Hydro-Québec launches plug-in vehicles project

By Hydro-Québec


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Hydro-Québec^^s research institute IREQ has chosen GRIDbot Canada—whose products are manufactured in Shawinigan, Québec—the contract for the development and supply of an advanced bidirectional charging station for an experimental project on vehicle-to-grid and vehicle-to-home power exchanges V2G-V2H.

The goal of vehicle-to-grid V2G systems is to use the electricity stored in the batteries of plug-in vehicles as backup energy for electricity grids, such as the Hydro-Québec power system, during peak periods.

Vehicle-to-home V2H systems, on the other hand, allow plug-in vehicle owners to use the energy stored in the battery as a temporary power source during outages, as they would a generator.

To carry out the project, IREQ will assemble an electric test vehicle that will showcase Québec-designed technologies. TM4, a Hydro-Québec subsidiary, will supply a latest-generation TM4 MФTIVE electric power train system.

B3CG Interconnect, a company from Saint-Eustache, along with its partners, the Centre National du Transport Avancé national centre for advanced transportation in Saint-Jérôme and Brioconcept, based in Laval, developed a bidirectional charger that will be integrated to the charging station built.

Exchanging power between vehicles and the home or the grid is a promising development opportunity. "We would like to better define the long-term potential of this technology," said Denis Faubert, General Manager of IREQ. "Through this initiative, Hydro-Québec will continue to spearhead the integration of electric vehicles into the power system and become a showcase for Québec know-how."

The project will receive financial support from the Québec government as part of its 2011 to 2020 Action Plan for Electric Vehicles. This plan gave Hydro-Québec a mandate to define the implications of these innovative concepts and to carry out all required experiments.

"The Hydro-Québec project is a unique occasion to develop GRIDbot Canada's V2G and V2H technologies. Our Shawinigan-built bidirectional charging station will be based on the ingenuity developed here in Québec with the support and expertise of the IREQ team," said Éric Martel, administrator and project manager at GRIDbot Canada.

"This type of project is important for Hydro-Québec since it allows us to work with our partners in Québec to develop promising and interesting long-term technologies for our customers who will purchase plug-in electric vehicles," added Pierre-Luc Desgagné, Senior Director - Strategic Planning at Hydro-Québec.

Related News

Utilities see benefits in energy storage, even without mandates

Utility Battery Storage Rankings measure grid-connected capacity, not ownership, highlighting MW, MWh, and watts per customer across PJM, MISO, and California IOUs, featuring Duke Energy, IPL, ancillary services, and frequency regulation benefits.

 

Key Points

Rankings that track energy storage connected to utility grids, comparing MW, MWh, and W/customer rather than ownership.

✅ Ranks by MW, MWh, and watts per customer, not asset ownership

✅ Highlights PJM, MISO cases and California IOUs' deployments

✅ Examples: Duke Energy, IPL, IID; ancillary services, frequency response

 

The rankings do not tally how much energy storage a utility built or owns, but how much was connected to their system. So while IPL built and owns the storage facility in its territory, Duke does not own the 16 MW of storage that connected to its system in 2016. Similarly, while California’s utilities are permitted to own some energy storage assets, they do not necessarily own all the storage facilities connected to their systems.

Measured by energy (MWh), IPL ranked fourth with 20 MWh, and Duke Energy Ohio ranked eighth with 6.1 MWh.

Ranked by energy storage watts per customer, IPL and Duke actually beat the California utilities, ranking fifth and sixth with 42 W/customer and 23 W/customer, respectively.

Duke ready for next step

Given Duke’s plans, including projects in Florida that are moving ahead, the utility is likely to stay high in the rankings and be more of a driving force in development. “Battery technology has matured, and we are ready to take the next step,” Duke spokesman Randy Wheeless told Utility Dive. “We can go to regulators and say this makes economic sense.”

Duke began exploring energy storage in 2012, and until now most of its energy storage efforts were focused on commercial projects in competitive markets where it was possible to earn revenues. Those included its 36 MW Notrees battery storage project developed in partnership with the Department of Energy in 2012 that provides frequency regulation for the Electric Reliability Council of Texas market and two 2 MW storage projects at its retired W.C. Beckjord plant in New Richmond, Ohio, that sells ancillary services into the PJM Interconnection market.

On the regulated side, most of Duke’s storage projects have had “an R&D slant to them,” Wheeless said, but “we are moving beyond the R&D concept in our regulated territory and are looking at storage more as a regulated asset.”

“We have done the demos, and they have proved out,” Wheeless said. Storage may not be ready for prime time everywhere, he said, but in certain locations, especially where it can it can be used to do more than one thing, it can make sense.

Wheeless said Duke would be making “a number of energy storage announcements in the next few months in our regulated states.” He could not provide details on those projects.

More flexible resources
Location can be a determining factor when building a storage facility. For IPL, serving the wholesale market was a driving factor in the rationale to build its 20 MW, 20 MWh storage facility in Indianapolis.

IPL built the project to address a need for more flexible resources in light of “recent changes in our resource mix,” including decreasing coal-fired generation and increasing renewables and natural gas-fired generation, as other regions plan to rely on battery storage to meet rising demand, Joan Soller, IPL’s director of resource planning, told Utility Dive in an email. The storage facility is used to provide primary frequency response necessary for grid stability.

The Harding Street storage facility in May. It was the first energy storage project in the Midcontinent ISO. But the regulatory path in MISO is not as clear as it is in PJM, whereas initiatives such as Ontario storage framework are clarifying participation. In November, IPL with the Federal Energy Regulatory Commission, asking the regulator to find that MISO’s rules for energy storage are deficient and should be revised.

Soller said IPL has “no imminent plans to install energy storage in the future but will continue to monitor battery costs and capabilities as potential resources in future Integrated Resource Plans.”

California legislative and regulatory push

In California, energy storage did not have to wait for regulations to catch up with technology. With legislative and regulatory mandates, including CEC long-duration storage funding announced recently, as a push, California’s IOUs took high places in SEPA’s rankings.

Southern California Edison and San Diego Gas & Electric were first and fourth (63.2 MW and 17.2 MW), respectively, in terms of capacity. SoCal Ed and SDG&E were first and second (104 MWh and 28.4 MWh), respectively, and Pacific Gas and Electric was fifth (17 MWh) in terms of energy.

But a public power utility, the Imperial Irrigation District (IID), ended up high in the rankings – second in capacity (30 MW) and third  in energy (20 MWh) – even though as a public power entity it is not subject to the state’s energy storage mandates.

But while IID was not under state mandate, it had a compelling regulatory reason to build the storage project. It was part of a settlement reached with FERC over a September 2011 outage, IID spokeswoman Marion Champion said.

IID agreed to a $12 million fine as part of the settlement, of which $9 million was applied to physical improvements of IID’s system.

IID ended up building a 30 MW, 20 MWh lithium-ion battery storage system at its El Centro generating station. The system went into service in October 2016 and in May, IID used the system’s 44 MW combined-cycle natural gas turbine at the generating station.

Passing savings to customers
The cost of the storage system was about $31 million, and based on its experience with the El Centro project, Champion said IID plans to add to the existing batteries. “We are continuing to see real savings and are passing those savings on to our customers,” she said.

Champion said the battery system gives IID the ability to provide ancillary services without having to run its larger generation units, such as El Centro Unit 4, at its minimum output. With gas prices at $3.59 per million British thermal units, it costs about $26,880 a day to run Unit 4, she said.

IID’s territory is in southeastern California, an area with a lot of renewable resources. IID is also not part of the California ISO and acts as its own balancing authority. The battery system gives the utility greater operational flexibility, in addition to the ability to use more of the surrounding renewable resources, Champion said.

In May, IID’s board gave the utility’s staff approval to enter into contract negotiations for a 7 MW, 4 MWh expansion of its El Centro storage facility. The negotiations are ongoing, but approval could come in the next couple months, Champion said.

The heart of the issue, though, is “the ability of the battery system to lower costs for our ratepayers,” Champion said. “Our planning section will continue to utilize the battery, and we are looking forward to its expansion,” she said.” I expect it will play an even more important role as we continue to increase our percentage of renewables.”

 

Related News

View more

New energy projects seek to lower electricity costs in Southeast Alaska

Southeast Alaska Energy Projects advance hydroelectric, biomass, and heat pumps, displacing diesel via grants. Inside Passage Electric Cooperative and Alaska Energy Authority support Kake, Hoonah, Ketchikan with wood pellets, feasibility studies, and rate relief.

 

Key Points

Programs using hydro, biomass, and heat pumps to cut diesel use and lower electricity costs in Southeast Alaska.

✅ Hydroelectric at Gunnuk Creek to replace diesel in Kake

✅ Biomass and wood pellets displacing fuel oil in facilities

✅ Free feasibility studies; heat pumps where economical

 

New projects are under development throughout the region to help reduce energy costs for Southeast Alaska residents. A panel presented some of those during last week’s Southeast Conference annual fall meeting in Ketchikan.

Jodi Mitchell is with Inside Passage Electric Cooperative, which is working on the Gunnuk Creek hydroelectric project for Kake. IPEC is a non-profit, she said, with the goal of reducing electric rates for its members.

The Gunnuk Creek project will be built at an existing dam.

“The benefits for the project will be, of course, renewable energy for Kake. And we estimate it will save about 6.2 million gallons over its 50-year life,” she said. “Although, as you heard earlier, these hydro projects last forever.”

The gallons saved are of diesel fuel, which currently is used to power generators for electricity, though in places with limited options some have even turned to new coal plants to keep the lights on.

IPEC operates other hydro projects in Klukwan and Hoonah. Mitchell said they’re looking into future projects, one near Angoon and another that would add capacity to the existing Hoonah project, even as an independent power project in British Columbia is in limbo.

Mitchell said they fund much of their work through grants, which helps keep electric rates at a reasonable level.

Devany Plentovich with the Alaska Energy Authority talked about biomass projects in the state. She said the goal is to increase wood energy use in Alaska, even as some advocates call for a reduction in biomass electricity in other regions.

“We offer any community, any entity, a free feasibility study to see if they have a potential heating system in their community,” she said. “We do advocate for wood heating, but we are trying to get a community to pick the best heating technology for their situation, including options that use more electricity for heat when appropriate. So in a lot of situations, our consultants will give you the economics on a wood heating system but they’ll also recommend maybe you should look at heat pumps or look at waste energy.”

Plentovich said they recently did a study for Ketchikan’s Holy Name Church and School. The result was a recommendation for a heat pump rather than wood.

But, she said, wood energy is on the rise, and utilities elsewhere are increasing biomass for electricity as well. There are more than 50 systems in the state displacing more than 500,000 gallons of fuel oil annually. Those include systems on Prince of Wales Island and in Ketchikan.

Ketchikan recently experienced a supply issue, though. A local wood-pellet manufacturer closed, which is a problem for the airport and the public library, among other facilities that use biomass heaters.

Karen Petersen is the biomass outreach coordinator for Southeast Conference. She said this opens up a great opportunity for someone.

“Devany and I are working on trying to find a supplier who wants to go into the pellet business,” she said. “Probably importing initially, and then converting over to some form of manufacturing once the demand is stabilized.”

So, Petersen said, if anyone is interested in this entrepreneurial opportunity, contact her through Southeast Conference for more information.

 

Related News

View more

Cheap at Last, Batteries Are Making a Solar Dream Come True

Solar Plus Storage is accelerating across utilities and microgrids, pairing rooftop solar with lithium-ion batteries to enhance grid resilience, reduce peak costs, prevent blackouts, and leverage tax credits amid falling prices and decarbonization goals.

 

Key Points

Solar Plus Storage combines solar generation with batteries to shift load, boost reliability, and cut energy costs.

✅ Cuts peak demand charges and enhances blackout resilience

✅ Falling battery and solar costs drive nationwide utility adoption

✅ Enables microgrids and grid services like frequency regulation

 

Todd Karin was prepared when California’s largest utility shut off power to millions of people to avoid the risk of wildfires last month. He’s got rooftop solar panels connected to a single Tesla Powerwall in his rural home near Fairfield, California. “We had backup power the whole time,” Karin says. “We ran the fridge and watched movies.”

Californians worried about an insecure energy future are increasingly looking to this kind of solution. Karin, a 31-year-old postdoctoral fellow at Lawrence Berkeley National Laboratory, spent just under $4,000 for his battery by taking advantage of tax credits. He's also saving money by discharging the battery on weekday evenings, when energy is more expensive during peak demand periods. He expects to save around $1,500 over the 10 years the battery is under warranty.

The economics don’t yet work for every household, but the green-power combo of solar panels plus batteries is popping up on a much bigger scale in some unexpected places. Owners of a rice processing plant in Arkansas are building a system to generate 26 megawatts of solar power and store another 40 MW. The plant will cut its power bill by a third, and owners say they will pass the savings to local rice growers. New York’s JFK Airport is installing solar plus storage to reduce its power load by 10 percent, while Pittsburgh International Airport is building a 20-MW solar and natural gas microgrid to keep it independent from the local utility. Officials at both airports are worried about recent power shutdowns due to weather and overload-related blackouts.

And residents of the tiny northern Missouri town of Green City (pop. 608) are getting 2.5 MW of solar plus four hours of battery storage from the state’s public utility next year. The solar power won’t go directly to townspeople, but instead will back up the town’s substation, reducing the risk of a potential shutdown. It’s part of a $68 million project to improve the reliability of remote substations far from electric generating stations.

“It’s a pretty big deal for us,” says Chad Raley, who manages technology and renewables at Ameren, a Missouri utility that is building three rural solar-plus-storage projects to better manage the flow of electricity across the local grid. “It gives us so much flexibility with renewable generation. We can’t control the sun or clouds or wind, but we can have battery storage.”

The first solar-plus-storage installations started about a decade ago on a small scale in sunny states like California, Hawaii, and Arizona. Now they’re spreading across the country, driven by falling prices of both solar panels and lithium-ion batteries the size of a shipping container imported from both China and South Korea, with wind, solar, and batteries making up most of the utility-scale pipeline nationwide. These countries have ramped up production efficiencies and lowered labor costs, leaving many US manufacturers in the dust. In fact, the price of building a comparable solar-plus-storage generating facility is now cheaper than operating a coal-fired power plant, industry officials say. In certain circumstances, the cost is equal to some natural gas plants.

“This is not just a California, New York, Massachusetts thing,” says Kelly Speakes-Backman, CEO of the Energy Storage Association, an industry group in Washington. She says more than 30 states have renewable storage on the grid. Utilities have proposed and states have approved 7 gigawatts to be installed by 2030, and most new storage will be paired with solar across the US.

Speakes-Backman estimates the unit cost of electricity produced from a solar-plus-storage system will drop 10 to 15 percent each year through 2024, supporting record growth in solar and storage investments. “If you have the option of putting out a polluting or non-polluting generating source at the same price, what are you going to pick?” says Speakes-Backman.

She notes that PJM, a large Mid-Atlantic wholesale grid operator, announced it will deploy battery storage to help smooth out fluctuating power from two wind farms it operates. “When the grid fluctuates, storage can react to it quickly and can level out the supply,” she says. In the Midwest, grid-level battery storage is also being used to absorb extra wind power. Batteries hold onto the wind and put it back onto the grid when people need it.

While the solar-plus-storage trend isn’t yet putting a huge dent in our fossil fuel use, according to Paul Denholm, an energy analyst at the National Renewable Energy Laboratory in Golden, Colorado, it is a good beginning and has the side effect of cutting air pollution. By 2021, solar and other renewable energy sources will overtake coal as a source of energy, and the US is moving toward 30% electricity from wind and solar, according to a new report by the Institute for Energy Economics and Financial Analysis, a nonprofit think tank based in Cleveland.

That’s a glimmer of hope in a somewhat dreary week of news on carbon emissions. A new United Nations report released this week finds that the planet is on track to warm by 3.9 degrees Celsius (7 Fahrenheit) by 2100 unless drastic cuts are made by phasing out gas-powered cars, eliminating new coal-fired power plants, and changing how we grow and manage land, and scientists are working to improve solar and wind power to limit climate change as well.

Energy-related greenhouse gas emissions in the US rose 2.7 percent in 2018 after several years of decline. The Trump administration has rolled back climate policies from the Obama years, including withdrawing from the Paris climate accords.

There may be hope from green power initiatives outside the Beltway, though, and from federal proposals like a tenfold increase in US solar that could remake the electricity system. Arizona plans to boost solar-plus-storage from today’s 6 MW to a whopping 850 MW by 2025, more than the entire capacity of large-scale batteries in the US today. And some folks might be cheering the closing of the West’s biggest coal-fired power plant, the 2.25-gigawatt Navajo Generating Station, in Arizona, which had spewed soot and carbon dioxide over the region for 45 years until last week. The closure might help the planet and clear the hazy smog over the Grand Canyon.

 

Related News

View more

B.C. electricity demand hits an all-time high

BC Hydro Peak Electricity Demand reached a record 10,902 megawatts during a cold snap, driven by home heating. Peak hours surged; load shifting and energy conservation can ease strain on the grid and lower bills.

 

Key Points

Record winter peak of 10,902 MW, set during a cold snap, largely from home heating demand at peak hours.

✅ All-time high load: 10,902 MW between 5 and 6 p.m., Dec. 27.

✅ Cold snap increased home heating demand during peak hours.

✅ Shift laundry and dishwashers off-peak; use programmable thermostats.

 

BC Hydro says the province set a new record for peak electricity demand on Monday as temperatures hit extreme lows, and Quebec shattered consumption records during similar cold weather.

Between 5 and 6 p.m. on Dec. 27, demand for electricity hit an all-time high of 10,902 megawatts, which is higher than the previous record of 10,577 megawatts set in 2020, and follows a record-breaking year in 2021 for the utility.

“The record represents a single moment in the hour when demand for electricity was the highest yesterday,” says Simi Heer, BC Hydro spokesperson, in a statement. “Most of the increase is likely due to additional home heating required during this cold snap.”

In addition to the peak demand record on Monday, BC Hydro has observed an overall increase in electricity demand since Friday, and has noted that cryptocurrency mining electricity use is an emerging load in the province as well. Monday’s hourly peak demand was 18 per cent higher than Friday’s, while Calgary's electricity use soared during a frigid February, underscoring how cold snaps strain regional grids.

“BC Hydro has enough supply options in place to meet increasing electricity demand,” adds Heer, and pointed to customer supports like a winter payment plan for households managing higher bills. “However, if British Columbians want to help ease some of the demand on the system during peak times, we encourage shifting activities like doing laundry or running dishwashers to earlier in the day or later in the evening.”

BC Hydro is also offering energy conservation tips for people looking to lower their electricity use and their electricity bills, noting that Earth Hour once saw electricity use rise in the province:

Manage your home heating actively by turning the heat down when no one his home or when everyone is sleeping. Consider installing a programmable thermostat to automatically adjust temperatures at different times based on your family's activities, and remember that in warmer months wasteful air conditioning can add $200 to summer energy bills. BC Hydro recommends the following temperatures:

16 degrees Celsius when sleeping or away from home
21 degrees Celsius when relaxing, watching TV
18 degrees Celsius when doing housework or cleaning
 

 

Related News

View more

Renewables Surpass Coal in India's Energy Capacity Shift

India Renewable Energy Surge 2024 signals coal's decline as solar and wind capacity soar, aided by policy incentives, grid upgrades, energy storage, and falling costs, accelerating decarbonization and clean power growth.

 

Key Points

Q1 2024 saw renewables outpace coal in new capacity, led by cheaper solar, wind, policy support, and storage.

✅ 71.5% of new Q1 capacity came from renewables

✅ Solar and wind expand on falling costs and faster permitting

✅ Grid integration needs storage, skills, and just transition

 

In a landmark shift for the world's second-most populous nation, coal has finally been dethroned as the king of India's energy supply. The first quarter of 2024 saw a historic surge in renewable energy capacity, particularly on-grid solar development across states, pushing its share of power generation past 71.5%. This remarkable feat marks a turning point in India's journey towards a cleaner and more sustainable energy future.

For decades, coal has been the backbone of India's power sector, fueling rapid economic growth but also leading to concerning levels of air pollution. However, a confluence of factors has driven this dramatic shift, even as coal generation surges create short-term fluctuations in the mix. Firstly, the cost of solar and wind power has plummeted in recent years, making them increasingly competitive with coal. Secondly, the Indian government has set ambitious renewable energy targets, aiming for 50% of cumulative power generation capacity from non-fossil fuel sources by 2030. Thirdly, growing public awareness about the environmental impact of coal has spurred a demand for cleaner alternatives.

This surge in renewables is not just about replacing coal. The first quarter of 2024 witnessed a record-breaking addition of 13,669 megawatts (MW) of power generation capacity, with renewables accounting for a staggering 71.5% of that figure, aligning with 30% global renewable electricity milestones seen worldwide. This rapid expansion is driven by factors like falling equipment costs, streamlined permitting processes, and attractive government incentives. Solar and wind energy are leading the charge, and in other major markets renewables are projected to reach one-fourth of U.S. generation in the near term, with large-scale solar farms and wind turbine installations dotting the Indian landscape.

The transition away from coal presents both opportunities and challenges. On the positive side, cleaner air will lead to significant health benefits for millions of Indians. Additionally, India can establish itself as a global leader in the renewable energy sector, attracting investments and creating new jobs, echoing how China's solar PV expansion reshaped markets in the previous decade. However, challenges remain. Integrating such a large amount of variable renewable energy sources like solar and wind into the grid requires robust energy storage solutions. Furthermore, millions of jobs in the coal sector need to be transitioned to new opportunities in the green economy.

Despite these challenges, India's move towards renewables is a significant development with global implications, as U.S. renewable electricity surpassed coal in 2022, underscoring broader momentum. It demonstrates the growing viability of clean energy solutions and paves the way for other developing nations to follow suit. India's success story can inspire a global shift towards a more sustainable energy future, one powered by the sun, wind, and other renewable resources.

Looking ahead, continued government support, technological advancements, and innovative financing mechanisms will be crucial for sustaining India's renewable energy momentum. The future of India's energy sector is undoubtedly bright, fueled by the clean and abundant power of the sun and the wind, as wind and solar surpassed coal in the U.S. in recent comparisons. The world will be watching closely to see if India can successfully navigate this energy transition, setting an example for other nations struggling to balance development with environmental responsibility.

 

Related News

View more

Some in Tennessee could be without power for weeks after strong storms hit

Middle Tennessee Power Outages disrupt 100,000+ customers as severe thunderstorms, straight-line winds, downed trees, and debris challenge Nashville crews, slow restoration amid COVID-19, and threaten more hail, flash flooding, and damaging gusts.

 

Key Points

Blackouts across Nashville after severe storms and winds, leaving customers without power and facing restoration delays.

✅ Straight-line winds 60-80 mph toppled trees and power lines

✅ 130,000+ customers impacted; some outages may last 1-2 weeks

✅ Restoration slowed by debris, COVID-19 protocols, and new storms

 

Some middle Tennessee residents could be without electricity for up to two weeks after strong thunderstorms swept through the area Sunday, knocking out power for more than 100,000 customers, a scale comparable to Los Angeles outages after a station fire.

"Straight line winds as high as 60-80 miles per hour knocked down trees, power lines and power polls, interrupting power to 130,000 of our 400,000+ customers," Nashville Electric said in a statement Monday. The utility said the outage was one of the largest on record, though Carolina power outages recently left a quarter-million without power as well.

"Restoration times will depend on individual circumstances. In some cases, power could be out for a week or two" as challenges related to coronavirus and the need for utilities adapt to climate change complicated crews' responses and more storms were expected, the statement said. "This is unfortunate timing on the heels of a tornado and as we deal with battling COVID-19."

Metropolitan Nashville and Davidson County Mayor John Cooper also noted that the power outages were especially inconvenient, a challenge similar to Hong Kong families without power during Typhoon Mangkhut, as people were largely staying home to slow the spread of coronavirus. He also pointed out that the storms came on the two month anniversary of the Nashville tornado that left at least two dozen people dead.

"Crews are working diligently to restore power and clear any debris in neighborhoods," Cooper said.

He said that no fatalities were reported in the county but sent condolences to Spring Hill, whose police department reported that firefighter Mitchell Earwood died during the storm due to "a tragic weather-related incident" while at his home and off duty. He had served with the fire department for 10 years.

The Metro Nashville Department of Public Works said it received reports of more than 80 downed trees in Davidson County.

Officials also warn that copper theft can be deadly when electrical infrastructure is damaged after storms.

The National Weather Service Nashville said a 72 mph wind gust was measured at Nashville International Airport — the fifth fastest on record.

The weather service warned that strong storms with winds of up to 75 mph, large hail, record-long lightning bolt potential seen in the U.S., and isolated flash flooding could hit middle Tennessee again Monday afternoon and night.

"Treat Severe Thunderstorm Warnings the same way you would Tornado Warnings and review storm safety tips before you JUST TAKE SHELTER," the NWS instructs. "70 mph is 70 mph whether it's spinning around in a circle or blowing in a straight line."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified