Honda CEO keen on EV market

By Reuters


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The head of Honda Motor Co said there could be plenty of demand for battery-powered electric cars, making the strongest endorsement yet of the technology that his predecessor had long shunned as impractical and unrealistic.

Japan's second-biggest automaker announced in July plans to launch a plug-in hybrid and pure electric car in 2012, but had stopped short of laying out a roadmap of how they would contribute to its business.

"It's starting to look like there will be a market for electric vehicles EVs," Takanobu Ito, who took over as chief executive last year, told a small group of reporters at a test-drive event north of Tokyo.

"We can't keep shooting down their potential, and we can't say there's no business case for it."

Under Takeo Fukui and other former CEOs, Honda had been a strong proponent of hydrogen fuel-cell cars as the best zero-emission alternative to today's combustion engine cars because they have a similar driving range of 500-600 km 310-375 miles, unlike battery EVs' limited reach.

Nissan Motor Co's Leaf, which will become the world's first mass-volume electric car when it goes on sale next month, can only be driven for 160 km 100 miles on a full charge since packing more batteries to extend the range would make the car prohibitively expensive.

"The thing is, not everybody needs to drive 500 km a day," Ito said, echoing the argument made by Nissan and its partner, Renault SA, to sell battery EVs in big volumes around the world.

Ito stopped short of predicting how big the EV market could be, and how soon.

But he added that pure electric cars made more sense than plug-in hybrids, which are hybrid cars that carry more batteries that can be charged from an outside source.

"Plug-in hybrids are essentially for people who drive short distances, but it has the handicap of having an engine, a motor and a stack of batteries," he said. "Why wouldn't you just drive an EV?"

In a move that could further accelerate the industry's drive toward EVs, Ito is due to take the wraps off a new electric car concept at the Los Angeles auto show on November 17. It would be the first time for a Honda CEO to unveil a new model at the annual show.

California has some of the world's strictest environmental regulations, and Honda had said it would sell battery-run EVs there only to meet the state's zero-emission requirements.

Japanese rival Toyota Motor Corp, also a recent EV convert, is planning to unveil the electric RAV4, co-developed with Tesla Motors Inc, at the L.A. auto show. Toyota and the California electric car start-up tied up earlier this year, agreeing to develop battery and EV technology together.

Related News

Electric vehicles to transform the aftermarket … eventually

Heavy-Duty Truck Electrification is disrupting the aftermarket as diesel declines: fewer parts, regenerative braking, emissions rules, e-drives, gearboxes, and software engineering needs reshape service demand, while ICE fleets persist for years.

 

Key Points

Transition of heavy trucks to EV systems, reducing parts and emissions while reshaping aftermarket service and skills.

✅ 33% fewer parts; regenerative braking slashes brake wear

✅ Diesel share declines; EVs and natural gas slowly gain

✅ Aftermarket shifts to e-drives, gearboxes, software and service

 

Those who sell parts and repair trucks might feel uneasy when reports emerge about a coming generation of electric trucks.

There are reportedly about 33% fewer parts to consider when internal combustion engines and transmissions are replaced by electric motors. Features such as regenerative braking are expected to dramatically reduce brake wear. As for many of the fluids needed to keep components moving? They can remain in their tanks and drums.

Think of them as disruptors. But presenters during the annual Heavy Duty Aftermarket Dialogue are stressing that the changes are not coming overnight. Chris Patterson, a consultant and former Daimler Trucks North America CEO, noted that the Daimler electrification plan underscores the shift as he counts just 50 electrified heavy trucks in North America.

About 88% of today’s trucks run on diesel, with the remaining 12% mostly powered by gasoline, said John Blodgett, MacKay and Company’s vice-president of sales and marketing. Five years out, even amid talk of an EV inflection point, he expects 1% to be electric, 2% to be natural gas, 12% to be gasoline, and 84% on diesel.

But a decade from now, forecasts suggest a split of 76% diesel, 11% gasoline, 7% electric, and 5% natural gas, with a fraction of a percent relying on hydrogen-electric power. Existing internal combustion engines will still be in service, and need to be serviced, but aftermarket suppliers are now preparing for their roles in the mix, especially as Canada’s EV opportunity comes into focus for North American players.

“This is real, for sure,” said Delphi Technologies CEO Rick Dauch.

Aftermarket support is needed
“As programs are launched five to six years from now, what are the parts coming back?” he asked the crowd. “Braking and steering. The fuel injection business will go down, but not for 20-25 years.” The electric vehicles will also require a gear box and motor.

“You still have a business model,” he assured the crowd of aftermarket professionals.

Shifting emissions standards are largely responsible for the transformation that is occurring. In Europe, Volkswagen’s diesel emissions scandal and future emissions rules of Euro 7 will essentially sideline diesel-powered cars, even as electric buses have yet to take over transit systems. Delphi’s light-duty diesel business has dropped 70% in just five years, leading to plant closures in Spain, France and England.

“We’ve got a billion-dollar business in electrification, last year down $200 million because of the downturn in light-duty diesel controllers,” Dauch said. “We think we’re going to double our electrification business in five years.”

That has meant opening five new plants in Eastern European markets like Turkey, Romania and Poland alone.

Deciding when the market will emerge is no small task, however. One new plant in China offered manufacturing capacity in July 2019, but it has yet to make any electric vehicle parts, highlighting mainstream EV challenges tied to policy shifts, because the Chinese government changed the incentive plans for electric vehicles.

‘All in’ on electric vehicles
Dana has also gone “all in” on electrification, said chairman and CEO Jim Kamsickas, referring to Dana’s work on e-drives with Kenworth and Peterbilt. Its gasket business is focusing on the needs of battery cooling systems and enclosures.

But he also puts the demand for new electric vehicle systems in perspective. “The mechanical piece is still going to be there.”

The demand for the new components and systems, however, has both companies challenged to find enough capable software engineers. Delphi has 1,600 of them now, and it needs more.

“Just being a motor supplier, just being an inverter supplier, just being a gearbox supplier itself, yes you’ll get value out of that. But in the longhaul you’re going to need to have engineers,” Kamsickas said of the work to develop systems.

Dauch noted that Delphi will leave the capital-intensive work of producing batteries to other companies in markets like China and Korea. “We’re going to make the systems that are in between – inverters, chargers, battery management systems,” he said.

Difficult change
But people working for European companies that have been built around diesel components are facing difficult days. Dauch refers to one German village with a population of 1,200, about 800 of whom build diesel engine parts. That business is working furiously to shift to producing gasoline parts.

Electrification will face hurdles of its own, of course. Major cities around the world are looking to ban diesel-powered vehicles by 2050, but they still lack the infrastructure needed to charge all the cars and truck fleet charging at scale, he added.

Kamsickas welcomes the disruptive forces.

“This is great,” he said. “It’s making us all think a little differently. It’s just that business models have had to pivot – for you, for us, for everybody.”

They need to be balanced against other business demands, including evolving cross-border EV collaboration dynamics, too.

Said Kamsickas: “Working through the disruption of electrification, it’s how do you financially manage that? Oh, by the way, the last time I checked there are [company] shareholders and stakeholders you need to take care of.”

“It’s going to be tough,” Dauch agreed, referring to the changes for suppliers. “The next three to four years are really going to be game changes. “There’ll be some survivors and some losers, that’s for sure.”

 

Related News

View more

Energy Vault Secures $28M for California Green Hydrogen Microgrid

Calistoga Resiliency Centre Microgrid delivers grid resilience via green hydrogen and BESS, providing island-mode backup during PSPS events, wildfire risk, and outages, with black-start and grid-forming capabilities for reliable community power.

 

Key Points

A hybrid green hydrogen and BESS facility ensuring resilient, islanded power for Calistoga during PSPS and outages.

✅ 293 MWh capacity with 8.5 MW peak for critical backup

✅ Hybrid lithium-ion BESS plus green hydrogen fuel cells

✅ Island mode with black-start and grid-forming support

 

Energy Vault, a prominent energy storage and technology company known for its gravity storage, recently secured US$28 million in project financing for its innovative Calistoga Resiliency Centre (CRC) in California. This funding will enable the development of a microgrid powered by a unique combination of green hydrogen and battery energy storage systems (BESS), marking a significant step forward in enhancing grid resilience in the face of natural disasters such as wildfires.

Located in California's fire-prone regions, the CRC is designed to provide critical backup power during Public Safety Power Shutoff (PSPS) events—periods when utility companies proactively cut power to prevent wildfires. These events can leave communities without electricity for extended periods, making the need for reliable, independent power sources more urgent as many utilities see benefits in energy storage today. The CRC, with a capacity of 293 MWh and a peak output of 8.5 MW, will ensure that the Calistoga community maintains power even when the grid is disconnected.

The CRC features an integrated hybrid system that combines lithium-ion batteries and green hydrogen fuel cells, even as some grid-scale projects adopt vanadium flow batteries for long-duration needs. During a PSPS event or other grid outages, the system will operate in "island mode," using hydrogen to generate electricity. This setup not only guarantees power supply but also contributes to grid stability by supporting black-start and grid-forming functions. Energy Vault's proprietary B-VAULT DC battery technology complements the hydrogen fuel cells, enhancing the overall performance and resilience of the microgrid.

One of the key aspects of the CRC project is the utilization of green hydrogen. Unlike traditional hydrogen, which is often produced using fossil fuels, green hydrogen is generated through renewable energy sources like solar or wind power, with large-scale initiatives such as British Columbia hydrogen project accelerating supply, making it a cleaner and more sustainable alternative. This aligns with California’s ambitious clean energy goals and is expected to reduce the carbon footprint of the region’s energy infrastructure.

The CRC project also sets a precedent for future hybrid microgrid deployments across California and other wildfire-prone areas, with utilities like SDG&E Emerald Storage highlighting growing adoption. Energy Vault has positioned the CRC as a model for scalable, utility-scale microgrids that can be adapted to various locations facing similar challenges. Following the success of this project, Energy Vault is expanding its portfolio with additional projects in Texas, where it anticipates securing up to US$25 million in financing.

The funding for the CRC also includes the sale of an investment tax credit (ITC), a key component of the financing structure that helps make such ambitious projects financially viable. This structure is crucial as it allows companies to leverage government incentives to offset development costs, including CEC long-duration storage funding, thus encouraging further investment in green energy infrastructure.

Despite some skepticism regarding the transportation of hydrogen rather than producing it onsite, the project has garnered strong support. California’s Public Utilities Commission (CPUC) acknowledged the potential risks of transporting green hydrogen but emphasized that it is still preferable to using more harmful fuel sources. This recognition is important as it validates Energy Vault’s approach to using hydrogen as part of a broader strategy to transition to clean, reliable energy solutions.

Energy Vault's shift from its traditional gravity-based energy storage systems to battery energy storage systems, such as BESS in New York, reflects the company's adaptation to the growing demand for versatile, efficient energy solutions. The hybrid approach of combining BESS with green hydrogen represents an innovative way to address the challenges of energy storage, especially in regions vulnerable to natural disasters and power outages.

As the CRC nears mechanical completion and aims for full commercial operations by Q2 2025, it is poised to become a critical part of California’s grid resilience strategy. The microgrid's ability to function autonomously during emergencies will provide invaluable benefits not only to Calistoga but also to other communities that may face similar grid disruptions in the future.

Energy Vault’s US$28 million financing for the Calistoga Resiliency Centre marks a significant milestone in the development of hybrid microgrids that combine the power of green hydrogen and battery energy storage. This project exemplifies the future of energy resilience, showcasing a forward-thinking approach to mitigating the impact of natural disasters and ensuring a reliable, sustainable energy future for communities at risk. With its innovative use of renewable energy sources and cutting-edge technology, the CRC sets a strong example for future energy storage projects worldwide.

 

Related News

View more

Californians Learning That Solar Panels Don't Work in Blackouts

Rooftop Solar Battery Backup helps Californians keep lights on during PG&E blackouts, combining home energy storage with grid-tied systems for wildfire prevention, outage resilience, and backup power when solar panels cannot supply nighttime demand.

 

Key Points

A home battery paired with rooftop solar, providing backup power and blackout resilience when the grid is down.

✅ Works when grid is down; panels alone stop for safety.

✅ Requires home battery storage; market adoption is growing.

✅ Supports wildfire mitigation and PG&E outage preparedness.

 

Californians have embraced rooftop solar panels more than anyone in the U.S., but amid California's solar boom many are learning the hard way the systems won’t keep the lights on during blackouts.

That’s because most panels are designed to supply power to the grid -- not directly to houses, though emerging peer-to-peer energy models may change how neighbors share power in coming years. During the heat of the day, solar systems can crank out more juice than a home can handle, a challenge also seen in excess solar risks in Australia today. Conversely, they don’t produce power at all at night. So systems are tied into the grid, and the vast majority aren’t working this week as PG&E Corp. cuts power to much of Northern California to prevent wildfires, even as wildfire smoke can dampen solar output during such events.

The only way for most solar panels to work during a blackout is pairing them with solar batteries that store excess energy. That market is just starting to take off. Sunrun Inc., the largest U.S. rooftop solar company, said some of its customers are making it through the blackouts with batteries, but it’s a tiny group -- countable in the hundreds.

“It’s the perfect combination for getting through these shutdowns,” Sunrun Chairman Ed Fenster said in an interview. He expects battery sales to boom in the wake of the outages, as the state has at times reached a near-100% renewables mark that heightens the need for storage.

And no, trying to run appliances off the power in a Tesla Inc. electric car won’t work, at least without special equipment, and widespread U.S. power-outage risks are a reminder to plan for home backup.

 

Related News

View more

U.S. offshore wind power about to soar

US Offshore Wind Lease Sales signal soaring renewable energy growth, drawing oil and gas developers, requiring BOEM auctions, seismic surveying, transmission planning, with $70B investment, 8 GW milestones, and substantial job creation in coastal communities.

 

Key Points

BOEM-run auctions granting areas for offshore wind, spurring projects, investment, and jobs in federal waters.

✅ $70B investment needed by 2030 to meet current demand

✅ 8 GW early buildout could create 40,000 US jobs

✅ Requires BOEM auctions, seismic surveying, transmission corridors

 

Recent offshore lease sales demonstrate that not only has offshore wind arrived in the U.S., but it is clearly set to soar, as forecasts point to a $1 trillion global market in the coming decades. The level of participation today, especially from seasoned offshore oil and gas developers, exemplifies that the offshore industry is an advocate for the 'all of the above' energy portfolio.

Offshore wind could generate 160,000 direct, indirect and induced jobs, with 40,000 new U.S. jobs with the first 8 gigawatts of production, while broader forecasts see a quarter-million U.S. wind jobs within four years.

In fact, a recent report from the Special Initiative on Offshore Wind (SIOW), said that offshore wind investment in U.S. waters will require $70 billion by 2030 just based on current demand, and the UK's rapid scale-up offers a relevant benchmark.

Maintaining this tremendous level of interest from offshore wind developers requires a reliable inventory of regularly scheduled offshore wind sales and the ability to develop those resources. Coastal communities and extreme environmental groups opposing seismic surveying and the issuance of incidental harassment authorizations under the Marine Mammal Protection Act may literally take the wind out of these sales. Just as it is for offshore oil and gas development, seismic surveying is vital for offshore wind development, specifically in the siting of wind turbines and transmission corridors.

Unfortunately, a long-term pipeline of wind lease sales does not currently exist. In fact, with the exception of a sale proposed offshore New York offshore wind or potentially California in 2020, there aren't any future lease sales scheduled, leaving nothing upon which developers can plan future investments and prompting questions about when 1 GW will be on the grid nationwide.

NOIA is dedicated to working with the Bureau of Ocean Energy Management and coastal communities, consumers, energy producers and other stakeholders, drawing on U.K. wind lessons where applicable, in working through these challenges to make offshore wind a reality for millions of Americans.

 

Related News

View more

Recommendations from BC Hydro review to keep electricity affordable

BC Hydro Review Phase 2 Recommendations advance affordable electricity rates, clean energy adoption, electrification, and demand response, supporting heat pumps, EV charging, and low-income programs to cut emissions and meet CleanBC climate targets.

 

Key Points

Policies to keep rates affordable and accelerate clean electrification via heat pump, EV, and demand response incentives.

✅ Optional rates, heat pump and EV charging incentives

✅ Demand response via controllable devices lowers peak loads

✅ Expanded support for lower-income customers and affordability

 

The Province and BC Hydro have released recommendations from Phase 2 of the BC Hydro Review to keep rates affordable, including through a provincial rate freeze initiative that supported households, and encourage greater use of clean, renewable electricity to reduce emissions and achieve climate targets.

“Keeping life affordable for people is a key priority of our government,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “Affordable electricity rates not only help British Columbians, they help ensure the price of electricity remains competitive with other forms of energy, supporting the transition away from fossil fuels to clean electricity in our homes and buildings, vehicles and businesses.”

While affordable rates have always been important to BC Hydro customers, amid proposals such as a modest rate increase under review, expectations are also changing as customers look to have more choice and control over their electricity use and opportunities to save money.

Guided by input from a panel of external energy industry experts, government and BC Hydro have developed recommendations under Phase 2 of the BC Hydro Review to reduce electricity costs for individuals and businesses, even as a 3.75% increase has been discussed, as envisioned by the CleanBC climate strategy. This is also in alignment with TogetherBC, the Province’s poverty reduction strategy, and its guiding principle of affordability.

“As we promote increased use of electricity in B.C. to achieve our climate targets, we need to continue to focus on keeping electricity rates affordable, especially for lower-income families,” said Nicholas Simons, Minister of Social Development and Poverty Reduction. “Through the BC Hydro Review, and continuing engagement with stakeholders and organizations to follow, we are committed to finding ways to keep rates affordable, so everyone has access to the benefits of B.C.’s clean, reliable electricity.”

Recommendations include having BC Hydro consider providing more support for lower-income BC Hydro customers, informed by a recent surplus report that highlighted funding opportunities. These include incentives and exploring optional rates for customers to adopt electric heat pumps, and facilitating customer adoption of controllable energy devices that provide BC Hydro the ability to offer incentives in return for helping to manage a customer’s electricity use. 

Electrification of B.C.’s economy helps customers reduce their carbon footprint and supports the Province’s CleanBC climate strategy, and is an important part of keeping electricity affordable even amid higher BC Hydro rates in recent periods. As more customers make the switch from fossil fuels to using clean electricity in their homes, vehicles and businesses, BC Hydro’s electricity sales will increase, providing more revenue that helps keep rates affordable for everyone.

“We’re making the transition to a cleaner future more affordable for people and businesses across British Columbia through our CleanBC plan,” said George Heyman, Minister of Environment and Climate Change Strategy. “By working with BC Hydro and other partners, we’re making sure everyone has access to clean, affordable electricity to power technologies like high-efficiency heat pumps and electric vehicles that will reduce harmful pollution and improve our homes, buildings and communities.”

Chris O’Riley, president and CEO, BC Hydro, said: “Given the impact of COVID-19 on British Columbians, affordability is more important than ever. That’s why we are committed to continuing to keep rates affordable and offering customers more options that allow them to save on their bills while using clean electricity.”

In July 2021, the Province announced a first set of recommendations from Phase 2 of the BC Hydro Review amid a 3% rate increase approved by regulators. The next announcement from Phase 2 will include recommendations to increase the number of electric vehicles on the road.

In addition, as part of the Draft Action Plan to advance the Declaration on the Rights of Indigenous Peoples Act, the Province is proposing to engage with Indigenous peoples to identify and support new clean energy opportunities related to CleanBC, the BC Hydro Review and the British Columbia Utilities Commission Indigenous Utilities Regulation Inquiry, and to consider lessons from Ontario's hydro policy experiences as appropriate.

B.C. is the cleanest electricity-generation jurisdiction in western North America, with an average of 98% of its electricity generation coming from clean or renewable resources.

 

Related News

View more

New energy projects seek to lower electricity costs in Southeast Alaska

Southeast Alaska Energy Projects advance hydroelectric, biomass, and heat pumps, displacing diesel via grants. Inside Passage Electric Cooperative and Alaska Energy Authority support Kake, Hoonah, Ketchikan with wood pellets, feasibility studies, and rate relief.

 

Key Points

Programs using hydro, biomass, and heat pumps to cut diesel use and lower electricity costs in Southeast Alaska.

✅ Hydroelectric at Gunnuk Creek to replace diesel in Kake

✅ Biomass and wood pellets displacing fuel oil in facilities

✅ Free feasibility studies; heat pumps where economical

 

New projects are under development throughout the region to help reduce energy costs for Southeast Alaska residents. A panel presented some of those during last week’s Southeast Conference annual fall meeting in Ketchikan.

Jodi Mitchell is with Inside Passage Electric Cooperative, which is working on the Gunnuk Creek hydroelectric project for Kake. IPEC is a non-profit, she said, with the goal of reducing electric rates for its members.

The Gunnuk Creek project will be built at an existing dam.

“The benefits for the project will be, of course, renewable energy for Kake. And we estimate it will save about 6.2 million gallons over its 50-year life,” she said. “Although, as you heard earlier, these hydro projects last forever.”

The gallons saved are of diesel fuel, which currently is used to power generators for electricity, though in places with limited options some have even turned to new coal plants to keep the lights on.

IPEC operates other hydro projects in Klukwan and Hoonah. Mitchell said they’re looking into future projects, one near Angoon and another that would add capacity to the existing Hoonah project, even as an independent power project in British Columbia is in limbo.

Mitchell said they fund much of their work through grants, which helps keep electric rates at a reasonable level.

Devany Plentovich with the Alaska Energy Authority talked about biomass projects in the state. She said the goal is to increase wood energy use in Alaska, even as some advocates call for a reduction in biomass electricity in other regions.

“We offer any community, any entity, a free feasibility study to see if they have a potential heating system in their community,” she said. “We do advocate for wood heating, but we are trying to get a community to pick the best heating technology for their situation, including options that use more electricity for heat when appropriate. So in a lot of situations, our consultants will give you the economics on a wood heating system but they’ll also recommend maybe you should look at heat pumps or look at waste energy.”

Plentovich said they recently did a study for Ketchikan’s Holy Name Church and School. The result was a recommendation for a heat pump rather than wood.

But, she said, wood energy is on the rise, and utilities elsewhere are increasing biomass for electricity as well. There are more than 50 systems in the state displacing more than 500,000 gallons of fuel oil annually. Those include systems on Prince of Wales Island and in Ketchikan.

Ketchikan recently experienced a supply issue, though. A local wood-pellet manufacturer closed, which is a problem for the airport and the public library, among other facilities that use biomass heaters.

Karen Petersen is the biomass outreach coordinator for Southeast Conference. She said this opens up a great opportunity for someone.

“Devany and I are working on trying to find a supplier who wants to go into the pellet business,” she said. “Probably importing initially, and then converting over to some form of manufacturing once the demand is stabilized.”

So, Petersen said, if anyone is interested in this entrepreneurial opportunity, contact her through Southeast Conference for more information.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.