BCTC invests $5.3 billion to power the province

By Canada News Wire


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
BC Transmission Corporation (BCTC) has filed its Ten Year Capital Plan with the BC Utilities Commission, outlining $5.3 billion in expenditures to ensure British Columbians continue to benefit from reliable, clean and efficient electricity.

"The transmission system is B.C.'s electricity highway, and powers virtually every home and business in the province. BCTC continues to invest in improvements to the transmission system to ensure electricity is delivered across the province, when and where it is needed," said Jane Peverett, BCTC President and CEO. "Significant investment is required to maintain and expand the province's transmission system to secure our long-term electricity needs and to retain the ongoing competitive advantage these assets provide to British Columbians."

The new Capital Plan describes measures that BCTC will take to enhance the transmission system's overall performance. These measures include replacing aging electrical equipment to ensure the safety and reliability of the system and building efficient new infrastructure to supply the needs of communities.

"BCTC is also investing in new digital technologies to extend the life and enhance the capacity of B.C.'s transmission network," said Peverett. "Our focus on innovative technologies will ensure B.C. communities continue to benefit from one of the most advanced energy networks in the world."

Related News

How Energy Use Has Evolved Throughout U.S. History

U.S. Energy Transition traces the shift from coal and oil to natural gas, nuclear power, and renewables like wind and solar, driven by efficiency, grid modernization, climate goals, and economic innovation.

 

Key Points

The U.S. Energy Transition is the shift from fossil fuels to cleaner power, driven by tech, policy, and markets.

✅ Shift from coal and oil to gas, nuclear, wind, and solar

✅ Enabled by grid modernization, storage, and efficiency

✅ Aims to cut emissions while ensuring reliability and affordability

 

The evolution of energy use in the United States is a dynamic narrative that reflects technological advancements, economic shifts, environmental awareness, and societal changes over time. From the nation's early reliance on wood and coal to the modern era dominated by oil, natural gas, and renewable sources, the story of energy consumption in the U.S. is a testament to innovation and adaptation.

Early Energy Sources: Wood and Coal

In the early days of U.S. history, energy needs were primarily met through renewable resources such as wood for heating and cooking. As industrialization took hold in the 19th century, coal emerged as a dominant energy source, fueling steam engines and powering factories, railways, and urban growth. The widespread availability of coal spurred economic development and shaped the nation's infrastructure.

The Rise of Petroleum and Natural Gas

The discovery and commercialization of petroleum in the late 19th century transformed the energy landscape once again. Oil quickly became a cornerstone of the U.S. economy, powering transportation, industry, and residential heating, and informing debates about U.S. energy security in policy circles. Concurrently, natural gas emerged as a significant energy source, particularly for heating and electricity generation, as pipelines expanded across the country.

Electricity Revolution

The 20th century witnessed a revolution in electricity generation and consumption, and understanding where electricity comes from helps contextualize how systems evolved. The development of hydroelectric power, spurred by projects like the Hoover Dam and Tennessee Valley Authority, provided clean and renewable energy to millions of Americans. The widespread electrification of rural areas and the proliferation of appliances in homes and businesses transformed daily life and spurred economic growth.

Nuclear Power and Energy Diversification

In the mid-20th century, nuclear power emerged as a promising alternative to fossil fuels, promising abundant energy with minimal greenhouse gas emissions. Despite concerns about safety and waste disposal, nuclear power plants became a significant part of the U.S. energy mix, providing a stable base load of electricity, even as the aging U.S. power grid complicates integration of variable renewables.

Renewable Energy Revolution

In recent decades, the U.S. has seen a growing emphasis on renewable energy sources such as wind, solar, and geothermal power, yet market shocks and high fuel prices alone have not guaranteed a rapid green revolution, prompting broader policy and investment responses. Advances in technology, declining costs, and environmental concerns have driven investments in clean energy infrastructure and policies promoting renewable energy adoption. States like California and Texas lead the nation in wind and solar energy production, demonstrating the feasibility and benefits of transitioning to sustainable energy sources.

Energy Efficiency and Conservation

Alongside shifts in energy sources, improvements in energy efficiency and conservation have played a crucial role in reducing per capita energy consumption and greenhouse gas emissions. Energy-efficient appliances, building codes, and transportation innovations have helped mitigate the environmental impact of energy use while reducing costs for consumers and businesses, and weather and economic factors also influence demand; for example, U.S. power demand fell in 2023 on milder weather, underscoring the interplay between efficiency and usage.

Challenges and Opportunities

Looking ahead, the U.S. faces both challenges and opportunities in its energy future, as recent energy crisis effects ripple across electricity, gas, and EVs alike. Addressing climate change requires further investments in renewable energy, grid modernization, and energy storage technologies. Balancing energy security, affordability, and environmental sustainability remains a complex task that requires collaboration between government, industry, and society.

Conclusion

The evolution of energy use throughout U.S. history reflects a continuous quest for innovation, economic growth, and environmental stewardship. From wood and coal to nuclear power and renewables, each era has brought new challenges and opportunities in meeting the nation's energy needs. As the U.S. transitions towards a cleaner and more sustainable energy future, leveraging technological advancements and embracing policy solutions, amid debates over U.S. energy dominance, will be essential in shaping the next chapter of America's energy story.

 

Related News

View more

N.S. approves new attempt to harness Bay of Fundy's powerful tides

Bay of Fundy Tidal Energy advances as Nova Scotia permits Jupiter Hydro to test floating barge platforms with helical turbines in Minas Passage, supporting renewable power, grid-ready pilots, and green jobs in rural communities.

 

Key Points

A Nova Scotia tidal energy project using helical turbines to generate clean power and create local jobs.

✅ Permits enable 1-2 MW prototypes near Minas Passage

✅ Floating barge platforms with patented helical turbines

✅ PPA at $0.50/kWh with Nova Scotia Power

 

An Alberta-based company has been granted permission to try to harness electricity from the powerful tides of the Bay of Fundy.

Nova Scotia has issued two renewable energy permits to Jupiter Hydro.

Backers have long touted the massive energy potential of Fundy's tides -- they are among the world's most powerful -- but large-scale commercial efforts to harness them have borne little fruit so far, even as a Scottish tidal project recently generated enough power to supply nearly 4,000 homes elsewhere.

The Jupiter application says it will use three "floating barge type platforms" carrying its patented technology. The company says it uses helical turbines mounted as if they were outboard motors.

"Having another company test their technology in the Bay of Fundy shows that this early-stage industry continues to grow and create green jobs in our rural communities," Energy and Mines Minister Derek Mombourquette said in a statement.

The first permit allows the company to test a one-megawatt prototype that is not connected to the electricity grid.

The second -- a five-year permit for up to two megawatts -- is renewable if the company meets performance standards, environmental requirements and community engagement conditions.

Mombourquette also authorized a power purchase agreement that allows the company to sell the electricity it generates to the Nova Scotia grid through Nova Scotia Power for 50 cents per kilowatt hour.

On its web site, Jupiter says it believes its approach "will prove to be the most cost effective marine energy conversion technology in the world," even as other regional utilities consider initiatives like NB Power's Belledune concept for turning seawater into electricity.

The one megawatt unit would have screws which are about 5.5 metres in diameter.

The project is required to obtain all other necessary approvals, permits and authorizations.

It will be located near the Fundy Ocean Research Center for Energy in the Minas Passage and will use existing electricity grid connections.

A study commissioned by the Offshore Energy Research Association of Nova Scotia says by 2040, the tidal energy industry could contribute up to $1.7 billion to Nova Scotia's gross domestic product and create up to 22,000 full-time jobs, a transition that some argue should be planned by an independent body to ensure reliability.

Last month, Nova Scotia Power said it now generates 30 per cent of its power from renewables, as the province moves to increase wind and solar projects after abandoning the Atlantic Loop.

The utility says 18 per cent came from wind turbines, nine per cent from hydroelectric and tidal turbines and three per cent by burning biomass across its fleet.

However, over half of the province's electrical generation still comes from the burning of coal or petroleum coke, even as environmental advocates push to reduce biomass use in the mix. Another 13 per cent come from burning natural gas and five per cent from imports.

 

Related News

View more

British Columbians can access more in EV charger rebates

B.C. EV Charging Rebates boost CleanBC incentives as NRCan and ZEVIP funding covers up to 75% of Level 2 and DC fast-charger purchase and installation costs for homes, workplaces, condos, apartments, and fleet operators.

 

Key Points

Incentives in B.C. cover up to 75% of Level 2 and DC fast charger costs for homes, workplaces, and fleets.

✅ Up to 75% back; Level 2 max $5,000; DC fast max $75,000 for fleets.

✅ Eligible sites: homes, workplaces, condos, apartments, fleet depots.

✅ Funded by CleanBC with NRCan ZEVIP; time-limited top-up.

 

The Province and Natural Resources Canada (NRCan) are making it more affordable for people to install electric vehicle (EV) charging stations in their homes, businesses and communities, as EV demand ramps up across the province.

B.C. residents, businesses and municipalities can receive higher rebates for EV charging stations through the CleanBC Go Electric EV Charger Rebate and Fleets programs. For a limited time, funding will cover as much as 75% of eligible purchase and installation costs for EV charging stations, which is an increase from the previous 50% coverage.

“With electric vehicles representing 13% of all new light-duty vehicles sold in B.C. last year, our province has the strongest adoption rate of electric vehicles in Canada. We’re positioning ourselves to become leaders in the EV industry,” said Bruce Ralston, B.C.’s Minister of Energy, Mines and Low Carbon Innovation. “We’re working with our federal partners to increase rebates for home, workplace and fleet charging, and making it easier and more affordable for people to make the switch to electric vehicles.”

With a $2-million investment through NRCan’s Zero-Emission Vehicle Infrastructure Program (ZEVIP) to top up the Province’s EV Charger Rebate program, workplaces, condominiums and apartments can get a rebate for a Level 2 charging station for as much as 75% of purchase and installation costs to a maximum of $5,000. As many as 360 EV chargers will be installed through the program.

“We’re making electric vehicles more affordable and charging more accessible where Canadians live, work and play,” said Jonathan Wilkinson, federal Minister of Natural Resources. “Investing in more EV chargers, like the ones announced today in British Columbia, will put more Canadians in the driver’s seat on the road to a net-zero future and help achieve our climate goals.”

Through the CleanBC Go Electric Fleets program and in support of B.C. businesses that own and operate fleet vehicles, NRCan has invested $1.54 million through ZEVIP to top up rebates. Fleet operators can get combined rebates from NRCan and the Province for a Level 2 charging station as much as 75% to a maximum of $5,000 of purchase and installation costs, and 75% to a maximum of $75,000 for a direct-current, fast-charging station. As many as 450 EV chargers will be installed through the program.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy.

Quick Facts:

  • A direct-current fast charger on the BC Electric Highway allows an EV to get 100-300 kilometres of range from 30 minutes of charging.
  • Faster chargers, which give more range in less time, are coming out every year.
  • A Level 2 charger allows an EV to get approximately 30 kilometres of range per hour of charging.
  • It uses approximately the same voltage as a clothes dryer and is usually installed in homes, workplaces or for fleets to get a faster charge than a regular outlet, or in public places where people might park for a longer time.
  • A key CleanBC action is to strengthen the Zero-Emission Vehicles Act to require light-duty vehicle sales to be 26% zero-emission vehicles (ZEVs) by 2026, 90% by 2030 and 100% by 2035, five years ahead of the original target.
  • At the end of 2021, B.C. had more than 3,000 public EV charging stations and almost 80,000 registered ZEVs.

Learn More:

To learn more about home and workplace EV charging-station rebates, eligibility and application processes, visit: https://goelectricbc.gov.bc.ca/   

To learn more about the Fleets program, visit: https://pluginbc.ca/go-electric-fleets/    

To learn more about Natural Resources Canada’s Zero-Emission Vehicle Infrastructure Program, visit:
https://www.nrcan.gc.ca/energy-efficiency/transportation-alternative-fuels/zero-emission-vehicle-infrastructure-program/21876

 

Related News

View more

Starved of electricity, Lebanon picks Dubai's ENOC to swap Iraqi fuel

Lebanon-ENOC Fuel Swap secures Iraqi high sulphur fuel oil, Grade B fuel oil, and gasoil via tender, easing electricity generation shortfalls, diesel shortages, and grid outages amid Lebanon's energy crisis and power sector emergency.

 

Key Points

A tender-based exchange trading Iraqi HSFO for cleaner fuel oil and gasoil to stabilize Lebanon's electricity generation.

✅ Swaps 84,000t Iraqi HSFO for 30,000t Grade B fuel oil and 33,000t gasoil

✅ Supports state electricity generation during acute power shortages

✅ Tender won by ENOC under Lebanon-Iraq goods-for-fuel deal

 

Lebanon's energy ministry said it had picked Dubai's ENOC in a tender to swap 84,000 tonnes of Iraqi high sulphur fuel oil, as LNG export authorizations expand globally, with 30,000 tonnes of Grade B fuel oil and 33,000 tonnes of gasoil.

ENOC won the tender, part of a deal between the two countries that allows the cash-strapped Lebanese government, even as electricity tensions persist, to pay for 1 million tonnes of Iraqi heavy fuel oil a year in goods and services.

As Lebanon suffers what the World Bank has described as one of the deepest depressions of modern history, shortages of fuel this month have meant state-powered electricity, alongside ongoing electricity sector reform, has been available for barely a few hours a day if at all.

Residents turning to private generators for their power supply face diesel shortages, even as other countries roll out measures to secure electricity supplies to mitigate risks.

The swap tenders are essential as Iraqi fuel is unsuitable for Lebanese electricity generation, and regional projects like the Jordan-Saudi electricity linkage underscore broader grid strategies.

Lebanese caretaker Energy Minister Raymond Ghajar said in July the fuel from the Iraqi deal would be used for electricity generation by the state provider, even as France advances a new electricity pricing scheme in Europe, and was enough for around four months.

ENOC is set to receive the Iraq fuel between Sept. 3-5 and will deliver it to Lebanon two weeks after, the energy ministry said, following a recent deal on electricity prices abroad that could influence markets.

 

Related News

View more

Tunisia moves ahead with smart electricity grid

Tunisia Smart Grid Project advances with an AFD loan as STEG deploys smart meters in Sfax, upgrades grid infrastructure, boosts energy efficiency, curbs losses, and integrates renewable energy through digitalization and advanced communication systems.

 

Key Points

A national program funded by an AFD $131.7M loan to modernize STEG, deploy smart meters, and integrate renewable energy.

✅ 430,000 smart meters in Sfax during phase one

✅ 20-year AFD loan with 7-year grace period

✅ Cuts losses, improves efficiency, enables renewables

 

The Tunisian parliament has approved taking a $131.7 million loan from the French Development Agency for the implementation of a smart grid project.

Parliament passed legislation regarding the 400 million dinar ($131.7 million) loan plus a grant of $1.1 million.

The loan, to be repaid over 20 years with a grace period of up to 7 years, is part of the Tunisian government’s efforts to establish a strategy of energy switching aimed at reducing costs and enhancing operational efficiency.

The move to the smart grid had been postponed after the Tunisian Company of Electricity and Gas (STEG) announced in March 2017 that implementation of the first phase of the project would begin in early 2018 and cover the entire country by 2023.

STEG was to have received funding some time ago. Last year at the Africa Smart Grid Summit in Tunis, the company said it would initiate an international tender during the first quarter of 2019 to start the project.

The French funding is to be allocated to implementation of the first phase only, which will involve development of control and communication stations and the improvement of infrastructure, where regulatory outcomes such as the Hydro One T&D rates decision can influence investment planning in comparable markets.

It includes installation of 430,000 “intelligent” metres over three years in Sfax governorate in southern Tunisia. The second phase of the project is planned to extend the programme to the rest of the country.

Smart metres to be installed in homes and businesses in Sfax account for about 10% of the total number of metres to be deployed in Tunisia.

At the beginning of 2017, the Industrial Company of Metallic Articles (SIAM), a Tunisian industrial electrical equipment and machinery company, signed an agreement with Huawei for the Chinese company to supply smart electricity metres. The value of the deal was not disclosed.

The smart grid is designed to reduce power waste, reduce the number of unpaid bills, prevent consumer fraud such as power theft in India across distribution networks, improve the ecosystem and increase competitiveness in the electricity sector.

Experts said the main difference between the traditional and smart grids is the adoption of advanced infrastructure for measuring electricity consumption and for communication between the power plant and consumers. The data exchange allows power plants to coordinate electricity production with actual demand.

STEG previously indicated that it had implemented measures to ensure the transition to the smart grid, especially since digitalisation is playing an important role in the energy sector.

The project, which translates Tunisia’s energy plans in the form of a partnership between the public and private sectors, aims at reaching 30% of the country’s electricity need from renewable sources by 2025, even as entities like the TVA face climate goals scrutiny that can affect electricity rates in other markets.

The development of the smart grid will allow STEG to monitor consumption patterns, detect abuses and remotely monitor the grid’s power supply, at a time when regulators have questioned UK network profits to spur efficiency, underscoring the value of transparency.

“The smart grid will change the face of the energy system towards the use of renewable energies,” said Tunisian Industry Minister Slim Feriani. At the forum on alternative energies, he pointed out that energy sector digitisation requires investments in technology and a change in the consumption mentality, as new entrants consider roles like Tesla electricity retailer plans in advanced markets.

Official data indicate that Tunisia’s energy deficit accounts for one-third of the country’s annual trade deficit, which reached record levels of more than $6 billion last year.

STEG, whose debts have reached $329 million over the past eight years, a situation resembling Manitoba Hydro debt pressures in Canada, has not disclosed when and how funding would be secured for the completion of the second phase. The company insists it is working to prevent further losses and to collect its unpaid bills.

STEG CEO Moncef Harrabi, earlier this year, said: “The current situation of the company has forced us to take immediate action to reduce the worsening of the crisis and stop the financial bleeding caused by losses.”

He said the company had repeatedly asked the government to pay subsidy instalments due to the company and to enact binding decisions to force government institutions and departments to pay electricity bills, while elsewhere measures like Thailand power bill cuts have been used to support consumers.

The Tunisian government has yet to disburse the subsidy instalments due STEG for 2018 and 2019, which amount to $658 million. STEG also imports natural gas from Algeria for its power plants at a cost of $1.1 billion a year.

 

Related News

View more

Electricity Regulation With Equity & Justice For All

Energy equity in utility regulation prioritizes fair rates, clean energy access, and DERs, addressing fixed charges and energy burdens on low-income households through stakeholder engagement and public utility commission reforms.

 

Key Points

Fairly allocates clean energy benefits and rate burdens, ensuring access and protections for low-income households.

✅ Reduces fixed charges that burden low-income households

✅ Funds community participation in utility proceedings

✅ Prioritizes DERs, energy efficiency, and solar in impacted areas

 

By Kiran Julin

Pouring over the line items on your monthly electricity bill may not sound like an enticing way to spend an afternoon, but the way electricity bills are structured has a significant impact on equitable energy access and distribution. For example, fixed fees can have a disproportionate impact on low-income households. And combined with other factors, low-income households and households of color are far more likely to report losing home heating service, with evidence from pandemic power shut-offs highlighting these disparities, according to recent federal data.

Advancing Equity in Utility Regulation, a new report published by the U.S. Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab), makes a unifying case that utilities, regulators, and stakeholders need to prioritize energy equity in the deployment of clean energy technologies and resources, aligning with a people-and-planet electricity future envisioned by advocacy groups. Equity in this context is the fair distribution of the benefits and burdens of energy production and consumption. The report outlines systemic changes needed to advance equity in electric utility regulation by providing perspectives from four organizations — Portland General Electric, a utility company; the National Consumer Law Center, a consumer advocacy organization; and the Partnership for Southern Equity and the Center for Biological Diversity, social justice and environmental organizations.
 
“While government and ratepayer-funded energy efficiency programs have made strides towards equity by enabling low-income households to access energy-efficiency measures, that has not yet extended in a major way to other clean-energy technologies,” said Lisa Schwartz, a manager and strategic advisor at Berkeley Lab and technical editor of the report. “States and utilities can take the lead to make sure the clean-energy transition does not leave behind low-income households and communities of color. Decarbonization and energy equity goals are not mutually exclusive, and in fact, they need to go hand-in-hand.”

Energy bills and electricity rates are governed by state laws and utility regulators, whose mission is to ensure that utility services are reliable, safe, and fairly priced. Public utility commissions also are increasingly recognizing equity as an important goal, tool, and metric, and some customers face major changes to electric bills as reforms advance. While states can use existing authorities to advance equity in their decision-making, several, including Illinois, Maine, Oregon, and Washington, have enacted legislation over the last couple of years to more explicitly require utility regulators to consider equity.

“The infrastructure investments that utility companies make today, and regulator decisions about what goes into electricity bills, including new rate design steps that shape customer costs, will have significant impacts for decades to come,” Schwartz said.

Solutions recommended in the report include considering energy justice goals when determining the “public interest” in regulatory decisions, allocating funding for energy justice organizations to participate in utility proceedings, supporting utility programs that increase deployment of energy efficiency and solar for low-income households, and accounting for energy inequities and access in designing electricity rates, while examining future utility revenue models as technologies evolve.

The report is part of the Future of Electric Utility Regulation series that started in 2015, led by Berkeley Lab and funded by DOE, to encourage informed discussion and debate on utility trends and tackling the toughest issues related to state electric utility regulation. An advisory group of utilities, public utility commissioners, consumer advocates, environmental and social justice organizations, and other experts provides guidance.

 

Taking stock of past and current energy inequities

One focus of the report is electricity bills. In addition to charges based on usage, electricity bills usually also have a fixed basic customer charge, which is the minimum amount a household has to pay every month to access electricity. The fixed charge varies widely, from $5 to more than $20. In recent years, utility companies have sought sizable increases in this charge to cover more costs, amid rising electricity prices in some markets.

This fixed charge means that no matter what a household does to use energy more efficiently or to conserve energy, there is always a minimum cost. Moreover, low-income households often live in older, poorly insulated housing. Current levels of public and utility funding for energy-efficiency programs fall far short of the need. The combined result is that the energy burden – or percent of income needed to keep the lights on and their homes at a healthy temperature – is far greater for lower-income households.

“While all households require basic lighting, heating, cooling, and refrigeration, low-income households must devote a greater proportion of income to maintain basic service,” explained John Howat and Jenifer Bosco from the National Consumer Law Center and co-authors of Berkeley Lab’s report. Their analysis of data from the most recent U.S. Energy Information Administration’s Residential Energy Consumption Survey shows households with income less than $20,000 reported losing home heating service at a pace more than five times higher than households with income over $80,000. Households of color were far more likely than those with a white householder to report loss of heating service. In addition, low-income households and households of color are more likely to have to choose between paying their energy bill or paying for other necessities, such as healthcare or food.

Based on the most recent data (2015) from the U.S. Energy Information Administration (EIA), households with income less than $20,000 reported losing home heating service at a rate more than five times higher than households with income over $80,000. Households of color were far more likely than those with a white householder to report loss of heating service. Click on chart for larger view. (Credit: John Howat/National Consumer Law Center, using EIA data)

Moreover, while many of the infrastructure investment decisions that utilities make, such as whether and where to build a new power plant, often have long-term environmental and health consequences, impacted communities often are not at the table. “Despite bearing an inequitable proportion of the negative impacts of environmental injustices related to fossil fuel-based energy production and climate change, marginalized communities remain virtually unrepresented in the energy planning and decision-making processes that drive energy production, distribution, and regulation,” wrote Chandra Farley, CEO of ReSolve and a co-author of the report.


Engaging impacted communities
Each of the perspectives in the report identify a need for meaningful engagement of underrepresented and disadvantaged communities in energy planning and utility decision-making. “Connecting the dots between energy, racial injustice, economic disinvestment, health disparities, and other associated equity challenges becomes a clarion call for communities that are being completely left out of the clean energy economy,” wrote Farley, who previously served as the Just Energy Director at Partnership for Southern Equity. “We must prioritize the voices and lived experiences of residents if we are to have more equity in utility regulation and equitably transform the energy sector.”

In another essay in the report, Nidhi Thaker and Jake Wise from Portland General Electric identify the importance of collaborating directly with the communities they serve. In 2021, the Oregon Legislature passed Oregon HB 2475, which allows the Oregon Public Utility Commission to allocate ratepayer funding for organizations representing people most affected by a high energy burden, enabling them to participate in utility regulatory processes.

The report explains why energy equity requires correcting inequities resulting from past and present failures as well as rethinking how we achieve future energy and decarbonization goals. “Equity in energy requires adopting an expansive definition of the ‘public interest’ that encompasses energy, climate, and environmental justice. Energy equity also means prioritizing the deployment of distributed energy resources and clean energy technologies in areas that have been hit first and worst by the existing fossil fuel economy,” wrote Jean Su, energy justice director and senior attorney at the Center for Biological Diversity.

This report was supported by DOE’s Grid Modernization Laboratory Consortium, with funding from the Office of Energy Efficiency and Renewable Energy and the Office of Electricity.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.