Undercurrent of doubt over electric motors

By The Independent


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Electric cars, which emit no carbon dioxide from their tailpipe, are not the answer some people think they are to environmental transport problems, a new report claims.

The idea that a wholesale switch to electric transport would automatically reduce CO2 emissions and dependence on oil is a myth, says the analysis prepared for the Environmental Transport Association (ETA).

In fact, says the report, a loophole in EU vehicle emissions regulations means the more electric cars produced, the more auto manufacturers can produce gas-guzzling vehicles such as SUVs while still hitting their overall emissions targets. Ultimately, this would lead to an increase in the amount of oil used and the amount of CO2 generated by the car fleet as a whole.

With transport CO2 emissions in Britain representing about a quarter of the total, electric vehicles have been enthusiastically embraced by policymakers as one of the principal ways of cutting the sector's contribution to climate change.

The Committee on Climate Change, the official watchdog which monitors the Government's progress towards its climate objectives, suggested last year that pure electric and hybrid petrol-electric vehicles could help contribute to "deep emissions cuts", and if Britain were to hit a really high target of cutting carbon by 42 per cent by 2020, 40 per cent of the cars on the road – nearly 11 million vehicles – would have to be either battery-driven, or hybrids. This year the committee suggested a more realistic aim of putting 1.7 million electric cars on the road by 2020.

Yet all this is not the panacea some people think it is, says the new report from the ETA, a green campaigning and lobby group which also provides breakdown services. Although there are significant potential benefits to be had from a switch to electric vehicles, the group argues, these are wholly dependent on changes in the way electricity is generated, energy taxed and CO2 emissions regulated.

It is already known that widespread uptake of electric cars would mean much more electricity demand, with the possible consequence of building more – possibly coal-fired – power stations. A separate piece of research last year suggested that, if all Britain's 27 million cars went electric, and were charged every day, the electricity supply would have to quadruple to cope with the new demand.

The ETA report stresses that electric cars are only really green if they are using electricity produced by renewable energy systems such as wind power. And it goes on to point out that, under new binding EU targets for cutting car CO2 emissions agreed last December, carmakers can sell up to 3.5 SUVs for every zero-carbon electric vehicle they sell and still reach their official EU target.

"While the report is not intended to dampen enthusiasm for electric vehicles, their introduction should not be viewed as a panacea," said the ETA's director, Andrew Davis. "Significant changes to the way we produce and tax power are needed before we will reap any benefits."

Related News

Iran turning thermal power plants to combined cycle to save energy

Iran Combined-Cycle Power Plants drive energy efficiency, cut greenhouse gases, and expand megawatt capacity by converting thermal units; MAPNA-led upgrades boost grid reliability, reduce fuel use, and accelerate electricity generation growth nationwide.

 

Key Points

Upgraded thermal plants that reuse waste heat to boost efficiency, cut emissions, and add capacity to Iran's grid.

✅ 27 thermal plants converted; 160 more viable units identified

✅ Adds 12,600 MW capacity via heat recovery steam generators

✅ Combined-cycle share: 31.2% of 80.509 GW capacity

 

Iran has turned six percent of its thermal power plans into combined cycle plants in order to reduce greenhouse gases and save energy, with potential to lift thermal plants' PLF under rising demand, IRNA reported, quoting an energy official.

According to the MAPNA Group’s Managing Director Abbas Aliabadi, so far 27 thermal power plants have been converted to combined-cycle ones, aligning with Iran’s push to transmit power to Europe as a regional hub.

“The conversion of a thermal power plant to a combined cycle one takes about one to two years, however, it is possible for us to convert all the country’s thermal power plants into combined cycle plants over a five-year period.

Currently, a total of 478 thermal power plants are operating throughout Iran, of which 160 units could be turned into combined cycle plants. In doing so, 12,600 megawatts will be added to the country’s power capacity, supporting ongoing exports such as supplying a large share of Iraq's electricity under existing arrangements.

Related cross-border work includes deals to rehabilitate Iraq's power grid that support future exchanges.

As reported by IRNA on Wednesday, Iran’s Nominal electricity generation capacity has reached 80,509 megawatts (80.509 gigawatts), and it is deepening energy cooperation with Iraq to bolster regional reliability. The country increased its electricity generation capacity by 500 megawatts (MW) compared to the last year (ended on March 20).

Currently, with a total generation capacity of 25,083 MW (31.2 percent) combined cycle power plants account for the biggest share in the country’s total power generation capacity followed by gas power plants generating 29.9 percent, amid global trends where renewables are set to eclipse coal and regional moves such as Israel's coal reduction signal accelerating shifts. EF/MA

 

Related News

View more

Germany’s renewable energy dreams derailed by cheap Russian gas, electricity grid expansion woes

Germany Energy Transition faces offshore wind expansion, grid bottlenecks, and North-South transmission delays, while Nord Stream 2 boosts Russian gas reliance and lignite coal persists amid a nuclear phaseout and rising re-dispatch costs.

 

Key Points

Germanys shift to renewables faces grid delays, boosting gas via Nord Stream 2 and extending lignite coal use.

✅ Offshore wind grows, but grid congestion curtails turbines.

✅ Nord Stream 2 expands Russian gas supply to German industry.

✅ Lignite coal persists, raising emissions amid nuclear exit.

 

On a blazing hot August day on Germany’s Baltic Sea coast, a few hundred tourists skip the beach to visit the “Fascination Offshore Wind” exhibition, held in the port of Mukran at the Arkona wind park. They stand facing the sea, gawking at white fiberglass blades, which at 250 feet are longer than the wingspan of a 747 aircraft. Those blades, they’re told, will soon be spinning atop 60 wind-turbine towers bolted to concrete pilings driven deep into the seabed 20 miles offshore. By early 2019, Arkona is expected to generate 385 megawatts, enough electricity to power 400,000 homes.

“We really would like to give the public an idea of what we are going to do here,” says Silke Steen, a manager at Arkona. “To let them say, ‘Wow, impressive!’”

Had the tourists turned their backs to the sea and faced inland, they would have taken in an equally monumental sight, though this one isn’t on the day’s agenda: giant steel pipes coated in gray concrete, stacked five high and laid out in long rows on a stretch of dirt. The port manager tells me that the rows of 40-foot-long, 4-foot-thick pipes are so big that they can be seen from outer space. They are destined for the Nord Stream 2 pipeline, a colossus that, when completed next year, will extend nearly 800 miles from Russia to Germany, bringing twice the amount of gas that a current pipeline carries.

The two projects, whose cargo yards are within a few hundred feet of each other, provide a contrast between Germany’s dream of renewable energy and the political realities of cheap Russian gas. In 2010, Germany announced an ambitious goal of generating 80 percent of its electricity from renewable sources by 2050. In 2011, it doubled down on the commitment by deciding to shut down every last nuclear power plant in the country by 2022, as part of a broader coal and nuclear phaseout strategy embraced by policymakers. The German government has paid more than $600 billion to citizens and companies that generate solar and wind power. As a result, the generating capacity from renewable sources has soared: In 2017, a third of the nation’s electricity came from wind, solar, hydropower and biogas, up from 3.6 percent in 1990.

But Germany’s lofty vision has run into a gritty reality: Replacing fossil fuels and nuclear power in one of the largest industrial nations in the world is politically more difficult and expensive than planners thought. It has forced Germany to put the brakes on its ambitious renewables program, ramp up its investments in fossil fuels, amid a renewed nuclear option debate over climate strategy, and, to some extent, put its leadership role in the fight against climate change on hold.

The trouble lies with Germany’s electricity grid. Solar and wind power call for more complex and expensive distribution networks than conventional large power plants do. “What the Germans were good at was getting new technology into the market, like wind and solar power,” said Arne Jungjohann, author of Energy Democracy: Germany’s ENERGIEWENDE to Renewables. To achieve its goals, “Germany needs to overhaul its whole grid.”

 

The North-South Conundrum

The boom in wind power has created an unanticipated mismatch between supply and demand. Big wind turbines, especially offshore plants such as Arkona, produce powerful, concentrated gusts of energy. That’s good when the factory that needs that energy is nearby and the wind kicks up during working hours. It’s another matter when factories are hundreds of miles away. In Germany, wind farms tend to be located in the blustery north. Many of the nation’s big factories lie in the south, which also happens to be where most of the country’s nuclear plants are being mothballed.

Getting that power from north to south is problematic. On windy days, northern wind farms generate too much energy for the grid to handle. Power lines get overloaded. To cope, grid operators ask wind farms to disconnect their turbines from the grid—those elegant blades that tourists so admired sit idle. To ensure a supply of power, operators employ backup generators at great expense. These so-called re-dispatching costs ran to 1.4 billion euros ($1.6 billion) last year.

The solution is to build more power transmission lines to take the excess wind from northern wind farms to southern factories. A grid expansion project is underway to do exactly that. Nearly 5,000 miles of new transmission lines, at a cost of billions of euros, will be paid for by utility customers. So far, less than a fifth of the lines have been built.

The grid expansion is “catastrophically behind schedule,” Energy Minister Peter Altmaier told the Handelsblatt business newspaper in August. Among the setbacks: citizens living along the route of four high-voltage power lines have demanded the cables be buried underground, which has added to the time and expense. The lines won’t be finished before 2025—three years after Germany’s nuclear shutdown is due to be completed.

With this backlog, the government has put the brakes on wind power, reducing the number of new contracts for farms and curtailing the amount it pays for renewable energy. “In the past, we have focused too much on the mere expansion of renewable energy capacity,” Joachim Pfeiffer, a spokesman for the Christian Democratic Union, wrote to Newsweek. “We failed to synchronize this expansion of generation with grid expansion.”

Advocates of renewables are up in arms, accusing the government of suffocating their industry and making planning impossible. Thousands of people lost their jobs in the wind industry, according to Wolfram Axthelm, CEO of the German Wind Energy Association. “For 2019 and 2020, we see a highly problematic situation for the industry,” he wrote in an email.

 

Fueling the Gap

Nord Stream 2, by contrast, is proceeding according to schedule. A beige and black barge, Castoro 10, hauls dozens of lengths of giant pipe off Germany’s Baltic Sea coast, where a welding machine connects them for lowering onto the seabed. The $11 billion project is funded by Russian state gas monopoly Gazprom and five European investors, at no direct cost to the German taxpayer. It is slated to cross the territorial waters of five countries—Germany, Russia, Finland, Sweden and Denmark. All but Denmark have approved the route. “We have good reason to believe that after four governments said yes, that Denmark will also approve the pipeline,” says Nord Stream 2 spokesman Jens Mueller.

Construction of the pipeline off Finland began in September, and the gas is expected to start flowing in late 2019, giving Russia leverage to increase its share of the European gas market. It already provides a third of the gas used in the EU and will likely provide more after the Netherlands stops its gas production in 2030. President Donald Trump has called the pipeline “a very bad thing for NATO” and said that “Germany is totally controlled by Russia.” U.S. senators have threatened sanctions against companies involved in the project. Ukraine and Poland are concerned the new pipeline will make older pipelines in their territories irrelevant.

German leaders are also wary of dependence on Russia but are under considerable pressure to deliver energy to industry. Indeed, among the pipeline’s investors are German companies that want to run their factories, like BASF’s Wintershall subsidiary and Uniper, the German utility. “It’s not that Germany is naive,” says Kirsten Westphal, an energy expert at the German Institute for International and Security Affairs. It’s just pragmatic. “Economically, the judgment is that yes, this gas will be needed, we have an import gap to fill.”

The electricity transmission problem has also opened an opportunity for lignite coal, as coal generation in Germany remains significant, the most carbon-intensive fuel available and the source for nearly a quarter of Germany’s power. Mining companies are expanding their operations in coal-rich regions to strip out the fuel while it is still relevant. In the village of Pödelwitz, 155 miles south of Berlin, most houses feature a white sign with the logo of Mibrag, the German mining giant, which has paid nearly all the 130 residents to relocate. The company plans to level the village and scrape lignite that lies below the soil.

A resurgence in coal helped raise carbon emissions in 2015 and 2016 (2017 saw a slight decline), maintaining Germany’s place as Europe’s largest carbon emitter. Chancellor Angela Merkel has scrapped her pledge to slash carbon emissions to 40 percent of 1990 levels by the year 2020. Several members have threatened to resign from her policy commission on coal if the government allows utility company RWE to mine for lignite in Hambach Forest.

Only a few years ago, during the Paris climate talks, Germany led the EU in pushing for ambitious plans to curb emissions. Now, it seems to be having second thoughts. Recently, the European Union’s climate chief, Miguel Arias Cañete, suggested EU nations step up their commitment to reduce carbon emissions by 45 percent of 1990 levels instead of 40 percent by 2030. “I think we should first stick to the goals we have already set ourselves,” Merkel replied, even as a possible nuclear phaseout U-turn is debated, “I don’t think permanently setting ourselves new goals makes any sense.”

 

Related News

View more

B.C. Hydro adds more vehicle charging stations across southern B.C.

BC Hydro EV Charging Stations expand provincewide with DC fast chargers, 80% in 30 minutes at 35 c/kWh, easing range anxiety across Vancouver, Vancouver Island, Coquihalla Highway, East Kootenay, between Kamloops and Prince George.

 

Key Points

Public DC fast-charging network across B.C. enabling 80% charge in 30 minutes to cut EV range anxiety.

✅ 28 new stations added; 30 launched in 2016

✅ 35 c/kWh; about $3.50 per tank equivalent

✅ Coverage: Vancouver, Island, Coquihalla, East Kootenay

 

B.C. Hydro is expanding its network of electric vehicle charging stations.

The Crown utility says 28 new stations complete the second phase of its fast-charging network and are in addition to the 30 stations opened in 2016.

Thirteen of the stations are in Metro Vancouver, seven are on Vancouver Island, including one at the Pacific Rim Visitor Centre near Tofino, another is in Campbell River, and two have opened on the Coquihalla segment of B.C.'s Electric Highway at the Britton Creek rest area.

A further six stations are located throughout the East Kootenay and B.C. Hydro says the next phase of its program will connect drivers travelling between Kamloops and Prince George, while stations in Prince Rupert are also being planned.

BC Hydro has also opened a fast charging site in Lillooet, illustrating expansion into smaller communities.

Hydro spokeswoman Mora Scott says the stations can charge an electric vehicle to 80 per cent in just 30 minutes, at a cost of 35 cents per kilowatt hour.

Mora Scott says that translates to roughly $3.50 for the equivalent of a full tank of gas in the average four-cylinder car.

“The number of electric vehicles on B.C. roads is increasing, there’s currently around 9,000 across the province, and we actually expect that number to rise to 300,000 by 2030,” Scott says in a news release.

In partnership with municipalities, regional districts and several businesses, B.C. Hydro has been installing charging stations throughout the province since 2012 with support from the provincial and federal governments and programs such as EV charger rebates available to residents.

Scott says the utility wants to ensure the stations are placed where drivers need them so charging options are available provincewide.

“One big thing that we know drivers of electric vehicles worry about is the concept called range anxiety, that the stations aren’t going to be where they need them,” she says.

Several models of electric vehicle are now capable of travelling up to 500 kilometres on a single charge, says Scott.

BC Hydro president Chris O’Riley says the new charging sites will encourage electric vehicle drivers to explore B.C. this summer.

 

Related News

View more

California Halts Energy Rebate Program Amid Trump Freeze

California energy rebate freeze disrupts heat pump incentives, HVAC upgrades, and climate funding, as federal uncertainty stalls Inflation Reduction Act support, delaying home electrification, energy efficiency gains, and greenhouse gas emissions reductions statewide.

 

Key Points

A statewide pause on $290M incentives for heat pumps and HVAC upgrades due to federal climate funding uncertainty.

✅ $290M program paused amid federal funding freeze

✅ Heat pump, HVAC, electrification upgrades delayed

✅ Previously approved rebates honored; new apps halted

 

California’s push for a more energy-efficient future has hit a significant roadblock as the state pauses a $290 million rebate program aimed at helping homeowners replace inefficient heating and cooling systems with more energy-efficient alternatives. The California Energy Commission announced the suspension of the program, citing uncertainty stemming from President Donald Trump’s decision to freeze funding for various climate-related initiatives.

The Halted Program

The energy rebate program, which utilizes federal funding to encourage the use of energy-efficient appliances such as heat pumps, was a crucial part of California’s efforts to reduce energy consumption and greenhouse gas emissions. By providing financial incentives for homeowners to upgrade to more efficient heating and cooling systems, the program aimed to make green energy solutions more accessible and affordable to residents. The rebate program had been popular, with many homeowners eager to participate in the initiative to lower their energy costs and improve the sustainability of their homes.

However, due to the uncertainty surrounding federal funding, the California Energy Commission announced on Monday that it would no longer be accepting new applications for the program. The agency did clarify that it would continue to honor rebates for applications that had already been approved. The pause will remain in effect until the Trump administration provides more clarity regarding the program's future funding.

The Trump Administration’s Role

This move highlights a broader issue regarding access to federal funding for state-level energy programs. The Trump administration’s decision to freeze funding for climate-related initiatives has left many states in limbo, as previously approved federal money has not been distributed as expected. Despite federal court rulings directing the Trump administration to restore these funds, states like California are still struggling to navigate the uncertainty of climate-related financial support from the federal government.

California’s decision to pause the rebate program comes after similar actions by other states. Arizona paused a similar program just a week prior, and Rhode Island had already paused new applications earlier this year. These states are all recipients of funding from a larger $4.3 billion initiative under the Inflation Reduction Act, which is designed to help homeowners purchase energy-efficient appliances like heat pumps, water heaters, and electric cooktops.

Impact of the Freeze

The pause of California's rebate program has serious implications for both consumers and the state’s energy goals. For residents, the halt means delays in the ability to upgrade to more energy-efficient home systems, which could lead to higher energy costs in the short term, a concern amid soaring electricity prices across the state.

The $290 million program was a significant step in encouraging homeowners to invest in energy efficiency, and its suspension leaves a gap in the availability of resources for those who were hoping to make energy-saving upgrades. Many of these upgrades are not just beneficial to homeowners, but they also contribute to the state’s overall energy efficiency goals, helping to reduce reliance on non-renewable energy sources, even as California's dependence on fossil fuels persists, and decrease greenhouse gas emissions.

Federal and State Tensions

The freeze in funding is just one of many points of tension between the Trump administration and states like California, which have pursued aggressive environmental policies aimed at reducing emissions and combating climate change. California has often found itself at odds with the federal government on environmental issues, especially under the leadership of President Trump. The state’s ambitious environmental policies have sometimes clashed with the federal government's approach, including efforts to wind down its fossil fuel industry in line with climate goals.

In this case, the freeze on climate-related funding appears to be part of a broader strategy by the Trump administration to limit federal spending on environmental programs, and as regulators weigh whether the state may need more power plants, planning remains complex. While the freeze impacts states that are working to transition to clean energy, critics argue that such moves undermine efforts to tackle climate change and could slow down progress toward a greener future.

The Path Forward

For California, the next steps will depend heavily on the actions of the federal government. While the state can continue to push for climate funding in the courts, the lack of clarity around the release of federal funds creates uncertainty for state programs that rely on these resources. As California continues to navigate this funding freeze, it will need to explore alternative solutions to keep its energy efficiency programs on track, such as efforts to revamp electricity rates to clean the grid, even in the face of federal challenges.

In the meantime, California residents and homeowners who were hoping to take advantage of the rebate program may have to wait until further clarification from the federal government is provided, even as officials warn of a looming electricity shortage in coming years. Whether the program can be restored or expanded in the future remains to be seen, but for now, the pause serves as a reminder of the ongoing struggles that states face when dealing with shifting federal priorities.

As the issue unfolds, other states facing similar challenges may take cues from California’s actions, and with California exporting energy policies to Western states, broader conversations about how federal and state governments can collaborate to ensure that energy efficiency initiatives and climate goals are not sidelined due to political or budgetary differences.

California’s decision to pause its $290 million energy rebate program is a significant development in the ongoing struggle between state and federal governments over climate-related funding. The uncertainty created by the Trump administration’s freeze on energy efficiency programs has led to disruptions in state-level efforts to promote sustainability and reduce emissions. As the situation continues to evolve, both California and other states will need to consider how to move forward without relying on federal funding that may or may not be available in the future.

 

Related News

View more

TTC Introduces Battery Electric Buses

TTC Battery-Electric Buses lead Toronto transit toward zero-emission mobility, improving air quality and climate goals with sustainable operations, advanced charging infrastructure, lower maintenance, energy efficiency, and reliable public transportation across the Toronto Transit Commission network.

 

Key Points

TTC battery-electric buses are zero-emission vehicles improving quality, lowering costs, and providing efficient service.

✅ Zero tailpipe emissions improve urban air quality

✅ Lower maintenance and energy costs increase savings

✅ Charging infrastructure enables reliable operations

 

The Toronto Transit Commission (TTC) has embarked on an exciting new chapter in its commitment to sustainability with the introduction of battery-electric buses to its fleet. This strategic move not only highlights the TTC's dedication to reducing its environmental impact but also positions Toronto as a leader in the evolution of public transportation. As cities worldwide strive for greener solutions, the TTC’s initiative stands as a significant milestone toward a more sustainable urban future.

Embracing Green Technology

The decision to integrate battery-electric buses into Toronto's transit system aligns with a growing trend among urban centers to adopt cleaner, more efficient technologies, including Metro Vancouver electric buses now in service. With climate change posing urgent challenges, transit authorities are rethinking their operations to foster cleaner air and reduce greenhouse gas emissions. The TTC’s new fleet of battery-electric buses represents a proactive approach to addressing these concerns, aiming to create a cleaner, healthier environment for all Torontonians.

Battery-electric buses operate without producing tailpipe emissions, and deployments like Edmonton's first electric bus illustrate this shift, offering a stark contrast to traditional diesel-powered vehicles. This transition is crucial for improving air quality in urban areas, where transportation is a leading source of air pollution. By choosing electric options, the TTC not only enhances the city’s air quality but also contributes to the global effort to combat climate change.

Economic and Operational Advantages

Beyond environmental benefits, battery-electric buses present significant economic advantages. Although the initial investment for electric buses may be higher than that for conventional diesel buses, and broader adoption challenges persist, the long-term savings are substantial. Electric buses have lower operating costs due to reduced fuel expenses and less frequent maintenance requirements. The electric propulsion system generally involves fewer moving parts than traditional engines, resulting in lower overall maintenance costs and improved service reliability.

Moreover, the increased efficiency of electric buses translates into reduced energy consumption. Electric buses convert a larger proportion of energy from the grid into motion, minimizing waste and optimizing operational effectiveness. This not only benefits the TTC financially but also enhances the overall experience for riders by providing a more reliable and punctual service.

Infrastructure Development

To support the introduction of battery-electric buses, the TTC is also investing in necessary infrastructure upgrades, including the installation of charging stations throughout the city. These charging facilities are essential for ensuring that the electric fleet can operate smoothly and efficiently. By strategically placing charging stations at transit hubs and along bus routes, the TTC aims to create a seamless transition for both operators and riders.

This infrastructure development is critical not just for the operational capacity of the electric buses but also for fostering public confidence in this new technology, and consistent safety measures such as the TTC's winter safety policy on lithium-ion devices reinforce that trust. As the TTC rolls out these vehicles, clear communication regarding their operational logistics, including charging times and routes, will be essential to inform and engage the community.

Engaging the Community

The TTC is committed to engaging with Toronto’s diverse communities throughout the rollout of its battery-electric bus program. Community outreach initiatives will help educate residents about the benefits of electric transit, addressing any concerns and building public support, and will also discuss emerging alternatives like Mississauga fuel cell buses in the region. Informational campaigns, workshops, and public forums will provide opportunities for dialogue, allowing residents to voice their opinions and learn more about the technology.

This engagement is vital for ensuring that the transition is not just a top-down initiative but a collaborative effort that reflects the needs and interests of the community. By fostering a sense of ownership among residents, the TTC can cultivate support for its sustainable transit goals.

A Vision for the Future

The TTC’s introduction of battery-electric buses marks a transformative moment in Toronto’s public transit landscape. This initiative exemplifies the commission's broader vision of creating a more sustainable, efficient, and user-friendly transportation network. As the city continues to grow, the need for innovative solutions to urban mobility challenges becomes increasingly critical.

By embracing electric technology, the TTC is setting an example for other transit agencies across Canada and beyond, and piloting driverless EV shuttles locally underscores that leadership. This initiative is not just about introducing new vehicles; it is about reimagining public transportation in a way that prioritizes environmental responsibility and community engagement. As Toronto moves forward, the integration of battery-electric buses will play a crucial role in shaping a cleaner, greener future for urban transit, ultimately benefitting residents and the planet alike.

 

Related News

View more

Explainer: Why nuclear-powered France faces power outage risks

France Nuclear Power Outages threaten the grid as EDF reactors undergo stress corrosion inspections, maintenance delays, and staff shortages, driving electricity imports, peak-demand curtailment plans, and potential rolling blackouts during a cold snap across Europe.

 

Key Points

EDF maintenance and stress corrosion cut reactor output, forcing imports and blackouts as cold weather lifts demand.

✅ EDF inspects stress corrosion cracks in reactor piping

✅ Maintenance backlogs and skilled labor shortages slow repairs

✅ Government plans demand cuts, imports, and rolling blackouts

 

France is bracing for possible power outages in the coming days as falling temperatures push up demand while state-controlled nuclear group EDF struggles to bring more production on line.


WHY CAN'T FRANCE MEET DEMAND?
France is one of the most nuclear-powered countries in the world, with a significant role of nuclear power in its energy mix, typically producing over 70% of its electricity with its fleet of 56 reactors and providing about 15% of Europe's total power through exports.

However, EDF (EDF.PA) has had to take a record number of its ageing reactors offline for maintenance this year just as Europe is struggling to cope with cuts in Russian natural gas supplies used for generating electricity, with electricity prices surging across the continent this year.

That has left France's nuclear output at a 30-year low, and mirrors how Europe is losing nuclear power more broadly, forcing France to import electricity and prepare plans for possible blackouts as a cold snap fuels demand for heating.


WHAT ARE EDF'S MAINTENANCE PROBLEMS?
While EDF normally has a number of its reactors offline for maintenance, it has had far more than usual this year due to what is known as stress corrosion on pipes in some reactors, and during heatwaves river temperature limits have constrained output further.

At the request of France's nuclear safety watchdog, EDF is in the process of inspecting and making repairs across its fleet since detecting cracks in the welding connecting pipes in one reactor at the end of last year.

Years of under-investment in the nuclear sector mean that there is precious little spare capacity to meet demand while reactors are offline for maintenance, and environmental constraints such as limits on energy output during high river temperatures reduce flexibility.

France also lacks specialised welders and other workers in sufficient numbers to be able to make repairs fast enough to get reactors back online.

 

WHAT IS BEING DONE?
In the very short term, after a summer when power markets hit records as plants buckled in heat, there is little that can be done to get more reactors online faster, leaving the government to plan for voluntary cuts at peak demand periods and limited forced blackouts.

In the very short term, there is little that can be done to get more reactors online faster, leaving the government to plan for voluntary cuts at peak demand periods and limited forced blackouts.

Meanwhile, EDF and others in the French nuclear industry are on a recruitment drive for the next generation of welders, pipe-fitters and boiler makers, going so far as to set up a new school to train them.

President Emmanuel Macron wants a new push in nuclear energy, even as a nuclear power dispute with Germany persists, and has committed to building six new reactors at a cost his government estimates at nearly 52 billion euros ($55 billion).

As a first step, the government is in the process of buying out EDF's minority shareholders and fully nationalising the debt-laden group, which it says is necessary to make the long-term investments in new reactors.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.