Swedish nuclear group to boost safety

By Reuters


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Swedish utility group Vattenfall said it will create a new executive post to keep tabs on its nuclear power activities after criticism over operations at plants in Sweden and Germany.

The new post is the result of an internal report into a series of incidents at the company's Swedish nuclear plants, starting with an emergency shut-down at the Forsmark plant in 2006.

In addition to the post of Chief Nuclear Officer, which the firm said had yet to be filled, Vattenfall said it will also set up a Group Nuclear Security Council.

"As a consequence of what happened at Forsmark last year, Vattenfall's Board of Directors has made nuclear safety issues its top priority in 2007," Vattenfall Chairman Dag Klackenberg said in a statement.

In July 2006, a short-circuit triggered the shutdown of one of the three reactors at Forsmark -- owned by Vattenfall, Mellansvensk Kraftgrupp and Germany's E.ON. Other reactors were also shut down to check the same problem could not occur.

A leaking seal and a fire at another Swedish plant added to concerns over safety. Problems were not confined to Sweden.

In Germany, Vattenfall's Kruemmel and Brunsbuettel plants remain off line after a fire in a transformer substation at Kruemmel this year and a short circuit at Brunsbuettel.

German authorities threatened to withdraw Vattenfall's operating license for the two plants after the incidents.

Vattenfall owns half of Kruemmel and two-thirds of Brunsbuettel. E.ON holds the remaining stakes.

Vattenfall's Chief Executive, Lars Josefsson, said he agreed with the report's recommendation that Vattenfall's safety culture needed reinforcing, and said the company would now "start work to restore a position as global benchmark for nuclear safety".

Related News

Summerland solar power project will provide electricity

Summerland Solar+Storage Project brings renewable energy to a municipal utility with photovoltaic panels and battery storage, generating 1,200 megawatts from 3,200 panels on Cartwright Mountain to boost grid resilience and local clean power.

 

Key Points

A municipal solar PV and battery system enabling Summerland Power to self-generate electricity on Cartwright Mountain.

✅ 3,200 panels, 20-year batteries, 35-year panel lifespan

✅ Estimated $7M cost, $6M in grants, utility reserve funding

✅ Site near grid lines; 2-year timeline with 18-month lead

 

A proposed solar energy project, to be constructed on municipally-owned property on Cartwright Mountain, will allow Summerland Power to produce some of its own electricity, similar to how Summerside's wind power supplies a large share locally.

On Monday evening, municipal staff described the Solar+Storage project, aligning with insights from renewable power developers that combining resources yields better projects.

The project will include around 3,200 solar panels and storage batteries, giving Summerland Power the ability to generate 1,200 megawatts of electrical power.

This is the amount of energy used by 100 homes over the course of a year.

The solar panels have an estimated life expectancy of 35 years, while the batteries have a life expectancy of 20 years.

“It’s a really big step for a small utility like ours,” said Tami Rothery, sustainability/alternative energy coordinator for Summerland. “We’re looking forward to moving towards a bright, sunny energy future.”

She said the price of solar panels has been dropping, with lower-cost solar contracts reported in Alberta, and the quality and efficiency of the panels has increased in recent years.

The total cost of the project is around $7 million, with $6 million to come from grant funding and the remainder to come from the municipality’s electrical utility reserve fund, while policy changes such as Nova Scotia's solar charge delay illustrate evolving market conditions.

The site, a former public works yard and storage area, was selected from 108 parcels of land considered by the municipality.

She said the site, vacant since the 1970s, is close to main electrical lines and will not be highly visible once the panels are in place, much like unobtrusive rooftop solar arrays in urban settings.

Access to the site is restricted, resulting in natural security to the solar installation.

Jeremy Storvold, general manager of Summerland’s electrical utility, said the site is 2.5 kilometres from the Prairie Valley electrical substation and close to the existing public works yard.

However, some in the audience on Monday questioned the location of the proposed solar installation, suggesting the site would be better suited for affordable housing in the community.

The timeline for the project calls for roughly two years before the work will be completed, since there is an 18-month lead time in order to receive good quality solar panels, reflecting the surge in Alberta's solar growth that is straining supply chains.

 

Related News

View more

Why subsidies for electric cars are a bad idea for Canada

EV Subsidies in Canada influence greenhouse-gas emissions based on electricity grid mix; in Ontario and Quebec they reduce pollution, while fossil-fuel grids blunt benefits. Compare costs per tonne with carbon tax and renewable energy policies.

 

Key Points

Government rebates for electric vehicles, whose emissions impact and cost-effectiveness depend on provincial grid mix.

✅ Impact varies by grid emissions; clean hydro-nuclear cuts CO2.

✅ MEI estimates up to $523 per tonne vs $50 carbon price.

✅ Best value: tax carbon; target renewables, efficiency, hybrids.

 

Bad ideas sometimes look better, and sell better, than good ones – as with the proclaimed electric-car revolution that policymakers tout today. Not always, or else Canada wouldn’t be the mostly well-run place that it is. But sometimes politicians embrace a less-than-best policy – because its attractive appearance may make it more likely to win the popularity contest, right now, even though it will fail in the long run.

The most seasoned political advisers know it. Pollsters too. Voters, in contrast, don’t know what they don’t know, which is why bad policy often triumphs. At first glance, the wrong sometimes looks like it must be right, while better and best give the appearance of being bad and worst.

This week, the Montreal Economic Institute put out a study on the costs and benefits of taxpayer subsidies for electric cars. They considered the logic of the huge amounts of money being offered to purchasers in the country’s two largest provinces. In Quebec, if you buy an electric vehicle, the government will give you up to $8,000; in Ontario, buying an electric car or truck entitles you to a cheque from the taxpayer of between $6,000 and $14,000. The subsidies are rich because the cars aren’t cheap.

Will putting more electric cars on the road lower greenhouse-gas emissions? Yes – in some provinces, where they can be better for the planet when the grid is clean. But it all depends on how a province generates electricity. In places like Alberta, Saskatchewan, Nova Scotia and Nunavut territory, where most electricity comes from burning fossil fuels, an electric car may actually generate more greenhouse gases than one running on traditional gasoline. The tailpipe of an electric vehicle may not have any emissions. But quite a lot of emissions may have been generated to produce the power that went to the socket that charged it.

A few years ago, University of Toronto engineering professor Christopher Kennedy estimated that electric cars are only less polluting than the gasoline vehicles they replace when the local electrical grid produces a good chunk of its power from renewable sources – thereby lowering emissions to less than roughly 600 tonnes of CO2 per gigawatt hour.

Unfortunately, the electricity-generating systems in lots of places – from India to China to many American states – are well above that threshold. In those jurisdictions, an electric car will be powered in whole or in large part by electricity created from the burning of a fossil fuel, such as coal. As a result, that car, though carrying the green monicker of “electric,” is likely to be more polluting than a less costly model with an internal combustion or hybrid engine.

The same goes for the Canadian juridictions mentioned above. Their electricity is dirtier, so operating an electric car there won’t be very green. Alberta, for example, is aiming to generate 30 per cent of its electricity from renewable sources by 2030 – which means that the other 70 per cent of its electricity will still come from fossil fuels. (Today, the figure is even higher.) An Albertan trading in a gasoline car for an electric vehicle is making a statement – just not the one he or she likely has in mind.

In Ontario and Quebec, however, most electricity is generated from non-polluting sources, even though Canada still produced 18% from fossil fuels in 2019 overall. Nearly all of Quebec’s power comes from hydro, and more than 90 per cent of Ontario’s electricity is from zero-emission generation, mainly hydro and nuclear. British Columbia, Manitoba and Newfoundland and Labrador also produce the bulk of their electricity from hydro. Electric cars in those provinces, powered as they are by mostly clean electricity, should reduce emissions, relative to gas-powered cars.

But here’s the rub: Electric cars are currently expensive, and, as a recent survey shows, consequently not all that popular. Ontario and Quebec introduced those big subsidies in an attempt to get people to buy them. Those subsidies will surely put more electric cars on the road and in the driveways of (mostly wealthy) people. It will be a very visible policy – hey, look at all those electrics on the highway and at the mall!

However, that result will be achieved at great cost. According to the MEI, for Ontario to reach its goal of electrics constituting 5 per cent of new vehicles sold, the province will have to dish out up to $8.6-billion in subsidies over the next 13 years.

And the environmental benefits achieved? Again, according to the MEI estimate, that huge sum will lower the province’s greenhouse-gas emissions by just 2.4 per cent. If the MEI’s estimate is right, that’s far too many bucks for far too small an environmental bang.

Here’s another way to look at it: How much does it cost to reduce greenhouse-gas emissions by other means? Well, B.C.’s current carbon tax is $30 a tonne, or a little less than 7 cents on a litre of gasoline. It has caused GHG emissions per unit of GDP to fall in small but meaningful ways, thanks to consumers and businesses making millions of little, unspectacular decisions to reduce their energy costs. The federal government wants all provinces to impose a cost equivalent to $50 a tonne – and every economic model says that extra cost will make a dent in greenhouse-gas emissions, though in ways that will not involve politicians getting to cut any ribbons or hold parades.

What’s the effective cost of Ontario’s subsidy for electric cars? The MEI pegs it at $523 per tonne. Yes, that subsidy will lower emissions. It just does so in what appears to be the most expensive and inefficient way possible, rather than the cheapest way, namely a simple, boring and mildly painful carbon tax.

Electric vehicles are an amazing technology. But they’ve also become a way of expressing something that’s come to be known as “virtue signalling.” A government that wants to look green sees logic in throwing money at such an obvious, on-brand symbol, or touting a 2035 EV mandate as evidence of ambition. But the result is an off-target policy – and a signal that is mostly noise.

 

Related News

View more

Are we ready for electric tractors?

Electric tractors are surging, with battery-powered models, grid-tethered JD GridCON, and solar-charged designs delivering autonomous guidance, high efficiency, low maintenance, quiet operation, robust PTO compatibility, and durability for sustainable, precision agriculture.

 

Key Points

Electric tractors use battery or grid power to run implements with high efficiency, low noise, and minimal maintenance.

✅ Battery, grid-tethered, or solar-charged power options

✅ Lower operating costs, reduced noise, fewer moving parts

✅ Autonomous guidance, PTO compatibility, and quick charging

 

Car and truck manufacturers are falling off the fossil fuel bandwagon in droves and jumping on the electric train.

Now add tractors to that list.

Every month, another e-tractor announcement comes across our desks. Environmental factors drive this trend, along with energy efficiency, lower maintenance, lower noise level and motor longevity, and even autonomous weed-zapping robots are emerging.

Let’s start with the Big Daddy of them all, the 400 horsepower JD GridCON. This tractor is not a hybrid and it has no hassle with batteries. The 300 kilowatts of power come to the GridCON through a 1,000 metre extension cord connected to the grid, including virtual power plants or an off-field generator. A reel on the tractor rolls the cable in and out. The cable is guided by a robotic arm to prevent the tractor from running over it.

It uses a 700 volt DC bus for electric power distribution onboard and for auxiliary implements. It uses a cooling infrastructure for off-board electrical use. Total efficiency of the drive train is around 85 percent. A 100 kilowatt electric motor runs the IVT transmission. There’s an auxiliary outlet for implements powered by an electric motor up to 200 kW.

GridCON autonomously follows prescribed routes in the field at speeds up to 12 m.p.h., leveraging concepts similar to fleet management solutions for coordination. It can also be guided manually with a remote control when manoeuvring the tractor to enter a field. Empty weight is 8.5 tonnes, which is about the same as a 6195R but with double the power. Deere engineers say it will save about 50 percent in operating costs compared to battery powered tractors.

Solectrac
Two California-built all-battery powered tractors are finally in full production. While the biggest is only 40 horsepower, these are serious tractors that may foretell the future of farm equipment.

The all-electric 40 h.p. eUtility tractor is based on a 1950s Ford built in India. Solectrac is able to buy the bare tractor without an engine, so it can create a brand new electric tractor with no used components for North American customers. One tractor has already been sold to a farmer in Ontario. | Solectrac photo
The tractors are built by Solectrac, owned by inventor Steve Heckeroth, who has been doing electric conversions on cars, trucks, race cars and tractors for 25 years. He said there are three main reasons to take electric tractors seriously: simplicity, energy efficiency and longevity.

“The electric motor has only one moving part, unlike small diesel engines, which have over 300 moving parts,” Heckeroth said, adding that Solectrac tractors are not halfway compromise hybrids but true electric machines that get their power from the sun or the grid, particularly in hydro-rich regions like Manitoba where clean electricity is abundant, whichever is closest.

Neither tractor uses hydraulics. Instead, Heckeroth uses electric linear actuators. The ones he installs provide 1,000 pounds of dynamic load and 3,000 lb. static loads. He uses linear actuators because they are 20 times more efficient than hydraulics.

The eUtility and eFarmer are two-wheel drive only, but engineers are working on compact four-wheel drive electric tractors. Each tractor carries a price tag of US$40,000. Because production numbers are still limited, both tractors are available on a first to deposit basis. One e-tractor has already been sold and delivered to a farmer in Ontario.

The eUtility is a 40 h.p. yard tractor that accepts all Category 1, 540 r.p.m. power take-off implements on the rear three-point hitch, except those requiring hydraulics. An optional hydraulic pump can be installed for $3,000 for legacy implements that require hydraulics. For that price, a dedicated electricity believer might instead consider converting the implement to electric.

“The eUtility is actually a converted new 1950s Ford tractor made in a factory in India that was taken over after the British were kicked out in 1948,” Heckeroth said.

“I am able to buy only the parts I need and then add the motor, controller and batteries. I had to go to India because it’s one of the few places that still makes geared transmissions. These transmissions work the best for electric tractors. Gear reduction is necessary to keep the motor in the most efficient range of about 2,000 r.p.m. It has four gears with a high and low range, which covers everything from creep to 25 m.p.h.

On his eUtility, a single 30 kWh onboard battery pack provides five to eight hours of run time, depending on loads. It can carry two battery packs. The Level 2 quick charge gives an 80 percent charge for one pack in three hours. Two packs can receive a full charge overnight with support from home batteries like Powerwall for load management.

The integrated battery management system protects the batteries during charging and discharging, while backup fuel cell chargers can keep storage healthy in remote deployments. Batteries are expected to last about 10 years, depending on the number of operating cycles and depth of discharge.

Exchangeable battery packs are available to keep the tractor running through the full work day. These smaller 20 kWh packs can be mounted on the rear hitch to balance the weight of the optional front loader or carried in the optional front loader to balance the weight of heavy implements mounted on the rear hitch.

The second tractor is the 20 kWh eFarmer, which features high visibility for row crop farms at a fraction of the cost of diesel fuel tractors. The 30 h.p. eFarmer is basically just a tube frame with the necessary components attached. A simple joystick controls steering, speed and brakes.

Harvest
Introduced to the North American public this spring by Motivo Engineering in California, the Harvest tractor is simply a big battery on wheels. The complex electrical system takes power in through a variety of renewable energy sources, such as solar panels with smart solar inverters enabling optimized PV integration, water wheels, wind turbines or even intermittent electrical grids. It stores electrical power on-board and delivers it when and where required, putting power out to a large number of electrical tools and farm implements. It operates in AC or DC modes.

 

Related News

View more

PG&E pleads guilty to 85 counts in 2018 Camp Fire

PG&E Camp Fire Guilty Plea underscores involuntary manslaughter charges as the utility admits sparking Paradise's wildfire; Butte County prosecution, CAL FIRE findings, bankruptcy oversight, victim compensation trust, and safety reforms shape accountability.

 

Key Points

The legal admission by PG&E to 84 involuntary manslaughter counts and unlawfully starting the 2018 Camp Fire.

✅ 84 involuntary manslaughter counts; unlawful ignition admitted.

✅ $3,486,950 fine, $500,000 DA costs; no prison terms.

✅ $13.5B victim trust, Paradise and Butte County payments.

 

California utility Pacific Gas and Electric Company pleaded guilty Tuesday to 84 counts of involuntary manslaughter and one count of unlawfully starting the Camp Fire, the deadliest blaze in the state's history.

Butte County District Attorney Michael L. Ramsey said the "historic moment" should be a signal that corporations will be held responsible for "recklessly endangering" lives.
The 84 people "did not need to die," Ramsey said. He said the deaths were "of the most unimaginable horror, being burned to death."

Before sentencing, survivors will testify Wednesday about the losses of their loved ones, and many have pursued lawsuits against the utility seeking accountability.

No individuals will be sent to prison, Ramsey said.

"This is the first time that PG&E or any major utility has been charged with homicide as the result of a reckless fire. It killed a town," Ramsey said, referring to Paradise, which was annihilated by the blaze.
According to court documents filed in March, the company will be fined "no more than $3,486,950," and it must reimburse the Butte County District Attorney's Office $500,000 for the costs of its investigation into the blaze, and under separate oversight a federal judge ordered dividends to be directed to wildfire risk reduction to prioritize safety.

Among other provisions, PG&E must establish a trust, compensating victims of the 2018 Camp Fire and other wildfires to the tune of $13.5 billion as part of its bankruptcy plan, according to the plea agreement included in a regulatory filing.
It has to pay hundreds of millions to the town of Paradise and Butte County and cooperate with prosecutors' investigation, the plea deal says.
PG&E also waived its right to appeal.

"I have heard the pain and the anguish of victims as they've described the loss they continue to endure, and the wounds that can't be healed," PG&E Corporation CEO and President Bill Johnson said after the plea. "No words from me could ever reduce the magnitude of such devastation or do anything to repair the damage. But I hope that the actions we are taking here today will help bring some measure of peace, including aid through a Wildfire Assistance Program the company announced."

Johnson was in court Tuesday, where Butte County Superior Court Judge Michael Deems read the names of each victim as their photos were shown on a screen, CNN affiliate KTLA reported.
Johnson said the utility would never put profits ahead of safety again. He told the judge that PG&E took responsibility for the devastation "with eyes wide open to what happened and to what must never happen again," KTLA reported.

In March, the utility and the state agreed to bankruptcy terms, which included an overhaul of PG&E's board selection process, financial structure and oversight, with rates expected to stabilize in 2025 as reforms take hold.
According to investigators with the California Department of Forestry and Fire Protection, PG&E was responsible for the devastating Camp Fire.

Electrical lines owned and operated by PG&E started the fire November 8, 2018, CAL Fire said in a news release, after the company acknowledged its power lines may have started two fires that day.

"The tinder dry vegetation and Red Flag conditions consisting of strong winds, low humidity and warm temperatures promoted this fire and caused extreme rates of spread," CAL Fire said.
PG&E had previously said it was "probable" that its equipment started the Camp Fire but that it wasn't conclusive whether its lines ignited a second fire, as CAL Fire alleged.
The power company filed for bankruptcy in January 2019 as it came under pressure from billions of dollars in claims tied to deadly wildfires, and other utilities such as Southern California Edison have faced similar lawsuits.

 

Related News

View more

US Approves Rule to Boost Renewable Transmission

FERC Transmission Rule accelerates grid modernization and interregional high-voltage lines, enabling renewable energy integration, load balancing, and reliability to advance net-zero goals while strengthening resilience, capacity expansion, and decarbonization across U.S. regional transmission organizations.

 

Key Points

A federal policy mandating interregional grid planning and cost sharing to expand high-voltage lines for renewables.

✅ Expands interregional high-voltage transmission capacity

✅ Improves reliability, resilience, and load balancing

✅ Aligns cost allocation and long-term planning for renewables

 

On May 13th, 2024, the US took a monumental step towards its clean energy goals. The Federal Energy Regulatory Commission (FERC) approved a long-awaited rule designed to significantly expand the transmission of renewable energy across the nation's power grid, a US grid overhaul that many advocates say was overdue. This decision aligns with President Biden's ambitious plan to achieve net-zero carbon emissions by 2050, with renewable energy playing a central role.

The new rule tackles a critical bottleneck hindering the widespread adoption of renewables – transmission infrastructure. Unlike traditional power plants like coal or natural gas that run constantly, solar and wind power generation fluctuates with weather conditions. This variability poses a challenge for the existing grid, which is not designed to efficiently handle large-scale integration of these intermittent sources, helping explain why the grid isn't 100% renewable today.

The FERC rule aims to address this by promoting the construction of new, high-voltage transmission lines, particularly those connecting different regions, where grid limitations in the Pacific Northwest have highlighted the need for better interregional transfers. This improved connectivity would allow for a more strategic distribution of renewable energy. Imagine solar energy harnessed in the sun-drenched Southwest being transmitted eastward to meet peak demand during hot summer days on the Atlantic Coast.

The benefits of this expanded transmission network are multifaceted. First, it unlocks the full potential of renewable resources by allowing for their efficient utilization across the country, a trend consistent with wind and solar surpassing coal in U.S. generation. Abundant wind power in the Midwest could be utilized on the West Coast, while surplus solar energy from the South could supplement demand in the Northeast.

Second, a more robust grid with a higher capacity for renewables reduces reliance on fossil fuel-based power plants and complements other ways to meet decarbonization goals across sectors. This translates to cleaner air and a significant reduction in greenhouse gas emissions, contributing to the fight against climate change.

Third, a modernized grid with improved long-distance transmission bolsters the nation's energy security. Extreme weather events, a growing concern due to climate change, can disrupt energy production in specific regions. This interconnected grid would provide a buffer, ensuring a more reliable and resilient power supply and helping put regions on the road to 100% renewables even during adverse weather conditions.

The FERC's decision is a win for environmental groups and the renewable energy industry. They see it as a critical step towards a cleaner energy future and a significant driver of job creation in the construction and maintenance of new transmission lines. However, concerns have been raised by some stakeholders, particularly investor-owned utilities. They worry about the potential cost burden associated with building these expansive new lines, and recent reports of stalled grid spending underscore those concerns and the need for efficient cost allocation mechanisms. Striking a balance between efficiency, affordability, and environmental responsibility will be crucial for the successful implementation of this policy.

 

Related News

View more

N.S. abandons Atlantic Loop, will increase wind and solar energy projects

Nova Scotia Clean Power Plan 2030 pivots from the Atlantic Loop, scaling wind and solar, leveraging Muskrat Falls via the Maritime Link, adding battery storage and transmission upgrades to decarbonize grid and retire coal.

 

Key Points

Nova Scotia's 2030 roadmap to replace coal with wind, solar, hydro imports, storage, and grid upgrades.

✅ 1,000 MW onshore wind to supply 50% by 2030

✅ Battery storage sites and New Brunswick transmission upgrades

✅ Continued Muskrat Falls imports via Maritime Link

 

Nova Scotia is abandoning the proposed Atlantic Loop in its plan to decarbonize its electrical grid by 2030 amid broader discussions about independent grid planning nationwide, Natural Resources and Renewables Minister Tory Rushton has announced.

The province unveiled its clean power plan calling for 30 per cent more wind power and five per cent more solar energy in the Nova Scotia power grid over the coming years. Nova Scotia's plan relies on continued imports of hydroelectricity from the Muskrat Falls project in Labrador via the Emera-owned Maritime Link.

Right now Nova Scotia generates 60 per cent of its electricity by burning fossil fuels, mostly coal, and some increased use of biomass has also factored into the mix. Nova Scotia Power must close its coal plants by 2030 when 80 per cent of electricity must come from renewable sources in order reduce greenhouse gas emissions causing climate changes.

Critics have urged reducing biomass use in electricity generation across the province.

The clean power plan calls for an additional 1,000 megawatts of onshore wind by 2030 which would then generate 50 per cent of the the province's electricity, while also advancing tidal energy in the Bay of Fundy as a complementary source.    

"We're taking the things already know and can capitalize on while we build them here in Nova Scotia," said Rushton, "More importantly, we're doing it at a lower rate so the ratepayers of Nova Scotia aren't going to bear the brunt of a piece of equipment that's designed and built and staying in Quebec."

The province says it can meet its green energy targets without importing Quebec hydro through the Atlantic loop. It would have brought hydroelectric power from Quebec into New Brunswick and Nova Scotia via upgraded transmission links. But the government said the cost is prohibitive, jumping to $9 billion from nearly $3 billion three years ago with no guarantee of a secure supply of power from Quebec.

"The loop is not viable for 2030. It is not necessary to achieve our goal," said David Miller, the provincial clean energy director. 

Miller said the cost of $250 to $300 per megawatt hour was five times higher than domestic wind supply.

Some of the provincial plan includes three new battery storage sites and expanding the transmission link with New Brunswick. Both were Nova Scotia Power projects paused by the company after the Houston government imposed a cap on the utility's rate increased in the fall of 2022.

The province said building the 345-kilovolt transmission line between Truro, N.S., and Salisbury, N.B., and an extension to the Point Lepreau Nuclear Generating Station, as well as aligning with NB Power deals for Quebec electricity underway, would enable greater access to energy markets.

Miller says Nova Scotia Power has revived both.

Nova Scotia Power did not comment on the new plan, but Rushton spoke for the company.

"All indications I've had is Nova Scotia Power is on board for what is taking place here today," he said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.