Wyoming business leaders ponder energy future

By Casper Star-Tribune


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Wyoming business leaders discussed the state's future economy in relation to changing policy on the climate.

The U.S. Department of Energy estimates that by 2030 worldwide energy consumption could grow by 55 percent.

Whether that demand can or will be met with fossil fuels will be a big determining factor in Wyoming's economic future.

This issue was the premise of a discussion at the Wyoming Heritage Foundation's 26th annual forum in Casper.

Mark Doelger, chairman of the Wyoming Pipeline Authority, noted that energy demand in the United States is projected to grow by 19 percent during the same period. The good news for Wyoming is that the U.S. Energy Information Administration estimates that coal will fill 82 percent of that portfolio, with uranium, hydroelectric and renewables filling in the rest.

Wyoming's natural gas production grew from 4 billion cubic feet per day in 2002 to 6.5 Bcf today, Doelger said.

"So we are doing very well in Wyoming," he said.

The region consumes only 1 Bcf per day during mild weather and 2.5 Bcf per day when it gets really cold. So exports are vital to the industry and to state revenues in the Rockies.

"We really live on those markets outside of the Rockies," Doelger said.

Continued expansion of pipelines will play a key role in Wyoming's energy future. Currently, there are nine proposed pipeline expansions and new construction aimed at increasing natural gas exports from the Rockies. Wholesale prices here will likely remain depressed compared to the rest of the nation until major expansions are made.

Mike Easley, president of Powder River Energy Corp. and chairman of the Wyoming Infrastructure Authority, said an important question to ask is, "What's going to happen to the person at the end of the line?"

If a cap-and-trade, carbon tax or some other carbon cost were imposed on the industry today, PRECorp.'s average residential customer in northeast Wyoming would see monthly bills go up from an average $75 to $85 (based on a carbon cost of $10 per ton), or an increase to $105 (if the carbon cost was $30 per ton).

The product and price menu for new electric generation technologies provides some distinct choices on cost, according to Easley.

A new coal-fired plant can be built at a cost of about $3,000 per kilowatt hour, which is in keeping with the $1.3 billion, 385-megawatt Dry Fork Station now under construction near Gillette.

Supercritical pulverized coal, which emits slightly less greenhouse gas than a traditional pulverized coal plant, would cost about $4,500 per kilowatt hour.

A combination wind turbine and natural gas plant would amount to $4,800 per kilowatt hour.

A natural gas turbine plant would cost $1,700 per kilowatt hour.

"Add the cost of CO2 capture on these and the cost goes up very, very fast," Easley said.

Rob Hurless, energy and telecommunications adviser to Gov. Dave Freudenthal, said meeting a 55 percent increase in world energy consumption by 2030 will require increasing all energy resources.

Related News

840 million people have no electricity – World Bank must fund more energy projects

World Bank Energy Policy debates financing for coal, oil, gas, and renewables to fight energy poverty, expand grid reliability, ensure baseload power, and balance climate goals with development finance for affordable, reliable electricity access.

 

Key Points

It outlines the bank's stance on financing fossil fuels and renewables to expand affordable, reliable electricity.

✅ Focus on energy access, baseload reliability, and poverty alleviation

✅ Debate over coal, gas, and renewables in development finance

✅ Geopolitics: China and Russia fill funding gaps, raising risks

 

Why isn’t the World Bank using all available energy resources in its global efforts to fight poverty? That’s the question I’ve asked World Bank President David Malpass. Nearly two years ago, the multilateral development bank decided to stop supporting critical coal, oil and gas projects that help people in developing countries escape poverty.

Along with 11 other senators, and as a member who votes on whether to give U.S. taxpayer dollars to the World Bank, I am pressing the bank to lift these restrictions. Developing countries desperately need access to a steady supply of affordable, reliable clean electricity to support economic growth.

The World Bank has pulled funding for critical electricity projects in poor countries, including high-efficiency power stations that are fueled by coal, even as efforts to revitalize coal communities with clean energy have grown.

Despite Kosovo having the world’s fifth-largest reserves of coal, the bank announced it would only support new energy projects from renewable sources going forward. Kosovo’s Minister of Economic Development Valdrin Lluka responded: “We don’t have the luxury to do such experiments in a poor country such as Kosovo. … It is in our national security interest to secure base energy inside our country.”

The World Bank’s misguided move comes as 840 million people worldwide are living without electricity, including 70 percent of sub-Saharan Africa, and as the fall in global energy investment may lead to shortages.

Even more troubling, nearly 3 billion people in developing countries rely on fuels like wood and other biomass for cooking and home heating, resulting in serious health problems and premature deaths, and the pandemic saw widespread electricity shut-offs that deepened energy insecurity. In 2016, household smoke killed an estimated 2.6 million people.

The World Bank’s mission is to lift people out of poverty. The bank is now compromising that mission in favor of a political agenda targeting certain energy sources.

With the World Bank blocking financing to affordable and reliable energy projects, Russia and China are stepping up their investments in order to gain geopolitical leverage.

President Vladimir Putin is pursuing Russian oil and gas projects in Mozambique, Gabon, and Angola. China’s Belt and Road Initiative is supporting traditional energy resources, with 36 percent of its power projects from 2014 to 2017 involving coal. South Africa had to turn to the China Development Bank to fund its $1.5 billion coal-fired power plant.

There are real risks for countries partnering with China and Russia on these projects. Developing countries are facing what some are calling China’s “debt trap” diplomacy. These nations have also raised concerns over safety compliance, unfair business practices, and labor standards.

As the bank’s largest contributor, the United States has a duty to make sure U.S. taxpayer dollars are used wisely and effectively. Every U.S. dollar at the World Bank should make a difference for people in the developing world.

My colleagues and I have asked the bank to pursue an all-of-the-above energy strategy as it strives to achieve its mission to end extreme poverty and promote shared prosperity. We will take the bank’s response into account during the congressional appropriations process.

The United States is a top global energy producer. And yet Democrats running for president are pursuing anti-energy policies that would hurt not only the United States but the entire world, with implications for U.S. national security as well.

Utilizing our abundant energy resources has fueled an American energy renaissance and a booming U.S. economy, even as disruptions in coal and nuclear have strained the grid, with millions of new jobs and higher wages.

People who are struggling to survive and thrive in developing countries deserve the same opportunity to access affordable and reliable sources of power.

As Microsoft founder and global philanthropist Bill Gates has noted of renewables: "Many people experiencing energy poverty live in areas without access to the kind of grids that are needed to make those technologies cheap and reliable enough to replace fossil fuels."

Ultimately, there is a role for all sources of energy to help countries alleviate poverty and improve the education, health and wellbeing of their people.

The solution to ending energy poverty does not lie in limiting options, but in using all available options. The World Bank must recommit to ending extreme poverty by helping countries use all of the world’s abundant energy resources. Let’s end energy poverty now.

 

Related News

View more

Rio Tinto seeking solutions that transform heat from underground mines into electricity

Rio Tinto waste heat-to-electricity initiative captures underground mining thermal energy at Resolution Copper, Arizona, converting it to renewable power for cooling systems and microgrids, advancing decarbonization, energy efficiency, and the miner's 2050 carbon-neutral goal.

 

Key Points

A program converting underground thermal energy into on-site electricity to cut emissions and support mine cooling.

✅ Captures low-grade heat from rock and geothermal water.

✅ Generates electricity for ventilation, refrigeration, microgrids.

✅ Scalable, safe, and grid- or storage-ready for peak demand.

 

The world’s second-largest miner, Rio Tinto announced that it is accepting proposals for solutions that transform waste heat into electricity for reuse from its underground operations.

In a press release, the company said this initiative is aimed at drastically reducing greenhouse gas emissions, even as energy-intensive projects like bitcoin mining operations expand, so that it can achieve its goal of becoming carbon neutral by 2050.

Initially, the project would be implemented at the Resolution copper mine in Arizona, which Rio owns together with BHP (ASX, LON: BHP). At this site, massive electrically-driven refrigeration and ventilation systems, aligned with broader electrified mining practices, are in charge of cooling the work environment because of the latent heat from the underground rock and groundwater. 

THE INITIATIVE IS AIMED AT REDUCING GREENHOUSE GAS EMISSIONS SO THAT RIO CAN ACHIEVE ITS GOAL OF BECOMING CARBON NEUTRAL BY 2050

“When operating, the Resolution copper mine will be a deep underground block cave mine some 7,000 feet (~2 kilometres) deep, with ambient air temperatures ranging between 168°F to 180°F (76°C to 82°C), conditions that, during heat waves, when bitcoin mining power demand can strain local grids, further heighten cooling needs, and underground water at approximately 194°F (90°C),” the media brief states.

“Rio Tinto is seeking solutions to capture and reuse the heat from underground, contributing towards powering the equipment needed to cool the operations. The solution to capture and convert this thermal energy into electrical energy, such as emerging thin-film thermoelectrics, should be safe, environmentally friendly and cost-effective.”

The miner also said that, besides capturing heat for reuse, the solution should generate electrical energy from low range temperatures below the virgin rock temperature and/or from the high thermal water coming from the underground rock, similar to using transformer waste heat for heating in the power sector. 

At the same time, the solution should be scalable and easily transported through the many miles of underground tunnels that will be built to ventilate, extract and move copper ore to the surface.

Rio requires proposals to offer the possibility of distributing the electrical energy generated back into the electrical grid from the mining operation or stored and used at a later stage when energy is required during peak use periods, especially as jurisdictions aim to use more electricity for heat in colder seasons. 

 

Related News

View more

Ottawa making electricity more expensive for Albertans

Alberta Electricity Price Surge reflects soaring wholesale rates, natural gas spikes, carbon tax pressures, and grid decarbonization challenges amid cold-weather demand, constrained supply, and Europe-style energy crisis impacts across the province.

 

Key Points

An exceptional jump in Alberta's power costs driven by gas price spikes, high demand, policy costs, and tight supply.

✅ Wholesale prices averaged $123/MWh in December

✅ Gas costs surged; supply constraints and outages

✅ Carbon tax and decarbonization policies raised costs

 

Albertans just endured the highest electricity prices in 21 years. Wholesale prices averaged $123 per megawatt-hour in December, more than triple the level from the previous year and highest for December since 2000.

The situation in Alberta mirrors the energy crisis striking Europe where electricity prices are also surging, largely due to a shocking five-fold increase in natural gas prices in 2021 compared to the prior year.

The situation should give pause to Albertans when they consider aggressive plans to “decarbonize” the electric grid, including proposals for a fully renewable grid by 2030 from some policymakers.

The explanation for skyrocketing energy prices is simple: increased demand (because of Calgary's frigid February demand and a slowly-reviving post-pandemic economy) coupled with constrained supply.

In the nitty gritty details, there are always particular transitory causes, such as disputes with Russian gas companies (in the case of Europe) or plant outages (in the case of Alberta).

But beyond these fleeting factors, there are more permanent systemic constraints on natural gas (and even more so, coal-fired) power plants.

I refer of course to the climate change policies of the Trudeau government at the federal level and some of the more aggressive provincial governments, which have notable implications for electricity grids across Canada.

The most obvious example is the carbon tax, the repeal of which Premier Jason Kenney made a staple of his government.

Putting aside the constitutional issues (on which the Supreme Court ruled in March of last year that the federal government could impose a carbon tax on Alberta), the obvious economic impact will be to make carbon-sourced electricity more expensive.

This isn’t a bug or undesired side-effect, it’s the explicit purpose of a carbon tax.

Right now, the federal carbon tax is $40 per tonne, is scheduled to increase to $50 in April, and will ultimately max out at a whopping $170 per tonne in 2030.

Again, the conscious rationale of the tax, aligned with goals for cleaning up Canada's electricity, is to make coal, oil and natural gas more expensive to induce consumers and businesses to use alternative energy sources.

As Albertans experience sticker shock this winter, they should ask themselves — do we want the government intentionally making electricity and heating oil more expensive?

Of course, the proponent of a carbon tax (and other measures designed to shift Canadians away from carbon-based fuels) would respond that it’s a necessary measure in the fight against climate change, and that Canada will need more electricity to hit net-zero according to the IEA.

Yet the reality is that Canada is a bit player on the world stage when it comes to carbon dioxide, responsible for only 1.5% of global emissions (as of 2018).

As reported at this “climate tracker” website, if we look at the actual policies put in place by governments around the world, they’re collectively on track for the Earth to warm 2.7 degrees Celsius by 2100, far above the official target codified in the Paris Agreement.

Canadians can’t do much to alter the global temperature, but federal and provincial governments can make energy more expensive if policymakers so choose, and large-scale electrification could be costly—the Canadian Gas Association warns of $1.4 trillion— if pursued rapidly.

As renewable technologies become more reliable and affordable, business and consumers will naturally adopt them; it didn’t take a “manure tax” to force people to use cars rather than horses.

As official policy continues to make electricity more expensive, Albertans should ask if this approach is really worth it, or whether options like bridging the Alberta-B.C. electricity gap could better balance costs.

Robert P. Murphy is a senior fellow at the Fraser Institute.

 

Related News

View more

Tube Strikes Disrupt London Economy

London Tube Strikes Economic Impact highlights transport disruption reducing foot traffic, commuter flows, and tourism, squeezing small businesses, hospitality revenue, and citywide growth while business leaders urge negotiations, resolution, and policy responses to stabilize operations.

 

Key Points

Reduced transport options cut foot traffic and sales, straining small businesses and slowing London-wide growth.

✅ Hospitality venues report lower revenue and temporary closures

✅ Commuter and tourism declines reduce daily sales and bookings

✅ Business groups urge swift negotiations to restore services

 

London's economy is facing significant challenges due to ongoing tube strikes, challenges that are compounded by scrutiny of UK energy network profits and broader cost pressures across sectors, with businesses across the city experiencing disruptions that are impacting their operations and bottom lines.

Impact on Small Businesses

Small businesses, particularly those in the hospitality sector, are bearing the brunt of the disruptions caused by the strikes. Many establishments rely on the steady flow of commuters and tourists that the tube system facilitates, while also hoping for measures like temporary electricity bill relief that can ease operating costs during downturns. With reduced transportation options, foot traffic has dwindled, leading to decreased sales and, in some cases, temporary closures.

Economic Consequences

The strikes are not only affecting individual businesses but are also having a ripple effect on the broader economy, a dynamic seen when commercial electricity consumption plummeted in B.C. during the pandemic. The reduced activity in key sectors is contributing to a slowdown in economic growth, echoing periods when BC Hydro demand fell 10% and prompting policy responses such as Ontario electricity rate reductions for businesses, with potential long-term consequences if the disruptions continue.

Calls for Resolution

Business leaders and industry groups are urging for a swift resolution to the strikes. They emphasize the need for dialogue between the involved parties to reach an agreement that minimizes further economic damage and restores normalcy to the city's transportation system.

The ongoing tube strikes in London are causing significant disruptions to the city's economy, particularly affecting small businesses that depend on the efficient movement of people. Immediate action is needed to address the issues, drawing on tools like a subsidized hydro plan used elsewhere to spur recovery, to prevent further economic downturn.

 

Related News

View more

New president at Manitoba Hydro to navigate turmoil at Crown corporation

Jay Grewal Manitoba Hydro Appointment marks the first woman CEO at the Crown utility, amid debt, rate increase plans, privatization debate, and Metis legal challenge, following board turmoil and Premier Pallister's strained relations.

 

Key Points

The selection of Jay Grewal as Manitoba Hydro's first woman CEO amid debt, rate hikes, and legal disputes.

✅ First woman CEO of Manitoba Hydro

✅ Faces debt, rate hikes, and project overruns

✅ Amid privatization debate and Metis legal action

 

The Manitoba government has appointed a new president and chief executive officer at its Crown-owned energy utility.

Jay Grewal becomes the first woman to head Manitoba Hydro, and takes over the top spot as the utility faces mounting financial challenges, rising electricity demand and turmoil.

Grewal has previously held senior roles at Capstone Mining Corp and B.C. Hydro, and is currently president of the Northwest Territories Power Corporation.

She will replace outgoing president Kelvin Shepherd, who recently announced he is retiring, on Feb. 4.

The utility was hit by the sudden resignations of nine of its 10 board members in March, who said they had been unable to meet with Premier Brian Pallister to discuss pressing issues like servicing energy-intensive customers facing the utility.

Manitoba Hydro is also in the middle of a battle between the Progressive Conservative government and the Manitoba Metis Federation over the cancellation of two agreements that would have given the Metis $87 million.

The federation has launched a legal challenge over one deal and says its likely going to do the same over the second agreement.

Grewal also takes over the utility at a time when it has racked up billions of dollars in debt building new generating stations and transmission lines. Manitoba Hydro has told the provincial regulatory agency it needs rate increases of nearly eight per cent a year for the next few years to help pay for the projects.

The utility also exports electricity, with deals such as SaskPower's purchase agreement expanding sales to Saskatchewan.

"Ms. Grewal is a proven leader, with extensive senior leadership experience in the utility, resource and consulting sectors," Crown Services Minister Colleen Mayer said in a written statement Thursday.

The Opposition New Democrats said Grewal's appointment is a sign the government wants to privatize Manitoba Hydro. Grewal's time at B.C. Hydro coincided with the privatization of some parts of that Crown utility, the NDP said.

The B.C. premier at the time, Gordon Campbell, was recently hired by Manitoba to review two major projects that ran over-budget and have added to the provincial debt.

NDP Leader Wab Kinew asked Pallister in the legislature Thursday to promise not to privatize Manitoba Hydro. Pallister would only point to a law that requires a referendum to be held before a Crown entity can be sold off.

"We stand by that (law)," Pallister said. "We believe Manitobans are the proper decision-makers in respect of any of the future structuring of Manitoba Hydro."

 

Related News

View more

Melting Glass Experiment Surprises Scientists by Defying a Law of Electricity

Electric Field-Induced Glass Softening reveals a Joule heating anomaly in silicate glass, where anode-side nanoscale alkali depletion drives ionic conduction, localized thermal runaway, melting, and evaporation, challenging homogeneity assumptions and refining materials processing models.

 

Key Points

An effect where electric fields lower glass softening temperature via nanoscale ionic migration and structural change.

✅ Anode-side alkali depletion creates extreme, localized heating

✅ Thermal runaway melts glass near the anode despite uniform bulk

✅ Findings refine Joule heating models and enable new glass processing

 

A team of scientists working with electrical currents and silicate glass have been left gobsmacked after the glass appeared to defy a basic physical law, in a field that also explores electricity-from-air devices for novel energy harvesting.

If you pass an electrical current through a material, the way that current generates heat can be described by Joule's first law. It's been observed time and time again, with the temperature always evenly distributed when the material is homogeneous (or uniform).

But not in this recent experiment. A section - and only a section - of silicate glass became so hot that it melted, and even evaporated. Moreover, it did so at a much lower temperature than the boiling point of the material.

The boiling point of pure silicate glass is 2,230 degrees Celsius (4,046 degrees Fahrenheit). The hottest temperature the researchers recorded in a homogeneous piece of silicate glass during the experiment was 1,868.7 degrees Celsius.

Say whaaaat.

"The calculations did not add up to explain what we were seeing as simply standard Joule heating," said engineer and materials scientist Himanshu Jain of Lehigh University.

"Even under very moderate conditions, we observed fumes of glass that would require thousands of degrees higher temperature than Joule's law could predict!"

Jain and his colleagues from materials science company Corning Incorporated were investigating a phenomenon they had described in a previous paper. In 2015, they reported that an electric field could reduce the temperature at which glass softens, by as much as a few hundred degrees, a line of inquiry that parallels work on low-cost heat-to-electricity materials in energy research. They called this "electric field-induced softening."

 

It was certainly a peculiar phenomenon, so they set up another experiment. They put pieces of glass in a furnace, and applied 100 to 200 volts in the form of both alternating and direct currents.

Next, a thin wisp of vapour emanated from the spot where the anode conveying the current contacted the glass.

"In our experiments, the glass became more than a thousand degrees Celsius hotter near the positive side than in the rest of the glass, which was very surprising considering that the glass was totally homogeneous to begin with," Jain said.

This seems to fly in the face of Joule's first law, so the team investigated more closely - and found that the glass wasn't remaining as homogeneous as it started out. The electric field changed the chemistry and the structure of the glass on nanoscale, in just a small section close to the anode.

This region heats faster than the rest of the glass, to the point of becoming a thermal runaway - where an increase in temperature further increases temperature in a blistering feedback loop.

As it turned out, that spot of structural change and dramatic heat resulted in a small area of glass reaching melting point while the rest of the material remained solid.

"Unlike electronically conducting metals and semiconductors, with time the heating of ionically conducting glass becomes extremely inhomogeneous with the formation of a nanoscale alkali-depletion region, such that the glass melts near the anode, even evaporates, while remaining solid elsewhere," the researchers wrote in their paper.

In other words, the material wasn't homogeneous any more, which means the glass heating experiment doesn't exactly change how we apply Joule's first law.

But it's an exciting result, since until now we didn't know a material could actually lose its homogeneity with the application of an electrical current, with possible implications for thin-film heat harvesters in electronics. (The thing is, no one had tried electrically heating glass to these extreme temperatures before.)

So the physical laws of the Universe are still okay, as a piece of glass hasn't broken them. But Joule's first law may need a bit of tweaking to take this effect into account, a reminder that unconventional energy concepts like nighttime solar cells also challenge our intuitions.

And, of course, it's another piece of understanding that could help us in other ways too, including advances in thermoelectric materials that turn waste heat into electricity.

"Besides demonstrating the need to qualify Joule's law," Jain said, "the results are critical to developing new technology for the fabrication and manufacturing of glass and ceramic materials."

The research has been published in Scientific Reports.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified