UI, N.J. utility to generate power

By Knight Ridder Tribune


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
United Illuminating Co. said it is partnering with a New Jersey power producer, and together they aim to spend as much as $700 million building power plants in Connecticut that would generate electricity only during peak winter and summer periods.

The partnership, between UI and NRG Energy, would mark UI's return to generating electricity for the first time since 1999, when state-mandated deregulation forced the company to sell off its power plants. Since then, UI has focused solely on the electric distribution business.

The impetus for this deal is a law the General Assembly passed last session that requires both UI and Connecticut Light & Power Co. of Berlin, Conn., the state's other large distributor of electricity, to submit plans for "peaking units," or generation hat would be used only during peak periods. Other proposals may be submitted as well.

James Torgerson, UI's chief executive officer, said the company decided to partner with NRG because the utility on its own does "not have the resources today to build and operate peaking units." NRG already operates four power plants in the state - in Milford, Middletown, South Norwalk and Montville - that are part of the so-called "Sooty Six," the state's oldest and dirtiest electric generation stations.

Neither UI nor NRG has disclosed where the new generation facilities will be built, although the infrastructure at the four existing NRG plants makes them possible candidates, said David Crane, president and chief executive officer of NRG.

The goal is to have the plants up and running before the start of the summer 2009, he said.

"I think the most cost-efficient thing would be to build them on existing sites (of power plants)," he said. Land owned by both UI and NRG will be considered as sites to build the peaking power plants, which are smaller than power plants that run full time, Torgerson said.

Crane said the peak generation plants will not be built until the state Department of Public Utility Control determines which of the plans submitted offer the best value to ratepayers. The deadline for those plans to be submitted to the DPUC for review s February 1, said Beryl Lyons, a spokeswoman for the state agency. "We will consider the proposals that are submitted and then make a decision by June 1," Lyons said.

CL&P is formulating its own plans to develop peak generation plants, said company spokesman Mitch Gross. He said that, unlike UI, CL&P will not join forces with another utility to develop the plants.

"We have the necessary experience within our organization to do this," Gross said.

Although CL&P does not operate any power plants, several other utilities owned by the company's corporate parent, Northeast Utilities, run generation facilities.

Related News

The Banker Trying to Fix the UK's Electricity Grid

UK power grid bottleneck is stalling renewable energy, with connection queues, planning delays, and transmission infrastructure gaps raising costs, slowing decarbonization, and deterring investment as government considers reforms led by a new chief adviser.

 

Key Points

Delays and capacity gaps that hinder connecting new generation and demand, raising costs and slowing decarbonization.

✅ Connection queues delay projects for years

✅ Planning and NIMBY barriers stall transmission builds

✅ Investment costs on bills risk political pushback

 

During his three decades at investment bank Morgan Stanley, Franck Petitgas developed a reputation for solving problems that vexed others. Fixing the UK’s creaking power grid could be his most challenging task yet.

Earlier this year, Prime Minister Rishi Sunak appointed Petitgas as his chief business adviser, and the former financier has been pushing to tackle the gridlock that’s left projects waiting endlessly for a connection, an issue he sees as one of the biggest problems for industry.

But there are no easy solutions to tackle the years-long queue to get on the grid or the drawn-out planning process for building clean power generation, with the energy transition stalled by supply delays compounding the problem. And sluggish progress in expanding and improving the electricity network is preventing the construction of new housing developments and offices, as well as slowing the transition to greener power.

That transition has already taken a knock after Sunak last week controversially watered down some of the UK’s climate ambitions, citing in part the cost to consumers. He also acknowledged the issues surrounding the grid and promised the “most transformative plans” in response, drawing on lessons from Europe’s power crisis where applicable. Those are due to be unveiled within weeks. 

Shortly after his appointment, Petitgas offered reassurances to business leaders at a meeting in Downing Street that solutions were being worked on, according to people familiar with the matter. But there’s a lack of confidence across business that enough will be done.

Cost is a big factor in the expansion of the electricity grid, and some argue a state-owned generation model could ease bills over time. Improving the onshore network alone could require investment of between £100 billion and £240 billion ($122-$293 billion) by 2050, according to a government analysis last year. 

With network expansion funded through power bills, that’s a big ask, particularly with Sunak trailing in polls ahead of an election expected next year.

“It’s very difficult for politicians to say more money should be on bills,” said Emma Pinchbeck, chief executive of Energy UK, a trade body. “So you get to a situation where no one wants to pay for the infrastructure investment until it’s really sticky, and that’s where we’ve got to with the grid.”

There are huge competitive and economic implications if the UK falls further behind. With US President Joe Biden spending an estimated $370 billion on climate measures through his Inflation Reduction Act, and China already a world leader in electric vehicles, Britain’s grid inaction is holding it back in the global race to decarbonize, said Jess Ralston, an analyst at the Energy and Climate Intelligence Unit think tank.

“The UK is dithering and delaying, and not making any strategic decisions,” she said. “You can see companies just saying ‘I’m going to the US, or I’m going to China’.” 

In a statement, the government said it’s a “priority to speed up the time taken to connect new power generators and power consumers to the grid.” It added that it’s taking “significant steps to accelerate grid infrastructure,” including support for new Channel interconnectors announced this year.

The government expects demand for electricity to double by 2035 and that will mean more generation that needs to be linked up to the network by cables and pylons. Local grids will also have to expand to accommodate more connection points for electric vehicles and homes, and invest in large-scale energy storage capacity to balance supply.

But so far, the rapid rise in renewable energy investment has not been accompanied by matching spend on the power network, according to BloombergNEF, a pattern seen in Germany’s grid expansion woes as well.

“The pace and scale of what we now have to deliver is significantly different from the last few decades,” said Carl Trowell, president of UK strategic infrastructure at National Grid. “It’s a national endeavor.”

In June, Electricity Networks Commissioner Nick Winser sent the government recommendations for how to accelerate construction of more transmission infrastructure. He said efforts to decarbonize the power sector will be “wasted if we cannot get the power to homes and businesses.”

“We need a seriously stronger sense of urgency,” said Kevin O’Donovan, country manager for Statkraft UK, which is holding off investment in four wind farms and two solar projects due to grid connection delays.

In addition to cost, the other major stumbling block is planning. Politicians in the governing Conservative Party are wary of angering voters with new infrastructure in rural areas that typically vote Tory. Across the country, “Not In My Back Yard” campaigners – NIMBYs — pose a major challenge to projects.

Petitgas, 62, retired from Morgan Stanley last year after nearly 30 years at the bank, where he led its international division from London. The issues over connections and planning have been repeatedly pointed out to Petitgas by investors and trade groups over a series of meetings this year, according to people familiar with the matter, requesting anonymity discussing private talks.

Yet with a general election looming and the issue plagued by political headaches, many are skeptical that Sunak can find the solutions needed.

One business chief said Downing Street considers the issue too tricky and expensive to tackle in the short-term. Others are concerned that while Petitgas has license from Sunak, he doesn’t have influence across the relevant departments to get grids to the top of the agenda.

 

Wind Farms

Multiple parts of the UK’s climate plans are under pressure. Earlier this month, an auction for contracts to build new wind farms received zero bids from developers, even as wind leads the power mix in many regions, marking yet another green setback. 

The UK is already behind on its target of having 50 gigawatts of offshore wind built by 2030, up from 14 GW today. The challenge is accelerating development without railroading local communities.

Within Sunak’s Conservative Party, some lawmakers are pushing back on new infrastructure in their local areas. A group including Environment Secretary Therese Coffey and former Home Secretary Priti Patel is campaigning against building new pylons across a stretch of eastern England.

According to Adam Bell, director of policy at consultancy Stonehaven, backbench pressure means Sunak is unlikely to take major action on the grid in the near term. He doesn’t see the prime minister accepting Winser’s recommendations, least of all accelerating planning decisions.

“Over the last year, Sunak has favored party management over things that will benefit the country,” Bell said. 

 

Related News

View more

Ontario Sets Electricity Rates at Off-Peak Price until February 7

Ontario Off-Peak Electricity Rate offers 8.2 cents per kWh for 24 hours, supporting Time-of-Use and Tiered Regulated Price Plan customers, including residential, small business, and farms, under Ontario Energy Board guidelines during temporary relief.

 

Key Points

A temporary 8.2 cents per kWh all-day price for RPP customers, covering TOU and Tiered users across Ontario.

✅ Applies 24 hours daily at 8.2 cents per kWh for 21 days

✅ Covers residential, small business, and farm RPP customers

✅ Valid for TOU and Tiered plans set by the Ontario Energy Board

 

 The Ontario government has announced electricity relief with electricity prices set at the off-peak price of 8.2 cents per kilowatt-hour, 24 hours per day for 21 days starting January 18, 2022, until the end of day February 7, 2022, for all Regulated Price Plan customers. The off-peak rate will apply automatically to residential, small businesses and farms who pay Time-of-Use or Tiered prices set by the Ontario Energy Board.

This rate relief includes extended off-peak rates to support small businesses, as well as workers and families spending more time at home while the province is in Modified Step Two of the Roadmap to Reopen.

As part of our mandate, we set the rates that your utility charges for the electricity you use in your home or small business. These rates appear on the Electricity line of your bill, and we administer protections such as disconnection moratoriums for residential customers. We also set the Delivery rates that cover the cost to deliver electricity to most residential and small business customers.

 

Types of electricity rates

For residential and small business customers that buy electricity from their utility, there are two different types of rates (also called prices here), and Ontario also provides stable electricity pricing for larger users. The Ontario Energy Board sets both once a year on November 1:

Time-of-Use (TOU)

With TOU prices, the price depends on when you use electricity, including options like ultra-low overnight pricing that encourage off-peak use.

There are three TOU price periods:

  • Off-peak, when demand for electricity is lowest and new offerings like the Ultra-Low Overnight plan can encourage shifting usage. Ontario households use most of their electricity – nearly two thirds of it – during off-peak hours.
  • Mid-peak, when demand for electricity is moderate. These periods are during the daytime, but not the busiest times of day, and utilities like BC Hydro are exploring similar TOU structures as well.
  • On-peak, when demand for electricity is generally higher. These are the busier times of day – generally when people are cooking, starting up their computers and running heaters or air conditioners.

 

Related News

View more

Electricity Prices in France Turn Negative

Negative Electricity Prices in France signal oversupply from wind and solar, stressing the wholesale market and grid. Better storage, demand response, and interconnections help balance renewables and stabilize prices today.

 

Key Points

They occur when renewable output exceeds demand, pushing power prices below zero as excess energy strains the grid.

✅ Driven by wind and solar surges with low demand

✅ Challenges thermal plants; erodes margins at negative prices

✅ Needs storage, demand response, and cross-border interties

 

France has recently experienced an unusual and unprecedented situation in its electricity market: negative electricity prices. This development, driven by a significant influx of renewable energy sources, highlights the evolving dynamics of energy markets as countries increasingly rely on clean energy technologies. The phenomenon of negative pricing reflects both the opportunities and renewable curtailment challenges associated with the integration of renewable energy into national grids.

Negative electricity prices occur when the supply of electricity exceeds demand to such an extent that producers are willing to pay consumers to take the excess energy off their hands. This situation typically arises during periods of high renewable energy generation coupled with low energy demand. In France, this has been driven primarily by a surge in wind and solar power production, which has overwhelmed the grid and created an oversupply of electricity.

The recent surge in renewable energy generation can be attributed to a combination of favorable weather conditions and increased capacity from new renewable energy installations. France has been investing heavily in wind and solar energy as part of its commitment to reducing greenhouse gas emissions and transitioning towards a more sustainable energy system, in line with renewables surpassing fossil fuels in Europe in recent years. While these investments are essential for achieving long-term climate goals, they have also led to challenges in managing energy supply and demand in the short term.

One of the key factors contributing to the negative prices is the variability of renewable energy sources. Wind and solar power are intermittent by nature, meaning their output can fluctuate significantly depending on weather conditions, with solar reshaping price patterns in Northern Europe as deployment grows. During times of high wind or intense sunshine, the electricity generated can far exceed the immediate demand, leading to an oversupply. When the grid is unable to store or export this excess energy, prices can drop below zero as producers seek to offload the surplus.

The impact of negative prices on the energy market is multifaceted. For consumers, negative prices can lead to lower energy costs as wholesale electricity prices fall during oversupply, and even potential credits or payments from energy providers. This can be a welcome relief for households and businesses facing high energy bills. However, negative prices can also create financial challenges for energy producers, particularly those relying on conventional power generation methods. Fossil fuel and nuclear power plants, which have higher operating costs, may struggle to compete when prices are negative, potentially affecting their profitability and operational stability.

The phenomenon also underscores the need for enhanced energy storage and grid management solutions. Excess energy generated from renewable sources needs to be stored or redirected to maintain grid stability and avoid negative pricing situations. Advances in battery storage technology, such as France's largest battery storage platform, and improvements in grid infrastructure are essential to addressing these challenges and optimizing the integration of renewable energy into the grid. By developing more efficient storage solutions and expanding grid capacity, France can better manage fluctuations in renewable energy production and reduce the likelihood of negative prices.

France's experience with negative electricity prices is part of a broader trend observed in other countries with high levels of renewable energy penetration. Similar situations have occurred in Germany, where solar plus storage is now cheaper than conventional power, the United States, and other regions where renewable energy capacity is rapidly expanding. These instances highlight the growing pains associated with transitioning to a cleaner energy system and the need for innovative solutions to balance supply and demand.

The French government and energy regulators are closely monitoring the situation and exploring measures to mitigate the impact of negative prices. Policy adjustments, market reforms, and investments in energy infrastructure are all potential strategies to address the challenges posed by high renewable energy generation. Additionally, encouraging the development of flexible demand response programs and enhancing grid interconnections with neighboring countries can help manage excess energy and stabilize prices.

In the long term, the rise of renewable energy and the occurrence of negative prices represent a positive development for the energy transition. They indicate progress towards cleaner energy sources and a more sustainable energy system. However, managing the associated challenges is crucial for ensuring that the transition is smooth and economically viable for all stakeholders involved.

In conclusion, the recent instance of negative electricity prices in France highlights the complexities of integrating renewable energy into the national grid. While the phenomenon reflects the success of France’s efforts to expand its renewable energy capacity, it also underscores the need for advanced grid management and storage solutions. As the country continues to navigate the transition to a more sustainable energy system, addressing these challenges will be essential for maintaining a stable and efficient energy market. The experience serves as a valuable lesson for other nations undergoing similar transitions and reinforces the importance of innovation and adaptability in the evolving energy landscape.

 

Related News

View more

NL Consumer Advocate says 18% electricity rate hike 'unacceptable'

Newfoundland and Labrador electricity rate hike examines a proposed 18.6% increase under the PUB's Rate Stabilization Plan, driven by oil prices at Holyrood, with Consumer Advocate concerns over rate shock and use of RSP balances.

 

Key Points

A proposed 18.6% July 2017 increase under the RSP, driven by oil prices, now under PUB review for potential mitigation.

✅ PUB flags potential rate shock from proposed adjustment

✅ RSP balances cited to offset increases without depleting fund

✅ Oil-fired Holyrood volatility drives fuel cost uncertainty

 

How much of a rate hike is reasonable for users of electricity in Newfoundland and Labrador?

That's a question before the Public Utilities Board (PUB) as it examines an application by Newfoundland and Labrador Hydro, which could see consumers pay up to 18.6 per cent more as of July 1, reflecting regional pressures seen in Nova Scotia, where regulators approved a 14% rate hike earlier this year.

"The estimated rate increase for July 2017 is such a significant increase that it may be argued that it would cause rate shock," said the PUB, asking the company to revise its application.

NL Hydro said the price adjustment is part of what happens every year through the Rate Stabilization Plan (RSP), which is used to offset the ups and downs of oil prices.

"The cost of fuel is volatile and as long as we rely on oil-fired generation at Holyrood, customers will continue to be impacted by this electricity price uncertainty," said the company in a statement to CBC News.

It noted that customers received a break from RSP adjustments in 2015 and 2016, even as costs from the Muskrat Falls project begin to be reflected.

The PUB noted that under the rate stabilization plan, prices have gone up or down by about 10 per cent in the past.

The regulatory board said the impact of the latest request would be a 27.6 per cent hike to Newfoundland Power, with "an estimated average end customer impact of 18.6 per cent."

Hydro's estimates are based on an average price for oil of $81.40 per barrel from July 2017 to June 2018, according to the PUB.

 

'Unacceptable' burden: Consumer Advocate

"To burden ratepayers with an 18 per cent rate increase is unacceptable," said Consumer Advocate Dennis Browne, echoing pushback in Nova Scotia, where the premier urged regulators to reject a 14% hike at the time.

Browne is arguing that there is money in the RSP to reduce the proposed increase, including the possibility of a lump-sum bill credit for customers.

"These ratepayer balances — which, according to NL Power, totals $77.4 million — are not the property of Hydro," he wrote in a letter to the PUB.

"No utility has the right to squirrel away ratepayers' money to be used by that utility for some future purpose. The Board has jurisdiction over those balances," Browne said.

Browne also wants the RSP overhauled so that it can be applied to price fluctuations every quarter, as opposed to annually.

Hydro has expressed concern that depleting the rate stabilization fund would lead to other, more significant, rate increases in the future.

It said several alternatives to mitigate high rates have been provided to the PUB, which has final say, similar to how Manitoba Hydro scaled back a planned increase in the next year.

 

Related News

View more

EasyPower Webinars - August and September Schedule

EasyPower Webinars deliver expert training on electrical power systems, covering arc flash, harmonics, grounding, overcurrent coordination, NEC and IEEE 1584 updates, with on-demand videos and email certificates for continuing education credits.

 

Key Points

EasyPower Webinars are expert-led power systems trainings with CE credit details and on-demand access.

✅ Arc flash, harmonics, and grounding fundamentals with live demos

✅ NEC 2020 and IEEE 1584 updates for compliance and safety

✅ CE credits with post-webinar email documentation

 

We've ramped up webinars to help your learning while you might be working from home, and similar live online fire alarm training options are widely available. As usual, you will receive an email the day after the webinar which will include the details most states need for you to earn continuing education credit, amid a broader grid warning during the pandemic from regulators.

EasyPower's well known webinar series covers a variety of topics regarding electrical power systems. Below you will see our webinars scheduled through the next few months, reflecting ongoing sector investments in the future of work across the electricity industry.

In addition, there are more than 150 videos that were recorded from past webinars in our EasyPower Video Library. The topics of these videos include arc flash training, short circuit, protective device coordination, power flow, harmonics, DC systems, grounding, and many others.

 

AUGUST WEBINARS

 

Active & Passive Harmonic Filters in EasyPower

By Tao Yang, Ph.D, PE, at EasyPower

In this webinar, Tao Yang, Ph.D, PE, from EasyPower provides a refresher course on fundamental concepts of harmonics study and the EasyPower Harmonics module. He describes the two major harmonics filters, both active and passive, and their implementation in the EasyPower Harmonics module. As passive filters are widely used in the industry, he covers four kinds of typical passive filters: notch, first order, second order, and C-type filters, including their implementation in EasyPower and their tuning processes. He uses live examples to demonstrate the modeling and parameter tuning for both active and passive filters using simple EasyPower cases.

Date: Thursday, August 13, 2020
Time: 10:00 AM - 11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/1359680676441129997

 

Cracking the Code for Arc-Flash Mitigation

By Mark Pollock at Littelfuse

The National Electrical Code (NEC) outlines several arc-flash mitigation options, aligning with broader arc flash training insights across the industry. This presentation, given by Mark Pollock at Littelfuse, reviews the arc-flash mitigation options from the NEC 2020, and some updates to the IEEE 1584-2018 standard. In addition to understanding the codes, we’ll discuss the return on investment for the various mitigation options and the importance of arc-flash assessments in your facility. 

Date: Thursday, August 20, 2020
Time: 10:00 AM - 11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/107117029724512527

 

Ground Fault Coordination in EasyPower

By Jim Chastain, Support Engineer at EasyPower

The PowerProtector™ module in EasyPower simplifies the process of coordinating protective devices. In this refresher webinar, Jim Chastain demonstrates the procedure to coordinate ground fault protection for both resistance-grounded and hard-grounded systems.

Date: Tuesday, August 25, 2020
Time: 8:00 AM - 8:30 AM Pacific
Register: https://attendee.gotowebinar.com/register/561389055546364429

 

SEPTEMBER WEBINARS

 

Overcurrent Coordination and Protection Basics

By James Onsager and Namrata Asarpota at S&C Electric

Coordination of overcurrent protective devices is necessary to limit interruptions to the smallest portion of the power system in the event of an overload or short-circuit. This webinar, given by James Onsager and Namrata Asarpota at S&C Electric, goes over the basics of Time Current Curves (TCCs), types of overcurrent protective devices (for both low-voltage and medium-voltage systems), and how to coordinate between them. Protection of common types of equipment such as transformers, cables and motors according the National Electrical Code (NFPA 70, NEC) is also discussed, alongside related fire alarm training online resources available to practitioners. 

Date: Thursday, September 3, 2020
Time: 10:00 AM -11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/6345420550218629133

 

Static Discharge Awareness and Explosion Protection

By Christopher Coughlan at Newson Gale, a Hoerbiger Safety Solutions Company

For any person responsible for the safety of employees, colleagues, plant equipment and plant property, one of the most potentially confusing aspects of providing a safe operating environment is understanding and safeguarding again static discharge, with industry leadership in worker safety highlighting best practices. In this webinar given by Christopher Coughlan at Newson Gale, a Hoerbiger Safety Solutions Company, he discusses how to determine if your site’s manufacturing or handling processes have the potential to discharge static sparks into flammable or combustible atmospheres. 

Date: Thursday, September 17, 2020
Time: 10:00 AM -11:00 AM Pacific
Register: https://attendee.gotowebinar.com/register/7225333317600833296

 

XGSLab New Feature - Seasonal Analysis For Grounding Systems

By David Lewis, P.E, Electrical Engineer, Grounding and Power Systems at EasyPower

In regions where the frost depth meets or exceeds the depth of a grounding system, the grounding system’s performance may be dramatically reduced, possibly creating hazardous conditions. The latest XGSLab release 9.5 provides a powerful new tool to analyze grounding system performance that considers the seasonal variation in soil characteristics. In this webinar, given by David Lewis, an electrical engineer at EasyPower, we describe the effect that seasonal variation can have on a grounding system and we step you through the use of the Seasonal Analysis tool. 

Date: Tuesday, September 25, 2020
Time: 8:00 AM -8:30 AM Pacific
Register: https://attendee.gotowebinar.com/register/6805488101896212751

 

Related News

View more

Pickering NGS life extensions steer Ontario towards zero carbon horizon

OPG Pickering Nuclear Refurbishment extends four CANDU reactors to bolster Ontario clean energy, grid reliability, and decarbonization goals, leveraging Darlington lessons, mature supply chains, and AtkinsRealis OEM expertise for cost effective life extension.

 

Key Points

Modernizing four Pickering CANDU units to extend life, add clean power, and enhance Ontario grid reliability.

✅ Extends four 515 MW CANDU reactors by 30 years

✅ Supports clean, reliable baseload and decarbonization

✅ Leverages Darlington playbook and AtkinsRealis OEM supply chain

 

In a pivotal shift last month, Ontario Power Generation (OPG) revised its strategy for the Pickering Nuclear Power Station, scrapping plans to decommission its six remaining reactors. Instead, OPG has opted to modernize four reactors (Pickering B Units 5-8) starting in 2027, while Units 1 and 4 are slated for closure by the end of the current year.

This revision ensures the continued operation of the four 515 MW Canada Deuterium Uranium (CANDU) reactors—originally constructed in the 1970s and 1980s—extending their service life by at least 30 more years amid an extension request deadline for Pickering.

Todd Smith, Ontario's Energy Minister, underscored the significance of nuclear power in maintaining Ontario's status as a region with one of the cleanest and most reliable electricity grids globally. He emphasized the integral role of nuclear facilities, particularly the Pickering station, in the provincial energy strategy during the announcement supporting continued operations, which was made in the presence of union workers at the plant.

The Pickering station has demonstrated remarkable efficiency and reliability, notably achieving its second-highest output in 2023 and setting a record in 2022 for continuous operation. Extending the lifespan of nuclear plants like Pickering is deemed the most cost-effective method for sustaining low-carbon electricity, according to research conducted by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) across 243 plants in 24 countries.

The refurbishment project is poised to significantly boost Ontario's economy, projected to add CAN$19.4 billion to the GDP over 11 years and generate approximately 11,000 jobs annually. The Independent Electricity System Operator (IESO) has indicated that to meet the province's future electrification and decarbonization goals, as it faces a growing electricity supply gap, Ontario will need to double its nuclear capacity by 2050, requiring an addition of 17.8 GW of nuclear power.

Subo Sinnathamby, OPG's Senior Vice President of Nuclear Refurbishment, emphasized the necessity of nuclear energy in reducing reliance on natural gas. Sinnathamby, who is leading the refurbishment efforts at OPG's Darlington nuclear power station, where SMR plans are also underway, highlighted the positive impact of the Darlington and Bruce Power projects on the nuclear power supply chain and workforce.

The procurement strategy employed for Darlington, which involved placing orders early to ensure readiness among suppliers, is set to be replicated for the Pickering refurbishment. This approach aims to facilitate a seamless transition of skilled workers and resources from Darlington to Pickering refurbishment, leveraging a matured supply chain and experienced vendors.

AtkinsRealis, the original equipment manufacturer (OEM) for CANDU reactors, has a track record of successfully refurbishing CANDU plants worldwide. The CANDU reactor design, known for its refurbishment capabilities, allows for individual replacement of pressure tubes and access to fuel channels without decommissioning the reactor. Gary Rose, Executive Vice-President of Nuclear at AtkinsRealis, highlighted the economic benefits and environmental benefits of refurbishing reactors, stating it as a viable and swift solution to maximize fossil-free energy.

Looking forward, AtkinsRealis is exploring the potential for multiple refurbishments of CANDU reactors, which could extend their operational life beyond 100 years, addressing local energy needs and economic factors in the decision-making process. This innovative approach underscores the role of nuclear refurbishment in meeting global energy demands sustainably and economically.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified