The Federal Energy Regulatory Commission FERC recently approved tariff revisions for the New York Independent System Operator NYISO and ISO New England Inc. that will improve scheduling of wholesale electricity sales between the two regions and reduce costs for consumers in New York and New England.
FERC's approval of Coordinated Transaction Scheduling CTS will enable ISO New England and the NYISO to make more efficient use of the transmission lines that connect the two regions. Currently, rules governing wholesale energy transactions between New York and New England can create market inefficiencies.
The implementation of CTS will improve the ability of market participants to access the lowest-cost source of power within the two regions and lower the combined cost of operating the power systems in New York and New England.
Enhancements include increasing the frequency of scheduling energy transactions over the transmission network between regions, implementing software changes to enable the two ISOs to coordinate selection of the most economic transactions and eliminating several fees that impede efficient trade between regions.
These changes have the potential to save millions of dollars annually, enabling the two ISOs to displace higher-cost generation with lower-cost generation, wherever the lower-cost supply is located. A study of external transactions from 2008 to 2010 showed that CTS could result in annual savings in the range of $60 million in New England and $66 million in New York.
"ISO New England and the New York ISO have a longstanding history of cooperation, and FERC's recent approval is due to the diligent work on CTS by staff from both ISOs, as well as market participants on both sides of the border," said Gordon van Welie, president and CEO of ISO New England Inc. "Improving the ability for market participants to trade between regions not only increases competition, but also improves the utilization of the interconnections. The anticipated result will be lower wholesale costs."
In the past year, New England and New York market participants successfully guided the CTS proposal through each regionÂ’s stakeholder process.
"The NYISO has worked very closely with ISO New England and other neighboring electric systems as part of ongoing efforts to optimize resources, improve energy transaction scheduling and mend market seams between the regionÂ’s power systems," said Stephen G. Whitley, president and CEO of the NYISO. "FERC's approval of these new market rules is another important step in the Broader Regional Markets initiative, and the
resulting improvements in scheduling efficiency and system flexibility will benefit consumers in both regions."
Both the NYISO and ISO New England will embark on a major initiative to update the software for scheduling energy transactions between regions.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
UK Nuclear Energy Ten Point Plan outlines support for large reactors, SMRs, and AMRs, funding Sizewell C, hydrogen production, and industrial heat to reach net zero, decarbonize transport and heating, and expand clean electricity capacity.
Key Points
A UK plan backing large, small, and advanced reactors to drive net zero via clean power, hydrogen, and industrial heat.
✅ Funds large plants (e.g., Sizewell C) under value-for-money models
✅ Invests in SMRs for factory-built, modular, lower-cost deployment
✅ Backs AMRs for high-temperature heat, hydrogen, and industry
The UK government has just announced its “Ten Point Plan for a Green Industrial Revolution”, in which it lays out a vision for the future of energy, transport and nature in the UK. As researchers into nuclear energy, my colleagues and I were pleased to see the plan is rather favourable to new nuclear power.
It follows the advice from the UK’s Nuclear Innovation and Research Advisory Board, pledging to pursue large power plants based on current technology, and following that up with financial support for two further waves of reactor technology (“small” and “advanced” modular reactors).
This support is an important part of the plan to reach net-zero emissions by 2050, as in the years to come nuclear power will be crucial to decarbonising not just the electricity supply but the whole of society.
This chart helps illustrate the extent of the challenge faced:
Electricity generation is only responsible for a small percentage of UK emissions. William Bodel. Data: UK Climate Change Committee
Efforts to reduce emissions have so far only partially decarbonised the electricity generation sector. Reaching net zero will require immense effort to also decarbonise heating, transport, as well as shipping and aviation. The plan proposes investment in hydrogen production and electric vehicles to address these three areas – which will require, as advocates of nuclear beyond electricity argue, a lot more energy generation.
Nuclear is well-placed to provide a proportion of this energy. Reaching net zero will be a huge challenge, and industry leaders warn it may be unachievable without nuclear energy. So here’s what the announcement means for the three “waves” of nuclear power.
Who will pay for it? But first a word on financing. To understand the strategy, it is important to realise that the reason there has been so little new activity in the UK’s nuclear sector since the 1990s is due to difficulty in financing. Nuclear plants are cheap to fuel and operate and last for a long time. In theory, this offsets the enormous upfront capital cost, and results in competitively priced electricity overall.
But ever since the electricity sector was privatised, governments have been averse to spending public money on power plants. This, combined with resulting higher borrowing costs and cheaper alternatives (gas power), has meant that in practice nuclear has been sidelined for two decades. While climate change offers an opportunity for a revival, these financial concerns remain.
Large nuclear Hinkley Point C is a large nuclear station currently under construction in Somerset, England. The project is well-advanced, with its first reactor installed and due to come online in the middle of this decade. While the plant will provide around 7% of current UK electricity demand, its agreed electricity price is relatively expensive.
Under construction: Hinkley Point C. Ben Birchall/PA
The government’s new plan states: “We are pursuing large-scale new nuclear projects, subject to value-for-money.” This is likely a reference to the proposed Sizewell C in Suffolk, on which a final decision is expected soon. Sizewell C would be a copy of the Hinkley plant – building follow-up identical reactors achieves capital cost reductions, and setbacks at Hinkley Point C have sharpened delivery focus as an alternative funding model will likely be implemented to reduce financing costs.
Other potential nuclear sites such as Wylfa and Moorside (shelved in 2018 and 2019 respectively for financial reasons) are also not mentioned, their futures presumably also covered by the “subject to value-for-money” clause.
Small nuclear The next generation of nuclear technology, with various designs under development worldwide are smaller, cheaper, safer Small Modular Reactors (SMRs), such as the Rolls Royce “UK SMR”.
Reactors small enough to be manufactured in factories and delivered as modules can be assembled on site in much shorter times than larger designs, which in contrast are constructed mostly on site. In so doing, the capital costs per unit (and therefore borrowing costs) could be significantly lower than current new-builds.
The plan states “up to £215 million” will be made available for SMRs, Phase 2 of which will begin next year, with anticipated delivery of units around a decade from now.
Advanced nuclear The third proposed wave of nuclear will be the Advanced Modular Reactors (AMRs). These are truly innovative technologies, with a wide range of benefits over present designs and, like the small reactors, they are modular to keep prices down.
Crucially, advanced reactors operate at much higher temperatures – some promise in excess of 750°C compared to around 300°C in current reactors. This is important as that heat can be used in industrial processes which require high temperatures, such as ceramics, which they currently get through electrical heating or by directly burning fossil fuels. If those ceramics factories could instead use heat from AMRs placed nearby, it would reduce CO₂ emissions from industry (see chart above).
High temperatures can also be used to generate hydrogen, which the government’s plan recognises has the potential to replace natural gas in heating and eventually also in pioneering zero-emission vehicles, ships and aircraft. Most hydrogen is produced from natural gas, with the downside of generating CO₂ in the process. A carbon-free alternative involves splitting water using electricity (electrolysis), though this is rather inefficient. More efficient methods which require high temperatures are yet to achieve commercialisation, however if realised, this would make high temperature nuclear particularly useful.
The government is committing “up to £170 million” for AMR research, and specifies a target for a demonstrator plant by the early 2030s. The most promising candidate is likely a High Temperature Gas-cooled Reactor which is possible, if ambitious, over this timescale. The Chinese currently lead the way with this technology, and their version of this reactor concept is expected soon.
In summary, the plan is welcome news for the nuclear sector, even as Europe loses nuclear capacity across the continent. While it lacks some specifics, these may be detailed in the government’s upcoming Energy White Paper. The advice to government has been acknowledged, and the sums of money mentioned throughout are significant enough to really get started on the necessary research and development.
Achieving net zero is a vast undertaking, and recognising that nuclear can make a substantial contribution if properly supported is an important step towards hitting that target.
PG&E Camp Fire Guilty Plea underscores involuntary manslaughter charges as the utility admits sparking Paradise's wildfire; Butte County prosecution, CAL FIRE findings, bankruptcy oversight, victim compensation trust, and safety reforms shape accountability.
Key Points
The legal admission by PG&E to 84 involuntary manslaughter counts and unlawfully starting the 2018 Camp Fire.
✅ $3,486,950 fine, $500,000 DA costs; no prison terms.
✅ $13.5B victim trust, Paradise and Butte County payments.
California utility Pacific Gas and Electric Company pleaded guilty Tuesday to 84 counts of involuntary manslaughter and one count of unlawfully starting the Camp Fire, the deadliest blaze in the state's history.
Butte County District Attorney Michael L. Ramsey said the "historic moment" should be a signal that corporations will be held responsible for "recklessly endangering" lives. The 84 people "did not need to die," Ramsey said. He said the deaths were "of the most unimaginable horror, being burned to death."
Before sentencing, survivors will testify Wednesday about the losses of their loved ones, and many have pursued lawsuits against the utility seeking accountability.
No individuals will be sent to prison, Ramsey said.
"This is the first time that PG&E or any major utility has been charged with homicide as the result of a reckless fire. It killed a town," Ramsey said, referring to Paradise, which was annihilated by the blaze. According to court documents filed in March, the company will be fined "no more than $3,486,950," and it must reimburse the Butte County District Attorney's Office $500,000 for the costs of its investigation into the blaze, and under separate oversight a federal judge ordered dividends to be directed to wildfire risk reduction to prioritize safety.
Among other provisions, PG&E must establish a trust, compensating victims of the 2018 Camp Fire and other wildfires to the tune of $13.5 billion as part of its bankruptcy plan, according to the plea agreement included in a regulatory filing. It has to pay hundreds of millions to the town of Paradise and Butte County and cooperate with prosecutors' investigation, the plea deal says. PG&E also waived its right to appeal.
"I have heard the pain and the anguish of victims as they've described the loss they continue to endure, and the wounds that can't be healed," PG&E Corporation CEO and President Bill Johnson said after the plea. "No words from me could ever reduce the magnitude of such devastation or do anything to repair the damage. But I hope that the actions we are taking here today will help bring some measure of peace, including aid through a Wildfire Assistance Program the company announced."
Johnson was in court Tuesday, where Butte County Superior Court Judge Michael Deems read the names of each victim as their photos were shown on a screen, CNN affiliate KTLA reported. Johnson said the utility would never put profits ahead of safety again. He told the judge that PG&E took responsibility for the devastation "with eyes wide open to what happened and to what must never happen again," KTLA reported.
In March, the utility and the state agreed to bankruptcy terms, which included an overhaul of PG&E's board selection process, financial structure and oversight, with rates expected to stabilize in 2025 as reforms take hold. According to investigators with the California Department of Forestry and Fire Protection, PG&E was responsible for the devastating Camp Fire.
Electrical lines owned and operated by PG&E started the fire November 8, 2018, CAL Fire said in a news release, after the company acknowledged its power lines may have started two fires that day.
"The tinder dry vegetation and Red Flag conditions consisting of strong winds, low humidity and warm temperatures promoted this fire and caused extreme rates of spread," CAL Fire said. PG&E had previously said it was "probable" that its equipment started the Camp Fire but that it wasn't conclusive whether its lines ignited a second fire, as CAL Fire alleged. The power company filed for bankruptcy in January 2019 as it came under pressure from billions of dollars in claims tied to deadly wildfires, and other utilities such as Southern California Edison have faced similar lawsuits.
Hydro Quebec transmission expansion aims to move surplus hydroelectric capacity from record reservoirs to the US grid via new interties, increasing exports to New England and New York amid rising winter peak demand.
Key Points
A plan to add capacity and intertie links to export surplus hydro power from Quebec's reservoirs to the US grid.
✅ 245 MW added in 2021; portfolio reaches 37,012 MW
✅ Reservoirs at unprecedented levels; export potential high
✅ Lacks US transmission; working on new interties
Hydro Quebec plans to add an incremental 245 MW of hydro-electric generation capacity in 2021 to its expansive portfolio in the north of the province, while Quebec authorized nearly 1,000 MW for industrial projects across the region, bringing the total capacity to 37,012 MW, an official said Friday
Quebec`s highest peak demand of 39,240 MW occurred on January 22, 2014.
The province-owned company produced 205.1 TWh of power in 2017 and its net exports were 34.4 TWh that year, while Ontario chose not to renew a power deal in a separate development.
Sutherland said Hydro Quebec`s reservoirs are currently at "unprecedented levels" and the company could export more of its electricity to New England and New York, but faces transmission constraints that limit its ability to do so.
Hydro Quebec is working with US transmission developers, electric distribution companies, independent system operators and state government agencies to expand that transmission capacity in order to delivery more power from its hydro system to the US, Sutherland said.
Separately, NB Power signed three deals to bring more Quebec electricity into the province, reflecting growing regional demand.
The last major intertie connection between Quebec and the US was completed close to 30 years ago. The roughly 2,000 MW capacity transmission line that connects into the Boston area was completed in the late 1990s, according to Hydro Quebec spokeswoman Lynn St-Laurent.
Manitoba Hydro Interim Rate Increase faces PUB scrutiny as consumers coalition challenges a 5% electricity rate hike, citing drought planning, retained earnings, affordability, transparency, and impacts on fixed incomes and northern communities.
Key Points
A proposed 5% electricity rate hike under PUB review, opposed by consumers citing drought planning and affordability.
✅ Coalition backs 2% hike; 5% seen as undue burden
✅ PUB review sought; interim process lacks transparency
✅ Retained earnings, efficiencies cited to offset drought
The Consumers Coalition is urging the Public Utilities Board (PUB) to reject Manitoba Hydro’s current interim rate increase application, amid ongoing debates about Hydro governance and policy.
Hydro is requesting a five per cent jump in electricity rates starting on January 1, claiming drought conditions warrant the increase but the coalition disagrees, saying a two per cent increase would be sufficient.
The coalition, which includes Harvest Manitoba, the Consumers’ Association of Canada-Manitoba, and the Aboriginal Council of Winnipeg, said a 5 per cent rate increase would put an unnecessary strain on consumer budgets, especially for those on fixed incomes or living up north.
"We feel that, in many ways, Manitobans have already paid for this drought," said Gloria Desorcy, executive director of the Consumers’ Association of Canada - Manitoba.
The coalition argues that hydroelectric companies already plan for droughts and that hydro should be using past earnings to mitigate any losses.
The group claims drought conditions would have added about 0.8 per cent to Hydro’s bottom line. They said remaining revenues from a two per cent increase could then be used to offset the increased costs of major projects like the Keeyask generating station and service its growing debt obligations.
The group also said Hydro is financially secure and is projecting a positive net income of $112 million next year without rate increases, even as utility profits can swing with market conditions, assuming the drought doesn’t continue.
They argue Hydro can use retained earnings as a tool to mitigate losses, rather than relying on deferral accounting that shifts costs, and find further efficiencies within the corporation.
"So we said two per cent, which is much more palatable for consumers especially at the time when so many consumers are struggling with so many higher bills,” said Desorcy.
According to the coalition’s calculations, that works out to a $2-4 increase per month, and debates such as ending off-peak pricing in Ontario show how design affects bills, depending on whether electricity is used for heating, but it could be higher.
The coalition said their proposed two per cent rate increase should be applied to all Manitoba Hydro customers and have a set expiration date of January 1, 2023.
Another issue, according to the coalition, is the process of an interim rate application does not provide any meaningful transparency and accountability, whereas recent OEB decisions in Ontario have outlined more robust public processes.
Desorcy said the next step is up to the PUB, though board upheaval at Hydro One in Ontario shows how governance shifts can influence outcomes.
The board is expected to decide on the proposed increase in the next couple of weeks.
Manitoba Hydro unpaid leave plan offers unpaid days off to curb workforce costs amid COVID-19, avoiding temporary layoffs and pay cuts, targeting $5.7M savings through executive, manager, and engineer participation, with union options under discussion.
Key Points
A cost-saving measure offering unpaid days off to avert layoffs and pay cuts, targeting $5.7M savings amid COVID-19.
✅ 3 unpaid days for executives, managers, engineers
✅ Targets $5.7M total; $1.4M from non-union staff
✅ Avoids about 240 layoffs over a four-month period
The Manitoba government's Crown energy utility is offering workers unpaid days off as an alternative to temporary layoffs or pay cuts, even as residential electricity use rises due to more working from home.
In an email to employees, Manitoba Hydro president Jay Grewal says executives, managers, and engineers will take three unpaid days off before the fiscal year ends next March.
She says similar options are being discussed with other employee groups, which are represented by unions, as the Saskatchewan COVID-19 crisis reshaped workforces across the Prairies.
The provincial government ordered Manitoba Hydro to reduce workforce costs during the COVID-19 pandemic, as some power operators considered on-site staffing plans, and at one point the utility said it was looking at 600 to 700 temporary layoffs.
The organization said it’s looking for targeted savings of $5.7 million, down from $11 million previously estimated, while peers like BC Hydro’s Site C began reporting COVID-19 updates.
A spokesperson for Manitoba Hydro said non-unionized staff taking three days of unpaid leave will save $1.4 million of the $5.7 million savings.
“Three days of unpaid leave for every employee would eliminate layoffs entirely,” the spokesperson said in an email. “For comparison, approximately 240 layoffs would have to occur over a four-month period, while measures like Alberta's worker transition fund aim to support displaced workers, to achieve savings of $4.3 million.”
Grewal says the unpaid days off were a preferred option among the executives, managers, and engineers in an industry that recently saw a Hydro One worker injury case.
She says unions representing the other workers have been asked to respond by next Wednesday.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.