worn-out parts, legislative amendments, and approval from the national nuclear safety authority.

 

Related News

View more

UK to End Coal Power After 142 Years

UK Coal Phase-Out signals an energy transition, accelerating decarbonization with offshore wind, solar, and storage, advancing net-zero targets, cleaner air, and a just transition for communities impacted by fossil fuel decline.

 

Key Points

A policy to end coal power in the UK, boosting renewables and net-zero goals while improving air quality.

✅ Coal electricity fell from 40% in 2012 to under 3% by 2022

✅ Offshore wind and solar expand capacity; storage enhances reliability

✅ Just transition funds retrain workers and support coal regions

 

The United Kingdom is poised to mark a significant milestone in its energy history by phasing out coal power entirely, ending a reliance that has lasted for 142 years. This decision underscores the UK’s commitment to combating climate change and transitioning toward cleaner energy sources, reflecting a broader global energy transition away from fossil fuels. As the country embarks on this journey, it highlights both the achievements and challenges of moving towards a sustainable energy future.

A Historic Transition

The UK’s relationship with coal dates back to the Industrial Revolution, when coal was the backbone of its energy supply, driving factories, trains, and homes. However, as concerns over air quality and climate change have mounted, the nation has progressively shifted its focus toward renewable energy sources amid a global decline in coal-fired electricity worldwide. The decision to end coal power represents the culmination of this transformation, signaling a definitive break from a past heavily reliant on fossil fuels.

In recent years, the UK has made remarkable strides in reducing its carbon emissions. From 2012 to 2022, coal's contribution to the country's electricity generation plummeted from around 40% to less than 3%, as policies like the British carbon tax took effect across the power sector. This dramatic decline is largely due to the rise of renewable energy sources, such as wind, solar, and hydroelectric power, which have increasingly filled the gap left by coal.

Environmental and Health Benefits

The move away from coal power has significant environmental benefits. Coal is one of the most carbon-intensive energy sources, releasing substantial amounts of carbon dioxide (CO2) and other harmful pollutants into the atmosphere. By phasing out coal, the UK aims to significantly reduce its greenhouse gas emissions and improve air quality, which has been linked to serious health issues such as respiratory diseases and cardiovascular problems.

The UK government has set ambitious net zero policies, aiming to achieve net-zero carbon emissions by 2050. Ending coal power is a critical step in reaching this target, demonstrating leadership on the global stage and setting an example for other countries still dependent on fossil fuels. This transition not only addresses climate change but also promotes a healthier environment for future generations.

The Role of Renewable Energy

As the UK phases out coal, renewable energy sources are expected to play a central role in meeting the country's energy needs. Wind power, in particular, has surged in prominence, with the UK leading the world in offshore wind capacity. In 2020, wind energy surpassed coal for the first time, accounting for over 24% of the country's electricity generation.

Solar energy has also seen significant growth, contributing to the diversification of the UK’s energy mix. The government’s investments in renewable energy infrastructure and technology have facilitated this rapid transition, providing the necessary framework for a sustainable energy future.

Economic Implications

While the transition away from coal power presents environmental benefits, it also carries economic implications. The coal industry has historically provided jobs and economic activity, particularly in regions where coal mining was a mainstay, a dynamic echoed in analyses of the decarbonization of Canada's electricity grid and its regional impacts. As the UK moves toward a greener economy, there is an urgent need to support communities that may be adversely affected by this transition.

To address potential job losses, the government has emphasized the importance of investing in retraining programs and creating new opportunities in the renewable energy sector. This will be vital in ensuring a just transition that supports workers and communities as the energy landscape evolves.

Challenges Ahead

Despite the progress made, the journey toward a coal-free UK is not without challenges. One significant concern is the need for reliable energy storage solutions to complement intermittent renewable sources like wind and solar. Ensuring a stable energy supply during periods of low generation will be critical for maintaining grid reliability.

Moreover, public acceptance and engagement will be crucial, as illustrated by debates over New Zealand's electricity transition and its pace, as the UK navigates this transition. Engaging communities in discussions about energy policies and developments can foster understanding and support for the changes ahead.

Looking to the Future

The UK’s decision to phase out coal power after 142 years marks a significant turning point in its energy policy and environmental strategy. This historic shift not only aligns with the country’s climate goals but also showcases its commitment to a cleaner, more sustainable future.

As the UK continues to invest in renewable energy and transition away from fossil fuels, it sets an important example for other nations, including those on China's path to carbon neutrality, grappling with similar challenges. By embracing this transition, the UK is not only addressing pressing environmental concerns but also paving the way for a greener economy that can thrive in the decades to come.

 

Related News

View more

Canadian Electricity Grids Increasingly Exposed to Harsh Weather

North American Grid Reliability faces extreme weather, climate change, demand spikes, and renewable variability; utilities, AESO, and NERC stress resilience, dispatchable capacity, interconnections, and grid alerts to prevent blackouts during heatwaves and cold snaps.

 

Key Points

North American grid reliability is the ability to meet demand during extreme weather while maintaining stability.

✅ Extreme heat and cold drive record demand and resource strain.

✅ Balance dispatchable and intermittent generation for resilience.

✅ Expand interconnections, capacity, and demand response to avert outages.

 

The recent alerts in Alberta's electricity grid during extreme cold have highlighted a broader North American issue, where power systems are more susceptible to being overwhelmed by extreme weather impacts on reliability.

Electricity Canada's chief executive emphasized that no part of the grid is safe from the escalating intensity and frequency of weather extremes linked to climate change across the sector.

“In recent years, during these extreme weather events, we’ve observed record highs in electricity demand,” he stated.

“It’s a nationwide phenomenon. For instance, last summer in Ontario and last winter in Quebec, we experienced unprecedented demand levels. This pattern of extremes is becoming more pronounced across the country.”

The U.S. has also experienced strain on its electricity grids due to extreme weather, with more blackouts than peers documented in studies. Texas faced power outages in 2021 due to winter storms, and California has had to issue several emergency grid alerts during heat waves.

In Canada, Albertans received a government emergency alert two weeks ago, urging an immediate reduction in electricity use to prevent potential rotating blackouts as temperatures neared -40°C. No blackouts occurred, with a notable decrease in electricity use following the alert, according to the Alberta Electric System Operator (AESO).

AESO's data indicates an increase in grid alerts in Alberta for both heatwaves and cold spells, reflecting dangerous vulnerabilities noted nationwide. The period between 2017 and 2020 saw only four alerts, in contrast to 17 since 2021.

Alberta's electricity grid reliability has sparked political debate, including proposals for a western Canadian grid to improve reliability, particularly with the transition from coal-fired plants to increased reliance on intermittent wind and solar power. Despite this debate, the AESO noted that the crisis eased when wind and solar generation resumed, despite challenges with two idled gas plants.

Bradley pointed out that Alberta's grid issues are not isolated. Every Canadian region is experiencing growing electricity demand, partly due to the surge in electric vehicles and clean energy technologies. No province has a complete solution yet.

“Ontario has had to request reduced consumption during heatwaves,” he noted. “Similar concerns about energy mix are present in British Columbia or Manitoba, especially now with drought affecting their hydro-dependent systems.”

The North American Electric Reliability Corporation (NERC) released a report in November warning of elevated risks across North America this winter for insufficient energy supplies, particularly under extreme conditions like prolonged cold snaps.

While the U.S. is generally more susceptible to winter grid disruptions, and summer blackout warnings remain a concern, the report also highlights risks in parts of Canada. Saskatchewan faces a “high” risk due to increased demand, power plant retirements, and maintenance, whereas Quebec and the Maritimes are at “elevated risk.”

Mark Olson, NERC’s manager of reliability assessments, mentioned that Alberta wasn't initially considered at risk, illustrating the challenges in predicting electricity demand amid intensifying extreme weather.

Rob Thornton, president and CEO of the International District Energy Association, acknowledged public concerns about grid alerts but reassured that the risk of a catastrophic grid failure remains very low.

“The North American grid is exceptionally reliable. It’s a remarkably efficient system,” he said.

However, Thornton emphasized the importance of policies for a resilient and reliable electricity system through 2050 and beyond. This involves balancing dispatchable and intermittent electricity sources, investing in extra capacity, enhancing macrogrids and inter-jurisdictional connections, and more.

“These grid alerts raise awareness, if not anxiety, about our energy future,” Thornton concluded.

 

Related News

View more

Ontario announces SMR plans to four reactors at Darlington

Ontario Darlington SMR Expansion advances four GE Hitachi BWRX-300 reactors with OPG, adding 1,200 MW of baseload nuclear power to support electrification, grid reliability, and clean energy growth across Ontario and Saskatchewan.

 

Key Points

Plan to build four BWRX-300 SMRs at Darlington, delivering 1,200 MW of clean, reliable baseload power under OPG.

✅ Four GE Hitachi BWRX-300 units, 1,200 MW total

✅ Shared infrastructure cuts costs and timelines

✅ Supports electrification, grid reliability, net zero

 

The day after Ontario announced it would be building an additional 4,800 megawatts of nuclear reactors at Bruce Nuclear Generating Station, the province announced it would be dramatically expanding its planned rollout of small modular reactors at its Darlington Nuclear Generating Station, and confirmed plans to refurbish Pickering B as part of its broader strategy.

Ontario Power Generation OPG was always going to be the first to build the GE-Hitachi BWRX-300 small modular reactor SMR, with the U.S.’s Tennessee Valley Authority among others like SaskPower and several European nations following suit. But the OPG was originally going to build just one. On July 7, OPG and the Province of Ontario announced they would be bumping that up to four units of the BWRX-300.

The Ontario government is working with Ontario Power Generation (OPG) to commence planning and licensing for three additional small modular reactors (SMRs), for a total of four SMRs at the Darlington nuclear site. Once deployed, these four units would produce a total 1,200 megawatts (MW) of electricity, equivalent to powering 1.2 million homes, helping to meet increasing demand from electrification and fuel the province’s strong economic growth, the Ontario Ministry of Energy said in a release.

“Our government’s open for business approach has led to unprecedented investments across the province — from electric vehicles and battery manufacturing to critical minerals to green steel,” said Todd Smith, Minister of Energy. “Expanding Ontario’s world-leading SMR program will ensure we have the reliable, affordable and clean electricity we need to power the next major international investment, the new homes we are building and industries as they grow and electrify.”

For the first time since 2005, Ontario’s electricity demand is rising. While the government has implemented its plan to meet rising electricity demand this decade, the experts at Ontario’s Independent Electricity System Operator have recommended the province advance new nuclear generation and pursue life-extension at Pickering NGS to provide reliable, baseload power to meet increasing electricity needs in the 2030s and beyond.

Subject to Ontario Government and Canadian Nuclear Safety Commission (CNSC) regulatory approvals on construction, the additional SMRs could come online between 2034 and 2036. That is the same timeframe that SaskPower is looking at for its first, and possibly second, units.

The initial unit is expected to go online in 2028 following Ontario’s first SMR groundbreaking at Darlington.

The Darlington site, which already hosts four reactors, was originally considered for an expansion of “large nuclear,” which is why OPG was already well on its way for site approvals of additional nuclear power generation. The plan changed to one, singular, SMR. Now that has been updated to four.

The announcement has significant impact on Saskatchewan, and its plans to build four of its own SMRs. The timing would allow Ontario Power Generation to apply learnings from the construction of the first unit to deliver cost savings on subsequent units. This is also the strategy SaskPower is following – allow Ontario to build the first, then learn from that experience.

Building multiple units will also allow common infrastructure such as cooling water intake, transmission connection and control room to be utilized by all four units instead of just one, reducing costs even further, the Ministry said.

“A fleet of SMRs at the Darlington New Nuclear Site is key to meeting growing electricity demands and net zero goals,” said Ken Hartwick, OPG President and CEO. “OPG has proven its large nuclear project expertise through the on-time, on budget Darlington Refurbishment project. By taking a similar approach to building a fleet of SMRs, we will deliver cost and schedule savings, and power 1.2 million homes from this site by the mid-2030s.”

The Darlington SMR project is situated on the traditional and treaty territories of the seven Williams Treaties First Nations and is also located within the traditional territory of the Huron Wendat peoples. OPG is actively engaging and consulting with potentially impacted Indigenous communities, including exploring economic opportunities in the Darlington SMR project such as commercial participation and employment.

The Ministry noted, “Ontario’s robust nuclear supply chain is uniquely positioned to support SMR development and deployment in Ontario, Canada and globally. Building additional SMRs at Darlington would provide more opportunities for Ontario companies and broader economic benefits as suppliers of nuclear equipment, components, and services to make further investments to expand their operation to serve the growing SMR market both domestically and abroad.”

Supporting new SMR development and investing in nuclear power is part of the Ontario government’s larger plan, aligned with a Canadian interprovincial nuclear initiative that brings provinces together, to prepare for electricity demand in the 2030s and 2040s that will build on Ontario’s clean electricity advantage and ensure the province has the power to maintain it’s position as leader in job creation and a magnet for the industries of the future, the Ministry said.

In February, World Nuclear News (WNN) reported that Poland was considering up to 79 small modular reactors of the same design as OPG and SaskPower. And on June 5, it reported, “Canada’s Ontario Power Generation will provide operator services to Poland’s Orlen Synthos Green Energy under a letter of intent signed between the partners, extending their existing cooperation on the deployment of small modular reactors.”

WNN added, “The letter of intent is aimed at concluding future agreements under which OPG and its subsidiaries could provide operator services for SMR reactors to OSGE in connection with the deployment of SMRs in Poland and other European countries. The partnership would include a number of SMR-related activities including: development and deployment; operations and maintenance; operator training; commissioning; and regulatory support.”

 

Related News

View more

Magnitude 5 quake strikes near Iran nuclear plant

Iran Bushehr Earthquake rattles southern province near the Bushehr nuclear power plant, USGS reports M5.1 at 38 km depth; seismic activity along major fault lines raises safety, damage, and monitoring concerns.

 

Key Points

A magnitude 5.1 quake near Bushehr nuclear plant at 38 km depth, with no damage reported, per USGS.

✅ USGS lists magnitude 5.1 at 38 km depth

✅ Near Bushehr nuclear power plant; built for stronger quakes

✅ Iran lies on major fault lines; quake risk is frequent

 

A magnitude 5 earthquake struck southern Iran early Friday near the Islamic Republic's only nuclear power plant. There were no immediate reports of damage or injuries as Iran continues combined-cycle conversions across its power sector.

The quake hit Iran's Bushehr province at 5:23 a.m., according to the U.S. Geological Survey. It put the magnitude at 5.1 and the depth of the earthquake at 38 kilometres (24 miles), in a province tied to efforts to transmit electricity to Europe in coming years.

Iranian state media did not immediately report on the quake. However, the Bushehr nuclear power plant was designed to withstand much stronger earthquakes, a notable consideration as Iraq plans nuclear power plants to address shortages.

A magnitude 5 earthquake can cause considerable damage, including power disruptions that have seen blackouts spark protests in some Iranian cities.

Iran sits on major fault lines and is prone to near-daily earthquakes, yet it remains a key player in regional power, with Iran-Iraq energy cooperation ongoing. In 2003, a 6.6-magnitude quake flattened the historic city of Bam, killing 26,000 people, and today Iran supplies 40% of Iraq's electricity through cross-border power deals. Bam is near the Bushehr nuclear plant, which wasn’t damaged at that time, while more recently Iran finalized deals to rehabilitate Iraq's power grid to improve resilience.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.