No injuries after transformer fire

By Marietta Times


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Crews from four area volunteer fire departments responded to a transformer fire at American Electric Power's Muskingum River Plant near Beverly recently.

The fire was caused by a transformer failure that occurred around 4:30 p.m. November 22, according to Suzanne Priore, AEP Ohio spokeswoman.

No employees were injured and no customers lost power, Priore said.

First units from Beverly's Volunteer Fire Department arrived at the scene within 13 minutes, according to firefighter Jim Ullman.

"There was a lot of heavy smoke, but the fire suppression system was working, so the fire was confined to the transformer," he said.

Ullman said crews were unable to begin dousing the transformer right away because electrical power was still flowing through the unit.

"We weren't going to put any water on the transformer until it was de-energized," he said.

Once the electricity was cut off, a truck from Morgan County's M&M Volunteer Fire Department applied foam to smother the blaze.

Washington County Sheriff Larry Mincks said around 6:15 p.m. that the fire was under control.

Priore said the company was doing an assessment of the cause of the fire.

In addition to the Beverly and M&M departments, volunteer units from Watertown and Barlow also responded, along with the AEP facility's own fire crews.

"It was a great example of how all of these departments work together," Ullman said, adding that local fire companies train at AEP and other area plants at least once a year to handle such emergencies.

A 31-year veteran with the Beverly fire department, Ullman said the power plant has its own fire response unit, so area fire companies are rarely called to the facility.

"This one was just too big for them to handle alone," he said.

Local fire departments also responded to the facility in January 2007 when an explosion killed the employee of a supplier who was delivering hydrogen to the plant. The explosion was caused by a massive release of hydrogen gas, which then ignited.

Related News

Carbon capture: How can we remove CO2 from the atmosphere?

CO2 Removal Technologies address climate change via negative emissions, including carbon capture, reforestation, soil carbon, biochar, BECCS, DAC, and mineralization, helping meet Paris Agreement targets while managing costs, land use, and infrastructure demands.

 

Key Points

Methods to extract or sequester atmospheric CO2, combining natural and engineered approaches to limit warming.

✅ Includes reforestation, soil carbon, biochar, BECCS, DAC, mineralization

✅ Balances climate goals with costs, land, energy, and infrastructure

✅ Key to Paris Agreement targets under 1.5-2.0 °C warming

 

The world is, on average, 1.1 degrees Celsius warmer today than it was in 1850. If this trend continues, our planet will be 2 – 3 degrees hotter by the end of this century, according to the Intergovernmental Panel on Climate Change (IPCC).

The main reason for this temperature rise is higher levels of atmospheric carbon dioxide, which cause the atmosphere to trap heat radiating from the Earth into space. Since 1850, the proportion of CO2 in the air has increased, with record greenhouse gas concentrations documented, from 0.029% to 0.041% (288 ppm to 414 ppm).

This is directly related to the burning of coal, oil and gas, which were created from forests, plankton and plants over millions of years. Back then, they stored CO2 and kept it out of the atmosphere, but as fossil fuels are burned, that CO2 is released. Other contributing factors include industrialized agriculture and slash-and-burn land clearing techniques, and emissions from SF6 in electrical equipment are also concerning today.

Over the past 50 years, more than 1200 billion tons of CO2 have been emitted into the planet's atmosphere — 36.6 billion tons in 2018 alone, though global emissions flatlined in 2019 before rising again. As a result, the global average temperature has risen by 0.8 degrees in just half a century.


Atmospheric CO2 should remain at a minimum
In 2015, the world came together to sign the Paris Climate Agreement which set the goal of limiting global temperature rise to well below 2 degrees — 1.5 degrees, if possible.

The agreement limits the amount of CO2 that can be released into the atmosphere, providing a benchmark for the global energy transition now underway. According to the IPCC, if a maximum of around 300 billion tons were emitted, there would be a 50% chance of limiting global temperature rise to 1.5 degrees. If CO2 emissions remain the same, however, the CO2 'budget' would be used up in just seven years.

According to the IPCC's report on the 1.5 degree target, negative emissions are also necessary to achieve the climate targets.


Using reforestation to remove CO2
One planned measure to stop too much CO2 from being released into the atmosphere is reforestation. According to studies, 3.6 billion tons of CO2 — around 10% of current CO2 emissions — could be saved every year during the growth phase. However, a study by researchers at the Swiss Federal Institute of Technology, ETH Zurich, stresses that achieving this would require the use of land areas equivalent in size to the entire US.

Young trees at a reforestation project in Africa (picture-alliance/OKAPIA KG, Germany)
Reforestation has potential to tackle the climate crisis by capturing CO2. But it would require a large amount of space


More humus in the soil
Humus in the soil stores a lot of carbon. But this is being released through the industrialization of agriculture. The amount of humus in the soil can be increased by using catch crops and plants with deep roots as well as by working harvest remnants back into the ground and avoiding deep plowing. According to a study by the German Institute for International and Security Affairs (SWP) on using targeted CO2 extraction as a part of EU climate policy, between two and five billion tons of CO2 could be saved with a global build-up of humus reserves.


Biochar shows promise
Some scientists see biochar as a promising technology for keeping CO2 out of the atmosphere. Biochar is created when organic material is heated and pressurized in a zero or very low-oxygen environment. In powdered form, the biochar is then spread on arable land where it acts as a fertilizer. This also increases the amount of carbon content in the soil. According to the same study from the SWP, global application of this technology could save between 0.5 and two billion tons of CO2 every year.


Storing CO2 in the ground
Storing CO2 deep in the Earth is already well-known and practiced on Norway's oil fields, for example. However, the process is still controversial, as storing CO2 underground can lead to earthquakes and leakage in the long-term. A different method is currently being practiced in Iceland, in which CO2 is sequestered into porous basalt rock to be mineralized into stone. Both methods still require more research, however, with new DOE funding supporting carbon capture, utilization, and storage.

Capturing CO2 to be held underground is done by using chemical processes which effectively extract the gas from the ambient air, and some researchers are exploring CO2-to-electricity concepts for utilization. This method is known as direct air capture (DAC) and is already practiced in other parts of Europe.  As there is no limit to the amount of CO2 that can be captured, it is considered to have great potential. However, the main disadvantage is the cost — currently around €550 ($650) per ton. Some scientists believe that mass production of DAC systems could bring prices down to €50 per ton by 2050. It is already considered a key technology for future climate protection.

The inside of a carbon capture facility in the Netherlands (RWE AG)
Carbon capture facilities are still very expensive and take up a huge amount of space

Another way of extracting CO2 from the air is via biomass. Plants grow and are burned in a power plant to produce electricity. CO2 is then extracted from the exhaust gas of the power plant and stored deep in the Earth, with new U.S. power plant rules poised to test such carbon capture approaches.

The big problem with this technology, known as bio-energy carbon capture and storage (BECCS) is the huge amount of space required. According to Felix Creutzig from the Mercator Institute on Global Commons and Climate Change (MCC) in Berlin, it will therefore only play "a minor role" in CO2 removal technologies.


CO2 bound by rock minerals
In this process, carbonate and silicate rocks are mined, ground and scattered on agricultural land or on the surface water of the ocean, where they collect CO2 over a period of years. According to researchers, by the middle of this century it would be possible to capture two to four billion tons of CO2 every year using this technique. The main challenges are primarily the quantities of stone required, and building the necessary infrastructure. Concrete plans have not yet been researched.


Not an option: Fertilizing the sea with iron
The idea is use iron to fertilize the ocean, thereby increasing its nuturient content, which would allow plankton to grow stronger and capture more CO2. However, both the process and possible side effects are very controversial. "This is rarely treated as a serious option in research," concludes SWP study authors Oliver Geden and Felix Schenuit.

 

Related News

View more

Egypt Plans Power Link to Saudis in $1.6 Billion Project

Egypt-Saudi Electricity Interconnection enables cross-border power trading, 3,000 MW capacity, and peak-demand balancing across the Middle East, boosting grid stability, reliability, and energy security through an advanced electricity network, interconnector infrastructure, and GCC grid integration.

 

Key Points

A 3,000 MW grid link letting Egypt and Saudi Arabia trade power, balance peak demand, and boost regional reliability.

✅ $1.6B project; Egypt invests ~$600M; 2-year construction timeline

✅ 3,000 MW capacity; peak-load shifting; cross-border reliability

✅ Links GCC grid; complements Jordan and Libya interconnectors

 

Egypt will connect its electricity network to Saudi Arabia, joining a system in the Middle East that has allowed neighbors to share power, similar to the Scotland-England subsea project that will bring renewable power south.

The link will cost about $1.6 billion, with Egypt paying about $600 million, Egypt’s Electricity Minister Mohamed Shaker said Monday at a conference in Cairo, as the country pursues a smart grid transformation to modernize its network. Contracts to build the network will be signed in March or April, and construction is expected to take about two years, he said. In times of surplus, Egypt can export electricity and then import power during shortages.

"It will enable us to benefit from the difference in peak consumption,” Shaker said. “The reliability of the network will also increase.”

Transmissions of electricity across borders in the Gulf became possible in 2009, when a power grid connected Qatar, Kuwait, Saudi Arabia and Bahrain, a dynamic also seen when Ukraine joined Europe's grid under emergency conditions. The aim of the grid is to ensure that member countries of the Gulf Cooperation Council can import power in an emergency. Egypt, which is not in the GCC, may have been able to avert an electricity shortage it suffered in 2014 if the link with Saudi Arabia existed at the time, Shaker said.

The link with Saudi Arabia should have a capacity of 3,000 megawatts, he said. Egypt has a 450-megawatt link with Jordan and one with Libya at 200 megawatts, the minister said. Egypt will seek to use its strategic location to connect power grids in Asia, where the Philippines power grid efforts are raising standards, and elsewhere in Africa, he said.

In 2009, a power grid linked Qatar, Kuwait, Saudi Arabia and Bahrain, allowing the GCC states to transmit electricity across borders, much like proposals for a western Canadian grid that aim to improve regional reliability. 

 

Related News

View more

How Energy Use Has Evolved Throughout U.S. History

U.S. Energy Transition traces the shift from coal and oil to natural gas, nuclear power, and renewables like wind and solar, driven by efficiency, grid modernization, climate goals, and economic innovation.

 

Key Points

The U.S. Energy Transition is the shift from fossil fuels to cleaner power, driven by tech, policy, and markets.

✅ Shift from coal and oil to gas, nuclear, wind, and solar

✅ Enabled by grid modernization, storage, and efficiency

✅ Aims to cut emissions while ensuring reliability and affordability

 

The evolution of energy use in the United States is a dynamic narrative that reflects technological advancements, economic shifts, environmental awareness, and societal changes over time. From the nation's early reliance on wood and coal to the modern era dominated by oil, natural gas, and renewable sources, the story of energy consumption in the U.S. is a testament to innovation and adaptation.

Early Energy Sources: Wood and Coal

In the early days of U.S. history, energy needs were primarily met through renewable resources such as wood for heating and cooking. As industrialization took hold in the 19th century, coal emerged as a dominant energy source, fueling steam engines and powering factories, railways, and urban growth. The widespread availability of coal spurred economic development and shaped the nation's infrastructure.

The Rise of Petroleum and Natural Gas

The discovery and commercialization of petroleum in the late 19th century transformed the energy landscape once again. Oil quickly became a cornerstone of the U.S. economy, powering transportation, industry, and residential heating, and informing debates about U.S. energy security in policy circles. Concurrently, natural gas emerged as a significant energy source, particularly for heating and electricity generation, as pipelines expanded across the country.

Electricity Revolution

The 20th century witnessed a revolution in electricity generation and consumption, and understanding where electricity comes from helps contextualize how systems evolved. The development of hydroelectric power, spurred by projects like the Hoover Dam and Tennessee Valley Authority, provided clean and renewable energy to millions of Americans. The widespread electrification of rural areas and the proliferation of appliances in homes and businesses transformed daily life and spurred economic growth.

Nuclear Power and Energy Diversification

In the mid-20th century, nuclear power emerged as a promising alternative to fossil fuels, promising abundant energy with minimal greenhouse gas emissions. Despite concerns about safety and waste disposal, nuclear power plants became a significant part of the U.S. energy mix, providing a stable base load of electricity, even as the aging U.S. power grid complicates integration of variable renewables.

Renewable Energy Revolution

In recent decades, the U.S. has seen a growing emphasis on renewable energy sources such as wind, solar, and geothermal power, yet market shocks and high fuel prices alone have not guaranteed a rapid green revolution, prompting broader policy and investment responses. Advances in technology, declining costs, and environmental concerns have driven investments in clean energy infrastructure and policies promoting renewable energy adoption. States like California and Texas lead the nation in wind and solar energy production, demonstrating the feasibility and benefits of transitioning to sustainable energy sources.

Energy Efficiency and Conservation

Alongside shifts in energy sources, improvements in energy efficiency and conservation have played a crucial role in reducing per capita energy consumption and greenhouse gas emissions. Energy-efficient appliances, building codes, and transportation innovations have helped mitigate the environmental impact of energy use while reducing costs for consumers and businesses, and weather and economic factors also influence demand; for example, U.S. power demand fell in 2023 on milder weather, underscoring the interplay between efficiency and usage.

Challenges and Opportunities

Looking ahead, the U.S. faces both challenges and opportunities in its energy future, as recent energy crisis effects ripple across electricity, gas, and EVs alike. Addressing climate change requires further investments in renewable energy, grid modernization, and energy storage technologies. Balancing energy security, affordability, and environmental sustainability remains a complex task that requires collaboration between government, industry, and society.

Conclusion

The evolution of energy use throughout U.S. history reflects a continuous quest for innovation, economic growth, and environmental stewardship. From wood and coal to nuclear power and renewables, each era has brought new challenges and opportunities in meeting the nation's energy needs. As the U.S. transitions towards a cleaner and more sustainable energy future, leveraging technological advancements and embracing policy solutions, amid debates over U.S. energy dominance, will be essential in shaping the next chapter of America's energy story.

 

Related News

View more

Russian Strikes Threaten Ukraine's Power Grid

Ukraine Power Grid Attacks intensify as missile and drone strikes hit substations and power plants, causing blackouts, humanitarian crises, strained hospitals, and emergency repairs, with winter energy shortages and civilian infrastructure damage worsening nationwide.

 

Key Points

Strikes on energy infrastructure causing blackouts, service disruption, and heightened humanitarian risk in winter.

✅ Missile and drone strikes cripple plants, substations, and lines

✅ Blackouts disrupt water, heating, hospitals, and critical services

✅ Emergency repairs, generators, and aid mitigate winter shortages

 

Ukraine's energy infrastructure remains a primary target in Russia's ongoing invasion, with a recent wave of missile strikes causing power outages in western regions and disrupting critical services across the country. These attacks have devastating humanitarian consequences, leaving millions of Ukrainians without heat, water, and electricity as winter approaches.


Systematic Targeting of Energy Infrastructure

Russia's strategy of deliberately targeting Ukraine's power grid marks a significant escalation, directly affecting the lives of civilians. Power plants, substations, and transmission lines have been hit with missiles and drones, with the latest strikes in late April causing blackouts in cities across Ukraine, including the capital, Kyiv, as the country fights to keep the lights on amid relentless bombardment.


Humanitarian Catastrophe Looms

The damage to Ukraine's electrical system hinders essential services like water supply, sewage treatment, and heating. Hospitals and other critical facilities struggle to operate without reliable power. With winter around the corner, the ongoing attacks threaten a humanitarian catastrophe even as authorities outline plans to keep the lights on this winter for vulnerable communities.


Ukrainian Resolve Remains Unbroken

Despite the devastation, Ukrainian engineers and workers race against time to repair damaged infrastructure and restore power as quickly as possible, while communities adopt new energy solutions to overcome blackouts to maintain essential services. The nation's energy workers have been hailed as heroes for their tireless efforts to keep the lights on amidst relentless attacks. Officials have urged civilians to reduce energy consumption whenever possible to alleviate strain on the fragile grid.


International Condemnation and Support

The systematic attacks on Ukraine's power grid have been widely condemned by the international community.  Western nations have accused Russia of war crimes, highlighting the deliberate targeting of civilian infrastructure. Aid organizations and countries are coordinating efforts to provide emergency power supplies, including generators and transformers, to help Ukraine mitigate the immediate crisis, even as the U.S. ended support for grid restoration in a recent policy shift.


Implications Beyond Ukraine

The humanitarian crisis unfolding in Ukraine due to power grid attacks carries implications far beyond its borders. The disruption of energy supplies could lead to further instability in neighbouring countries dependent on Ukraine's power exports, although officials say electricity reserves are sufficient to prevent scheduled outages if attacks subside. Additionally, a surge in Ukrainian refugees fleeing the deteriorating conditions could put a strain on resources within the European Union.


War Crimes Allegations

International human rights organizations are documenting evidence of Russia's deliberate attacks on Ukraine's civilian infrastructure. Human Rights Watch (HRW) has stated that Russia's targeting of power stations could violate the laws of war and amount to war crimes. This documentation will be crucial for holding Russia accountable for its actions in the future.


Uncertain Future for Ukraine's Power Supply

The long-term consequences of Russia's sustained attacks on Ukraine's power grid remain uncertain. While Ukrainian workers demonstrate incredible resilience, the sheer scale of repeated damage may eventually overwhelm their ability to keep pace with repairs, and, as winter looms over the battlefront, electricity is civilization for frontline communities. Rebuilding destroyed infrastructure could take years and cost billions, a daunting task for a nation already ravaged by war.

 

Related News

View more

US judge orders PG&E to use dividends to pay for efforts to reduce wildfire risks

PG&E dividend halt for wildfire mitigation directs cash from shareholders to tree clearing, wildfire risk reduction, and probation compliance under Judge William Alsup, amid bankruptcy, Camp Fire liabilities, and power line vegetation management mandates.

 

Key Points

A court-ordered dividend halt funding vegetation clearance and wildfire mitigation as PG&E meets probation terms.

✅ Judge Alsup bars dividends until mitigation targets met

✅ 375,000 trees cleared near power lines in high-risk zones

✅ Measures tied to probation amid bankruptcy and liabilities

 

A U.S. judge said on Tuesday that PG&E may not resume paying dividends and must use the money to fund its plan for cutting down trees to reduce the risk of wildfires in California, stopping short of more costly measures he proposed earlier this year.

The new criminal probation terms for PG&E are modest compared with ones the judge had in mind in January and that PG&E said could have cost upwards of $150 billion.

The terms will, however, keep PG&E under the supervision of Judge William Alsup of the U.S. District Court for the Northern District of California and hold the company, which also is in Chapter 11 bankruptcy and whose bankruptcy plan has drawn support from wildfire victims, to its target for clearing areas around its power lines of some 375,000 trees this year.

PG&E's probation stems from its felony conviction after a deadly 2010 natural gas pipeline blast in San Bruno, California, near San Francisco, that killed eight people and injured 58 others.

PG&E filed for bankruptcy protection on Jan. 29 in anticipation of liabilities from wildfires, including a catastrophic 2018 blaze, the Camp Fire, for which PG&E later pleaded guilty to 85 counts in state court. It killed 86 people in the deadliest and most destructive wildfire in California history.

At a January hearing, Alsup, who is overseeing PG&E's probation, said he felt compelled to propose additional probation terms in the aftermath of Camp Fire. San Francisco-based PG&E expects its equipment will be found to have caused the blaze.

The probation process is separate from San Francisco-based PG&E's bankruptcy filing and from operational measures such as its pandemic response and shutoff moratorium implemented to protect customers.

As the company faces $30 billion in wildfire liabilities and bankruptcy proceedings and has opened a wildfire assistance program for affected residents, the energy company is expected to name as its new chief executive Bill Johnson, a source said on Tuesday. Johnson has been the CEO of the Tennessee Valley Authority since 2013 and is retiring on Friday.

Additional probation terms imposed by Alsup on Tuesday will require PG&E to meet goals in a wildfire mitigation plan it unveiled in February.

The goals include removing 375,000 dead, dying or hazardous trees from areas at high risk of wildfires in 2019, compared with 160,000 last year.

The judge said PG&E will not be able to pay shareholders until it complies with his new probation terms.

Shares fell 2% on Tuesday to close at $17.66 on the New York Stock Exchange and are down 63% since November 2018 due to concerns about the company's bankruptcy and wildfire liabilities, though the utility has said rates are set to stabilize in 2025 as part of its long-term plan. The shares traded as low as $5.07 in January.

PG&E in December 2017 suspended its quarterly cash dividend, while continuing to pay significant property taxes to California counties, citing uncertainty about liabilities from wildfires in October of that year that struck Northern California.

PG&E paid $798 million in dividends in 2017 and $925 million in 2016, a period in which the company did a poor job of clearing areas around its power lines of hazardous trees, according to Alsup.

Money meant for shareholders should have been spent on efforts to reduce wildfire risks in recent years, Alsup said at Tuesday's hearing.

"PG&E has started way more than its share of these fires," Alsup said.

"I want to see the people of California safe," the judge added.

Lawyers for PG&E did not contest the new terms, which the company considers more feasible than terms Alsup proposed in January.

To comply with the terms Alsup proposed in January, PG&E said it would have to remove 100 million trees. The company added that shutting power lines during high winds as Alsup proposed would not be feasible because the lines traverse rural areas to service cities and suburbs.

Idling lines could also affect the power grid in other states, PG&E said.

Alsup on Tuesday said he was still considering his proposal to require PG&E to shut down power lines during windy weather to prevent tree branches from making contact and sparking wildfires linked to power lines in the region.

 

Related News

View more

Alberta's Rising Electricity Prices

Alberta Last-Resort Power Rate Reform outlines consumer protection against market volatility, price spikes, and wholesale rate swings, promoting fixed-rate plans, price caps, transparency, and stable pricing mechanisms within Alberta's deregulated power market.

 

Key Points

Alberta Last-Resort Power Rate Reform seeks stable, transparent pricing and stronger consumer protections.

✅ Caps or hedges shield bills from wholesale price spikes

✅ Expand fixed-rate options and enrollment nudges

✅ Publish clear, real-time pricing and market risk alerts

 

Alberta’s electricity market is facing growing instability, with rising prices leaving many consumers struggling. The province's rate of last resort, a government-set price for people who haven’t chosen a fixed electricity plan, has become a significant concern. Due to volatile market conditions, this rate has surged, causing financial strain for households. Experts, like energy policy analyst Blake Shaffer, argue that the current market structure needs reform. They suggest creating more stability in pricing, ensuring better protection for consumers against unexpected price spikes, and addressing the flaws that lead to market volatility.

As electricity prices climb, many consumers are feeling the pressure. In Alberta, where energy deregulation is the norm in the electricity market, people without fixed-rate plans are automatically switched to the last-resort rate when their contracts expire. This price is based on fluctuating wholesale market rates, which can spike unexpectedly, leaving consumers vulnerable to sharp price increases. For those on tight budgets, such volatility makes it difficult to predict costs, leading to higher financial stress.

Blake Shaffer, a prominent energy policy expert, has been vocal about the need to address these issues. He has highlighted that while some consumers benefit from fixed-rate plans, with experts urging Albertans to lock in rates when possible, those who cannot afford them or who are unaware of their options often find themselves stuck with the unpredictable last-resort rate. This rate can be substantially higher than what a fixed-plan customer would pay, often due to rapid shifts in energy demand and supply imbalances.

Shaffer suggests that the province’s electricity market needs a restructuring to make it more consumer-friendly and less vulnerable to extreme price hikes. He argues that introducing more transparency in pricing and offering more stable options for consumers through new electricity rules could help. In addition, there could be better incentives for consumers to stay informed about their electricity plans, which would help reduce the number of people unintentionally placed on the last-resort rate.

One potential solution proposed by Shaffer and others is the creation of a more predictable and stable pricing mechanism, though a Calgary electricity retailer has urged the government to scrap an overhaul, where consumers could have access to reasonable rates that aren’t so closely tied to the volatility of the wholesale market. This could involve capping prices or offering government-backed insurance against large price fluctuations, making electricity more affordable for those who are most at risk.

The increasing reliance on market-driven prices has also raised concerns about Alberta’s energy policy changes and overall direction. As a province with a large reliance on oil and gas, Alberta’s energy sector is tightly connected to global energy trends. While this has its benefits, it also means that Alberta’s electricity prices are heavily influenced by factors outside the control of local consumers, such as geopolitical issues or extreme weather events. This makes it hard for residents to predict and plan their energy usage and costs.

For many Albertans, the current state of the electricity market feels precarious. As more people face unexpected price hikes, calls for a market overhaul continue to grow louder across Alberta. Shaffer and others believe that a new framework is necessary—one that balances the interests of consumers, the government, and energy companies, while ensuring that basic energy needs are met without overwhelming households with excessive costs.

In conclusion, Alberta’s last-resort electricity rate system is an increasing burden for many. While some may benefit from fixed-rate plans, others are left exposed to market volatility. Blake Shaffer advocates for reform to create a more stable, transparent, and affordable electricity market, one that could better protect consumers from the high risks associated with deregulated pricing. Addressing these challenges will be crucial in ensuring that energy remains accessible and affordable for all Alberta residents.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.