A cascade of plug-in efficiencies

By New York Times


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
With the first big wave of modern electric cars due to arrive in the next few years, the battle to attract manufacturing plants is heating up.

Reva, an Indian maker of electric cars, announced that it planned to open an assembly plant in Upstate New York to build a three-door plug-in hatchback called the NXR, in partnership with a local company.

New York officials welcomed the decision as a recognition of the stateÂ’s emerging battery-technology cluster and manufacturing skill.

“I believe the competition was between New York State and Michigan, and we won,” Senator Charles E. Schumer, Democrat of New York, said in a telephone interview.

More plant announcements are expected soon in the United States.

Fisker Automotive, a California-based startup that is making the first of its high-end plug-ins in Finland, could name the site for a planned American plant soon. Tesla, maker of the Roadster, a stylish and expensive plug-in, may soon announce where in Southern California it will locate the factory for its next car, the Model S.

Tesla already does final assembly for the Roadsters — almost 900 of which are already being driven in the United States — in Menlo Park, California.

As with conventionally powered vehicles, manufacturers give priority to locations that are close to their consumers.

Jeffrey Leonard, a board member of Reva who lives in the Washington area, said in a telephone interview that Reva’s board had understood from the beginning that “if you’re going to really sell and distribute this car in a big way in the U.S., you should have a production facility here,” for logistical and political reasons.

Conventional automakers — most of which are racing to produce their own electric cars — are retooling existing plants to make the new vehicles. Here again, the preference goes to plants close to where the cars will be sold.

“As a matter of practice, we try to manufacture vehicles in the markets where they will be marketed,” Fred Standish, a spokesman for Nissan North America, said in an e-mail message. Nissan will begin making its electric car, the Leaf, at an existing facility in Oppama, Japan, next year. It will be sold in the United States and Japan, beginning late in 2010, Mr. Standish said. Starting in late 2012, the Leaf will be made in Tennessee as well as in Japan, he said.

Manufacturing vehicles near their ultimate markets, Mr. Standish said, has benefits that include “reduced exposure to foreign exchange fluctuations, elimination of import taxes, elimination of transoceanic transportation costs and reduction of delivery time.”

Unsurprisingly, Asia hopes to grab a healthy share of electric car facilities. China is home to BYD, a carmaker in which Warren BuffettÂ’s MidAmerican Energy Holdings has a stake, as well as the Tianjin-Qingyuan Electric Vehicle Co. In both cases, however, efforts to increase production of all-electric vehicles have encountered some delays, according to my colleague, Keith Bradsher, who is based in Hong Kong. As for India, there has been little ostensible activity as yet apart from that of Reva, which has facilities in Bangalore.

“There have been some attempts to make electric scooters and rickshaws by various people, but nothing has really taken off,” my Mumbai-based colleague, Vikas Bajaj, wrote in an e-mail message.

Experts stress that the types of vehicles produced vary by location to accommodate consumersÂ’ needs. (This is of course already true for gasoline-powered cars.)

For Reva to sell effectively in the United States, “You need to tailor the car to the U.S. driver,” Mr. Leonard said. He pointed out that American drivers behaved quite differently from those in India or in compact European cities, where Reva cars are currently driven.

David Vieau, the president and chief executive of A123 Systems, a maker of lithium-ion batteries that went public last month, noted that the desired range for electric vehicles could vary substantially from country to country.

“For example, in developing countries with no history of widespread car ownership, people may be more open to electric vehicles because there is no preconceived notion of what a vehicle should do.

“Therefore, a more limited range might be perfectly acceptable, for example, to a Chinese consumer who has never owned an internal combustion vehicle,” Mr. Vieau said in an e-mail message.

On the other hand, he said, a driver in Japan, Europe, or North America might expect a range of 300 miles, or 480 kilometers, “and the electric-vehicle adoption rate might be affected due to expectations of what the vehicle should do.”

The supply chain for electric vehicles will also have some differences, experts said, from that of their conventionally powered counterparts. The most obvious variation is batteries, the technology that is crucial to getting the electric car right.

According to Mr. Vieau, Asia makes more than 90 percent of lithium-ion batteries, the type of battery that is considered most promising in the near term for electric cars. But the United States is also aggressively seeking to attract battery manufacturers. A123, for example, manufactures in China and South Korea but is also expanding production in the United States.

As for the electric drivetrain, it “uses fewer moving parts and thus may result in a more consolidated supply chain” than that of a conventionally powered vehicle, Mr. Vieau said. He added, however, that the rest of the electric vehicle would be substantially similar to a conventional one.

But with the dawn of electric vehicles, components manufacturers may find reason to focus anew on using energy more efficiently.

“There may be an advantage,” Mr. Vieau said, “for suppliers that can innovate and develop more energy-efficient products, as energy usage historically has not been a prime design driver.”

“Since electricity is used to drive an electric vehicle,” he explained, “any power-hungry components such as radios, windshield wipers and lighting all reduce the electric vehicle range.”

To improve the all-important range, in other words, new efficiencies may be in order.

Related News

How ‘Virtual Power Plants’ Will Change The Future Of Electricity

Virtual Power Plants orchestrate distributed energy resources like rooftop solar, home batteries, and EVs to deliver grid services, demand response, peak shaving, and resilience, lowering costs while enhancing reliability across wholesale markets and local networks.

 

Key Points

Virtual Power Plants aggregate solar and batteries to provide grid services, cut peak costs, and boost reliability.

✅ Aggregates DERs via cloud to bid into wholesale markets

✅ Reduces peak demand, defers costly grid upgrades

✅ Enhances resilience vs outages, cyber risks, and wildfires

 

If “virtual” meetings can allow companies to gather without anyone being in the office, then remotely distributed solar panels and batteries can harness energy and act as “virtual power plants.” It is simply the orchestration of millions of dispersed assets within a smarter electricity infrastructure to manage the supply of electricity — power that can be redirected back to the grid and distributed to homes and businesses. 

The ultimate goal is to revamp the energy landscape, making it cleaner and more reliable. By using onsite generation such as rooftop solar and smart solar inverters in combination with battery storage, those services can reduce the network’s overall cost by deferring expensive infrastructure upgrades and by reducing the need to purchase cost-prohibitive peak power. 

“We expect virtual power plants, including aggregated home solar and batteries, to become more common and more impactful for energy consumers throughout the country in the coming years,” says Michael Sachdev, chief product officer for Sunrun Inc., a rooftop solar company, in an interview. “The growth of home solar and batteries will be most apparent in places where households have an immediate need for backup power, as they do in California, where grid reliability pressures have led utilities to turn off the electricity to reduce wildfire risk.”

Most Popular In: Energy

How Extremophile Bacteria Living In Nuclear Reactors Might Help Us Make Vaccines
Apple, Ford, McDonald’s, Microsoft Among This Summer’s Climate Leaders
What’s Next For Oil And Gas?
Home battery adoption, such as Tesla Powerwall systems, is becoming commonplace in Hawaii and in New England, he adds, because those distributed assets are improving the efficiency of the electrical network. It is a trend that is reshaping the country’s energy generation and delivery system by relying more on clean onsite generation and less on fossil fuels.

Sunrun has recently formed a business partnership with AutoGrid, which will manage Sunrun’s fleet of rechargeable batteries. It is a cloud-based system that allows Sunrun to work with utilities to dispatch its “storage fleet” to optimize the economic results. AutoGrid compiles the data and makes AI-driven forecasts that enable it to pinpoint potential trouble spots. 

But a distributed energy system, or a virtual power plant, would have 200,000 subsystems. Or, 200,000 5 kilowatt batteries would be the equivalent of one power plant that has a capacity of 1,000 megawatts. 

“A virtual power plant acts as a generator,” says Amit Narayan, chief executive officer of AutoGrid, in an interview. “It is one of the top five innovations of the decade. If you look at Sunrun, 60% of every solar system it sells in the Bay Area is getting attached to a battery. The value proposition comes when you can aggregate these batteries and market them as a generation unit. The pool of individual assets may improve over time. But when you add these up, it is better than a large-scale plant. It is like going from mainframe computers to laptops.”

The AutoGrid executive goes on to say that centralized systems are less reliable than distributed resources. While one battery could falter, 200,000 of them that operate from remote locations will prove to be more durable — able to withstand cyber attacks and wildfires. Sunrun’s Sachdev adds that the ability to store energy in batteries, as seen in California’s expanding grid-scale battery use supporting reliability, and to move it to the grid on demand creates value not just for homes and businesses but also for the network as a whole.

The good news is that the trend worldwide is to make it easier for smaller distributed assets, including energy storage for microgrids that support local resilience, to get the same regulatory treatment as power plants. System operators have been obligated to call up those power supplies that are the most cost-effective and that can be easily dispatched. But now regulators are giving virtual power plants comprised of solar and batteries the same treatment. 

In the United States, for example, the Federal Energy Regulatory Commission issued an order in 2018 that allows storage resources to participate in wholesale markets — where electricity is bought directly from generators before selling that power to homes and businesses. Under the ruling, virtual power plants are paid the same as traditional power suppliers. A federal appeals court this month upheld the commission’s order, saying that it had the right to ensure “technological advances in energy storage are fully realized in the marketplace.” 

“In the past, we have used back-up generators,” notes AutoGrid’s Narayan. “As we move toward more automation, we are opening up the market to small assets such as battery storage and electric vehicles. As we deploy more of these assets, there will be increasing opportunities for virtual power plants.” 

Virtual power plants have the potential to change the energy horizon by harnessing locally-produced solar power and redistributing that to where it is most needed — all facilitated by cloud-based software that has a full panoramic view. At the same time, those smaller distributed assets can add more reliability and give consumers greater peace-of-mind — a dynamic that does, indeed, beef-up America’s generation and delivery network.

 

Related News

View more

27,000 Plus More Clean Energy Jobs Lost in May

U.S. Clean Energy Job Losses highlight COVID-19 impacts on renewable energy, solar, wind, and energy efficiency, with PPP fatigue, unemployment, and calls for Congressional stimulus, per Department of Labor data analyzed by E2.

 

Key Points

Pandemic-driven layoffs across renewable, solar, wind, and efficiency sectors, risking recovery without federal aid.

✅ Over 620,500 clean energy jobs lost in three months

✅ Energy efficiency, solar, and wind hit hardest nationwide

✅ Industry urges Congress for stimulus, tax credit relief

 

As Congress this week begins debating economic stimulus support for the energy industry, a new analysis of unemployment data shows the biggest part of America's energy economy - clean energy - lost another 27,000 jobs in May, bringing the total number of clean energy workers who have lost their jobs in the past three months to more than 620,500.

While May saw an improvement in new unemployment claims over March and April, the findings represent the sector's third straight month of significant job losses across solar, wind, energy efficiency, clean vehicles and other industries. With coronavirus cases once again rising in many states and companies beginning to run out of the Payroll Protection Program (PPP) funding that has helped small businesses keep workers employed, and as households confront pandemic power shut-offs that heighten energy insecurity, the report increases concerns the sector will be unable to resume its economy-leading jobs growth in the short- or long-term without a significant policy response.

Given the size and scope of the clean energy industry, such a sustained loss would cast a pall on the nation's overall economic recovery, as shifting electricity demand during COVID-19 complicates forecasts, according to the analysis of the Department of Labor's May unemployment data from E2 (Environmental Entrepreneurs), E4TheFuture and the American Council on Renewable Energy (ACORE).

Prior to COVID-19, clean energy - including energy efficiency, solar and wind generation, clean vehicles and related sectors - was among the U.S. economy's biggest and fastest-growing employment sectors, growing 10.4% since 2015 to nearly 3.4 million jobs at the end of 2019. That made clean energy by far the biggest employer of workers in all energy occupations, employing nearly three times as many people as the fossil fuel industry. For comparison, coal mining employs about 47,000 workers, even as clean energy projects in coal communities aim to revitalize local economies.

The latest monthly analysis for the groups by BW Research Partnership runs contrary to recent Bureau of Labor Statistics (BLS) reports, which indicated that a more robust economic rebound was underway, even as high fuel prices haven't spurred a green shift in adoption, while also acknowledging misclassifications and serious reporting difficulties in its own data.

Bob Keefe, Executive Director at E2, said:

"May's almost 30,000 clean energy jobs loss is sadly an improvement in the rate of jobs shed but make no mistake: There remains huge uncertainty and volatility ahead. It will be very tough for clean energy to make up these continuing job losses without support from Congress. Lawmakers must act now. If they do, we can get hundreds of thousands of these workers back on the job today and build a better, cleaner, more equitable economy for tomorrow. And who doesn't want that?"

Pat Stanton, Policy Director at E4TheFuture, said:

"Most of the time, energy efficiency workers need to go inside homes, businesses and other buildings to get the job done. Since they couldn't do that during COVID lockdowns, they couldn't work. Now states are opening up. But utilities, contractors and building owners need to protect employees and occupants from possible exposure to the virus and need more clarity about potential liabilities."

Gregory Wetstone, President and CEO of ACORE, said:

"In May, we saw thousands of additional renewable energy workers join the ranks of the unemployed, further underscoring the damage COVID-19 is inflicting on our workforce. Since the pandemic began, nearly 100,000 renewable energy workers have lost their jobs. We need help from Congress to get American clean energy workers back to work. With commonsense measures like temporary refundability and a delay in the phasedown of renewable energy tax credits, Congress can help restore these good-paying jobs so the renewable sector can continue to provide the affordable, pollution-free power American consumers and businesses want and deserve."

Phil Jordan, Vice President and Principal at BW Research Partnership, said:

"We understand the challenges and limitations of data collection for BLS in the middle of a global pandemic. But any suggestion that a strong employment rebound is underway in the United States simply is not reflected in the clean energy sector right now. And with PPP expiring, that only increases uncertainty in the months ahead."

The report comes as both the Senate Committee on Energy and Natural Resources and the House Energy and Commerce Committee are considering clean energy stimulus to restart the U.S. economy, and amid assessments of mixed results from the climate law shaping expectations, and as lawmakers in both the House and Senate are increasing calls for supporting clean energy workers and businesses, including this bicameral letter signed by 57 members of Congress and another signed today by 180 House members.

Industries Hit Hardest

According to the analysis, energy efficiency lost more jobs than any other clean energy sector for the third consecutive month in May, shedding about 18,900 jobs. These workers include electricians, HVAC technicians who work with high-efficiency systems, and manufacturing employees who make Energy Star appliances, LED lighting systems and efficient building materials.

Renewable energy, including solar and wind, lost nearly 4,300 jobs in May.

Clean grid and storage and clean vehicles manufacturing -- including grid modernization, energy storage, car charging and electric and plug-in hybrid vehicle manufacturing -- lost a combined 3,200 jobs in May, as energy crisis impacts electricity, gas, and EVs in several ways.

The clean fuels sector lost more than 650 jobs in May.

States and Localities Hit Across Country

California continues to be the hardest hit state in terms of total job losses, losing 4,313 jobs in May and more than 109,700 since the COVID-19 crisis began. Florida was the second hardest hit state in May, losing an additional 2,563 clean energy jobs, while Georgia, Texas, Washington, and Michigan all suffered more than 1,000 job losses across the sector. An additional 12 states saw at least 500 clean energy unemployment filings, and reports like Pennsylvania's clean energy jobs analysis provide added context, according to the latest analysis.

For a full breakdown of clean energy job losses in each state, along with a list of the hardest hit counties and metro areas, see the full analysis here.

 

Related News

View more

TC Energy confirms Ontario pumped storage project is advancing

Ontario Pumped Storage advances as Ontario's largest energy storage project, delivering clean electricity, long-duration capacity, and grid reliability for peak demand, led by TC Energy and Saugeen Ojibway Nation, with IESO review underway.

 

Key Points

A long-duration storage project in Meaford storing clean power for peak demand, supporting Ontario's emission-free grid.

✅ Stores clean electricity to power 1M homes for 11 hours

✅ Partnership: TC Energy and Saugeen Ojibway Nation

✅ Pending IESO review and OEB regulation decisions

 

In a bid to accelerate the province's ambitions for clean economic growth, TC Energy Corporation has announced significant progress in the development of the Ontario Pumped Storage Project. The Government of Ontario in Canada has unveiled a plan to address growing energy needs as a sustainable road map aimed at achieving an emission-free electricity sector, and as part of this plan, the Ministry of Energy is set to undertake a final evaluation of the proposed Ontario Pumped Storage Project. A decision is expected to be reached by the end of the year.

Ontario Pumped Storage is a collaborative effort between TC Energy and the Saugeen Ojibway Nation. The project is designed to be Ontario's largest energy storage initiative, capable of storing clean electricity to power one million homes for 11 hours. As the province strives to transition to a cleaner electricity grid by embracing clean power across sectors, long duration storage solutions like Ontario Pumped Storage will play a pivotal role in providing reliable, emission-free power during peak demand periods.

The success of the Project hinges on the approval of TC Energy's board of directors and a fruitful partnership agreement with the Saugeen Ojibway Nation. TC Energy is aiming for a final investment decision in 2024, as Ontario confronts an electricity shortfall in the coming years, with the anticipated in-service date being in the early 2030s, pending regulatory and corporate approvals.

“Ontario Pumped Storage will be a critical component of Ontario’s growing clean economy and will deliver significant benefits and savings to consumers,” said Corey Hessen, Executive Vice-President and President, TC Energy, Power and Energy Solutions. “Ontario continues to attract major investments that will have large power needs — many of which are seeking zero-emission energy before they invest. We are pleased the government is advancing efforts to recognize the significant role that long duration storage plays — firming resources, including new gas plants under provincial consideration, will become increasingly valuable in supporting a future emission-free electricity system.” 

The Municipality of Meaford also expressed its support for the project, recognizing the positive impact it could have on the local economy and the overall electricity system of Ontario. Additionally, various stakeholders, including LiUNA OPDC, LiUNA Local 183, and the Ontario Chamber of Commerce, lauded the potential for job creation, training opportunities, and resilient energy infrastructure as Ontario seeks new wind and solar power to ease a coming electricity supply crunch.

The timeline for Ontario Pumped Storage's progress includes a final analysis by the Independent Electricity System Operator (IESO) to confirm its role in Ontario's electricity system and in balancing demand and emissions during the transition, to be completed by 30 September 2023. Concurrently, the Ministry of Energy will engage in consultations on the potential regulation of the Project via the Ontario Energy Board, while debates over clean, affordable electricity intensify ahead of the Ontario election, with a final determination scheduled for 30 November 2023.

 

Related News

View more

Court quashes government cancellation of wind farm near Cornwall

Nation Rise Wind Farm Ruling overturns Ontario cancellation, as Superior Court finds the minister's decision unreasonable; EDP Renewables restarts 100-megawatt project near Cornwall, citing jobs, clean energy, and procedural fairness over bat habitat concerns.

 

Key Points

Ontario court quashes cancellation, letting EDP Renewables finish 100 MW Nation Rise project and resume clean energy.

✅ Judges call minister's decision unreasonable, unfair

✅ EDP Renewables to restart construction near Cornwall

✅ 100 MW, 29 turbines; costs awarded, appeal considered

 

Construction of a wind farm in eastern Ontario, as wind power makes gains nationwide, will move ahead after a court quashed a provincial government decision to cancel the project.

In a ruling released Wednesday, a panel of Ontario Superior Court judges said the province's decision to scrap the Nation Rise Wind Farm in December 2019 did not meet the proper requirements.

At the time, Environment Minister Jeff Yurek revoked the approvals of the project near Cornwall, Ont., citing the risk to three bat species.

That decision came despite a ruling from the province's Environmental Review Tribunal that determined the risk the project posed to the bat population was negligible.

The judges said the minister's decision was "unreasonable" and "procedurally unfair."

"The decision does not meet requirements of transparency, justification, and intelligibility, as the Minister has failed to adequately explain his decision," the judges wrote in their decision.

The company behind the project, EDP Renewables, said the 29-turbine wind farm was almost complete when its approval was revoked in December, even as Alberta saw TransAlta scrap a wind farm in a separate development.

The company said Thursday it plans to restart construction on the 100-megawatt wind farm.

"EDPR is eager to recommence construction of the Nation Rise Wind Farm, which will bring much-needed jobs and investment to the community," the company said in a statement. "This delay has resulted in unnecessary expenditures to-date, at a time when governments and businesses should be focused on reducing costs and restarting the economy."

A spokesman for Yurek said the government is disappointed with the outcome of the case but did not comment on a possible appeal.

"At this time, we are reviewing the decision and are carefully considering our next steps," Andrew Buttigieg said in a statement.

NDP climate change critic Peter Tabuns said the court decision is an embarrassment for the minister and the government. He urged the government not to pursue an appeal.

Yurek "was found to have ignored the evidence and the facts," he said. "They didn't just lose, their case collapsed. They had nothing to stand on. Taking this to appeal would be a complete and total waste of money."

Green party Leader Mike Schreiner said the ruling proves the government was acting based on ideology over evidence when it revoked the project's approval.

"As we shift towards a post-COVID recovery, we need the Ford government to give up the irrational crusade against affordable and reliable clean energy," Schreiner said in a statement.

Last year, the NDP revealed the province had spent $231 million to cancel more than 750 renewable energy contracts, a move Ford said he was proud of, shortly after winning the 2018 election.

The Progressive Conservatives have blamed the previous Liberal government, as leadership candidates debate how to fix power, for signing the bad energy deals while the province had an oversupply of electricity.

The Ford government, amid a new stance on wind power, has also said that by cancelling the contracts it would ultimately save ratepayers $790 million -- a figure industry officials have disputed.

At the time of the wind farm cancellation, the government also said it would introduce legislation that would protect consumers from any costs incurred, though a developer warned cancellations could exceed $100M at the time.

It has since acknowledged it will have to pay some companies to cancel the deals and set aside $231 million to reach agreements with those firms, and more recently has moved to reintroduce renewable projects in some cases.

On Wednesday, the judges awarded Nation Rise $126,500 in costs, which the government will have to pay.

 

Related News

View more

EU draft shows plan for more fixed-price electricity contracts

EU Electricity Market Reform advances two-way CfDs, PPAs, and fixed-price tariffs to cut volatility, support renewables and nuclear, stabilize investor revenues, and protect consumers from price spikes across wholesale power markets.

 

Key Points

An EU plan expanding two-way CfDs, PPAs, and fixed-price contracts to curb price swings and support low-carbon power.

✅ Two-way CfDs return excess revenues to consumers

✅ Boosts PPAs and fixed-price retail options

✅ Targets renewables, nuclear; limits fossil exposure

 

The European Union wants to expand the use of contracts that pay power plants a fixed price for electricity, a draft proposal showed, as part of an electricity market revamp to shield European consumers from big price swings.

The European Commission pledged last year to reform the EU's electricity market rules, after record-high gas prices, caused by cuts to Russian flows, sent power prices soaring, prompting debates over gas price cap strategies in response.

A draft of the EU executive's proposal, seen by Reuters on Tuesday and due to be published on Mar. 16, steered clear of the deep redesign of the electricity market that some member states have called for, even as nine EU countries opposed sweeping reforms as a fix earlier in the crisis, suggesting instead limited changes to nudge countries towards more predictable, fixed-price power contracts.

If EU countries want to support new investments in wind, solar, geothermal, hydropower and nuclear electricity, for example - a point over which France and Germany have wrestled - they should use a two-way contract for difference (CfD) or an equivalent contract, the draft said.

The aim is to provide a stable revenue stream to investors, and help make consumers' energy bills less volatile, even though rolling back electricity prices is tougher than it appears. Restricting this support to renewable and low-carbon electricity also aims to speed up Europe's shift away from fossil fuels.

Two-way CfDs offer generators a fixed "strike price" for their electricity, regardless of the price in short-term energy markets. If the market price is above the CfD strike price, then the extra revenue the generator receives should be handed out to final electricity consumers, the draft EU document said.

Countries should also make it easier for power buyers to sign power purchase agreements (PPA) - another type of long-term contract to directly buy electricity from a generator.

Governments should also make sure consumers have access to fixed-price electricity contracts - echoing France's new electricity pricing scheme to reassure Brussels - giving them the option to avoid a contract that would expose them to volatile prices swings in energy markets, the draft said.

If European energy prices were to spike to extreme levels again, the Commission suggested allowing national governments to temporarily intervene to fix prices while weighing emergency measures to limit prices where needed, and offer consumers and small businesses a share of their electricity at a lower price.

 

Related News

View more

Solar + Wind = 10% of US Electricity Generation in 1st Half of 2018

US Electricity Generation H1 2018 saw wind and solar gains but hydro declines, as natural gas led the grid mix and coal fell; renewables' share, GWh, emissions, and capacity additions shaped the power sector.

 

Key Points

It is the H1 2018 US power mix, where natural gas led, coal declined, and wind and solar grew while hydro fell.

✅ Natural gas reached 32% of generation, highest share

✅ Coal fell; renewables roughly tied nuclear at ~20%

✅ Wind and solar up; hydro output down vs 2017

 

To complement our revival of US electricity capacity reports, here’s a revival of our reports on US electricity generation.

As with the fresh new capacity report, things are not looking too bright when it comes to electricity generation. There’s still a lot of grey — in the bar charts below, in the skies near fossil fuel power plants, and in the human and planetary outlook based on how slowly we are cutting fossil fuel electricity generation.

As you can see in the charts above, wind and solar energy generation increased notably from the first half of 2017 to the first half of 2018, and the EIA expected larger summer solar and wind generation in subsequent months, reinforcing that momentum.

A large positive when it comes to the environment and human health is that coal generation dropped a great deal year over year — by even more than renewables increased, though the EIA later noted an increase in coal-fired generation in a subsequent year, complicating the trend. However, on the down side, natural gas soared as it became the #1 source of electricity generation in the United States (32% of US electricity). Furthermore, coal was still solidly in the #2 position (27% of US electricity). Renewables and nuclear were essentially in a tie at 19.8% of generation, with renewables just a tad above nuclear.

Actually, combined with an increase in nuclear power generation, natural gas electricity production increased so much that the renewable energy share of electricity generation actually dropped in the first half of 2018 versus the first half of 2017, even amid declining electricity use in some periods. It was 19.8% this year and 20% last year.

Again, solar and wind saw a significant growth in its market share, from 9% to 9.9%, but hydro brought the whole category down due to a decrease from 9% to 8%.

The visuals above are probably the best way to examine it all. The H1 2018 chart was still dominated by fossil fuels, which together accounted for approximately 60% of electricity generation, even though by 2021 non-fossil sources supplied about 40% of U.S. electricity, highlighting the longer-term shift. In H1 2017, the figure was 59.7%. Furthermore, if you switch to the “Change H1 2018 vs H1 2017 (GWh)” chart, you can watch a giant grey bar representing natural gas take over the top of the chart. It almost looks like it’s part of the border of the chart. The biggest glimmer of positivity in that chart is seeing the decline in coal at the bottom.

What will the second half of the year bring? Well, the gigantic US electricity generation market shifts slowly, even as monthly figures can swing, as January generation jumped 9.3% year over year according to the EIA, reminding us about volatility. There is so much base capacity, and power plants last so long, that it takes a special kind of magic to create a rapid transition to renewable energy. As you know from reading this quarter’s US renewable energy capacity report, only 43% of new US power capacity in the first half of the year was from renewables. The majority of it was from natural gas. Along with other portions of the calculation, that means that electricity generation from natural gas is likely to increase more than electricity generation from renewables.

Jump into the numbers below and let us know if you have any more thoughts.


 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified