With the first big wave of modern electric cars due to arrive in the next few years, the battle to attract manufacturing plants is heating up.
Reva, an Indian maker of electric cars, announced that it planned to open an assembly plant in Upstate New York to build a three-door plug-in hatchback called the NXR, in partnership with a local company.
New York officials welcomed the decision as a recognition of the stateÂ’s emerging battery-technology cluster and manufacturing skill.
“I believe the competition was between New York State and Michigan, and we won,” Senator Charles E. Schumer, Democrat of New York, said in a telephone interview.
More plant announcements are expected soon in the United States.
Fisker Automotive, a California-based startup that is making the first of its high-end plug-ins in Finland, could name the site for a planned American plant soon. Tesla, maker of the Roadster, a stylish and expensive plug-in, may soon announce where in Southern California it will locate the factory for its next car, the Model S.
Tesla already does final assembly for the Roadsters — almost 900 of which are already being driven in the United States — in Menlo Park, California.
As with conventionally powered vehicles, manufacturers give priority to locations that are close to their consumers.
Jeffrey Leonard, a board member of Reva who lives in the Washington area, said in a telephone interview that Reva’s board had understood from the beginning that “if you’re going to really sell and distribute this car in a big way in the U.S., you should have a production facility here,” for logistical and political reasons.
Conventional automakers — most of which are racing to produce their own electric cars — are retooling existing plants to make the new vehicles. Here again, the preference goes to plants close to where the cars will be sold.
“As a matter of practice, we try to manufacture vehicles in the markets where they will be marketed,” Fred Standish, a spokesman for Nissan North America, said in an e-mail message. Nissan will begin making its electric car, the Leaf, at an existing facility in Oppama, Japan, next year. It will be sold in the United States and Japan, beginning late in 2010, Mr. Standish said. Starting in late 2012, the Leaf will be made in Tennessee as well as in Japan, he said.
Manufacturing vehicles near their ultimate markets, Mr. Standish said, has benefits that include “reduced exposure to foreign exchange fluctuations, elimination of import taxes, elimination of transoceanic transportation costs and reduction of delivery time.”
Unsurprisingly, Asia hopes to grab a healthy share of electric car facilities. China is home to BYD, a carmaker in which Warren BuffettÂ’s MidAmerican Energy Holdings has a stake, as well as the Tianjin-Qingyuan Electric Vehicle Co. In both cases, however, efforts to increase production of all-electric vehicles have encountered some delays, according to my colleague, Keith Bradsher, who is based in Hong Kong. As for India, there has been little ostensible activity as yet apart from that of Reva, which has facilities in Bangalore.
“There have been some attempts to make electric scooters and rickshaws by various people, but nothing has really taken off,” my Mumbai-based colleague, Vikas Bajaj, wrote in an e-mail message.
Experts stress that the types of vehicles produced vary by location to accommodate consumersÂ’ needs. (This is of course already true for gasoline-powered cars.)
For Reva to sell effectively in the United States, “You need to tailor the car to the U.S. driver,” Mr. Leonard said. He pointed out that American drivers behaved quite differently from those in India or in compact European cities, where Reva cars are currently driven.
David Vieau, the president and chief executive of A123 Systems, a maker of lithium-ion batteries that went public last month, noted that the desired range for electric vehicles could vary substantially from country to country.
“For example, in developing countries with no history of widespread car ownership, people may be more open to electric vehicles because there is no preconceived notion of what a vehicle should do.
“Therefore, a more limited range might be perfectly acceptable, for example, to a Chinese consumer who has never owned an internal combustion vehicle,” Mr. Vieau said in an e-mail message.
On the other hand, he said, a driver in Japan, Europe, or North America might expect a range of 300 miles, or 480 kilometers, “and the electric-vehicle adoption rate might be affected due to expectations of what the vehicle should do.”
The supply chain for electric vehicles will also have some differences, experts said, from that of their conventionally powered counterparts. The most obvious variation is batteries, the technology that is crucial to getting the electric car right.
According to Mr. Vieau, Asia makes more than 90 percent of lithium-ion batteries, the type of battery that is considered most promising in the near term for electric cars. But the United States is also aggressively seeking to attract battery manufacturers. A123, for example, manufactures in China and South Korea but is also expanding production in the United States.
As for the electric drivetrain, it “uses fewer moving parts and thus may result in a more consolidated supply chain” than that of a conventionally powered vehicle, Mr. Vieau said. He added, however, that the rest of the electric vehicle would be substantially similar to a conventional one.
But with the dawn of electric vehicles, components manufacturers may find reason to focus anew on using energy more efficiently.
“There may be an advantage,” Mr. Vieau said, “for suppliers that can innovate and develop more energy-efficient products, as energy usage historically has not been a prime design driver.”
“Since electricity is used to drive an electric vehicle,” he explained, “any power-hungry components such as radios, windshield wipers and lighting all reduce the electric vehicle range.”
To improve the all-important range, in other words, new efficiencies may be in order.
BC Hydro Asset Management Audit confirms disciplined oversight of dams, generators, power lines, substations, and transformers, with robust lifecycle planning, reliability metrics, and capital investment sustaining aging infrastructure and near full-capacity performance.
Key Points
Audit confirming BC Hydro's asset governance and lifecycle planning, ensuring safe, reliable grid infrastructure.
✅ $25B in assets; many facilities operating near full capacity.
✅ 80% of assets are dams, generators, lines, poles, substations, transformers.
✅ $2.5B invested in renewal, repair, and replacement in fiscal 2018.
A report by B.C.’s auditor-general says B.C. Hydro is doing a good job managing the province’s dams, generating stations and power lines, including storm response during severe weather events.
Carol Bellringer says in the audit that B.C. Hydro’s assets are valued at more than $25 billion and even though some generating facilities are more than 85 years old they continue to operate near full-capacity and can accommodate holiday demand peaks when needed.
The report says about 80 per cent of Hydro’s assets are dams, generators, power lines, poles, substations and transformers that are used to provide electrical service to B.C., where residential electricity use shifted during the pandemic.
The audit says Hydro invested almost $2.5 billion to renew, repair or replace the assets it manages during the last fiscal year, ending March 31, 2018, and, in a broader context, bill relief has been offered to only part of the province.
Bellringer’s audit doesn’t examine the $10.7 billion Site C dam project, which is currently under construction in northeast B.C. and not slated for completion until 2024.
She says the audit examined whether B.C. Hydro has the information, practices, processes and systems needed to support good asset management, at a time when other utilities are dealing with pandemic impacts on operations.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
BC Energy Debate: Nuclear Power and LNG divides British Columbia, as a new survey weighs zero-emission clean energy, hydroelectric capacity, the Site C dam, EV mandates, energy security, rising costs, and blackout risks.
Key Points
A BC-wide debate on power choices balancing nuclear, LNG, hydro, costs, climate goals, EVs, and grid reliability.
✅ Survey: 43% support nuclear, 40% oppose in BC
✅ 55% back LNG expansion, led by Southern BC
✅ Hydro at 90%; Site C adds 1,100 MW by 2025
There is a long-term need to produce more electricity to meet population and economic growth needs and, in particular, create new clean energy sources, with two new BC generating stations recently commissioned contributing to capacity.
Increasingly, in the worldwide discourse on climate change, nuclear power plants are being touted as a zero-emission clean energy source, with Ontario exploring large-scale nuclear to expand capacity, and a key solution towards meeting reduced emissions goals. New technological advancements could make nuclear power far safer than existing plant designs.
When queried on whether British Columbia should support nuclear power for electricity generation, respondents in a new province-wide survey by Research Co. were split, with 43% in favour and 40% against.
Levels of support reached 46% in Metro Vancouver, 41% in the Fraser Valley, 44% in Southern BC, 39% in Northern BC, and 36% on Vancouver Island.
The closest nuclear power plant to BC is the Columbia Generating Station, located in southern Washington State.
The safe use of nuclear power came to the forefront following the 2011 Fukushima nuclear disaster when the most powerful earthquake ever recorded in Japan triggered a large tsunami that damaged the plant’s emergency generators. Japan subsequently shut off many of its nuclear power plants and increased its reliance on fossil fuel imports, but in recent years there has been a policy reversal to restart shuttered nuclear plants to provide the nation with improved energy security.
Over the past decade, Germany has also been undergoing a transition away from nuclear power. But in an effort to replace Russian natural gas, Germany is now using more coal for power generation than ever before in decades, while Ontario’s electricity outlook suggests a shift to a dirtier mix, and it is looking to expand its use of liquefied natural gas (LNG).
Last summer, German chancellor Olaf Scholz told the CBC he wants Canada to increase its shipments of LNG gas to Europe. LNG, which is greener compared to coal and oil, is generally seen as a transitionary fuel source for parts of the world that currently depend on heavy polluting fuels for power generation.
When the Research Co. survey asked BC residents whether they support the further development of the province’s LNG industry, including LNG electricity demand that BC Hydro says justifies Site C, 55% of respondents were supportive, while 29% were opposed and 17% undecided.
Support for the expansion of the LNG is highest in Southern BC (67%), followed by the Fraser Valley (56%), Metro Vancouver (also 56%), Northern BC (55%), and Vancouver Island (41%).
A larger proportion of BC residents are against any idea of the provincial government moving to ban the use of natural gas for stoves and heating in new buildings, with 45% opposed and 39% in support.
Significant majorities of BC residents are concerned that energy costs could become too expensive, and a report on coal phase-outs underscores potential cost and effectiveness concerns, with 84% expressing concern for residents and 66% for businesses. As well, 70% are concerned that energy shortages could lead to measures such as rationing and rolling blackouts.
Currently, about 90% of BC’s electricity is produced by hydroelectric dams, but this fluctuates throughout the year — at times, BC imports coal- and gas-generated power from the United States when hydro output is low.
According to BC Hydro’s five-year electrification plan released in September 2021, it is estimated BC has a sufficient supply of clean electricity only by 2030, including the capacity of the Site C dam, which is slated to open in 2025. The $16 billion dam will have an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes.
The provincial government’s strategy for pushing vehicles towards becoming dependent on the electrical grid also necessitates a reliable supply of power, prompting BC Hydro’s first call for power in 15 years to prepare for electrification. Most BC residents support the provincial government’s requirement for all new car and passenger truck sales to be zero-emission by 2035, with 75% supporting the goal and 21% opposed.
Ontario Electricity Relief outlines an extended disconnect moratorium, potential time-of-use price changes, and Ontario Energy Board oversight to support residential customers facing COVID-19 hardship and bill payment challenges during the emergency in Ontario.
Key Points
Plan to extend disconnect moratorium and weigh time-of-use price relief for residential customers during COVID-19.
✅ Extends winter disconnect ban by 3 months
✅ Considers time-of-use price adjustments
✅ Requires Ontario Energy Board approval
The Ontario government is preparing to announce electricity relief for residential electricity users struggling because of the COVID-19 emergency, according to sources.
Sources close to those discussions say a decision has been made to lengthen the existing five-month disconnect moratorium by an additional three months.
Separately, Hydro One's relief fund has offered support to its customers during the pandemic.
News releases about the moratorium extension are currently being drafted and are expected to be released shortly, as the pandemic has reduced electricity usage across Ontario.
Electricity utilities in Ontario are currently prohibited from disconnecting residential customers for non-payment during the winter ban period from November 15 to April 30.
The province is also looking at providing further relief by adjusting time-of-use prices, such as off-peak electricity rates, which are designed to encourage shifting of energy use away from periods of high total consumption to periods of low demand.
For businesses, the province has provided stable electricity pricing to support industrial and commercial operations.
But that would require Ontario Energy Board approval and no decision has been finalized, our sources advise.
Canada Economic Crossroads highlights bank earnings trends, interest rates, loan delinquencies, EV tariffs on Chinese imports, domestic manufacturing, Algoma Steel decarbonization, sustainability, and housing market risks shaping growth, investment, consumer prices, and climate policy.
Key Points
An overview of how bank earnings, EV tariffs, and Algoma Steel's transition shape Canada's economy.
✅ Higher rates lift margins but raise delinquencies and housing risks
✅ EV tariffs aid domestic makers but pressure consumer prices
✅ Algoma invests to decarbonize, boosting efficiency and compliance
In a complex economic landscape, recent developments have brought attention to several pivotal issues affecting Canada's business sector. The Globe and Mail’s latest report delves into three major topics: the latest bank earnings, the implications of new tariffs on Chinese electric vehicles (EVs), and Algoma Steel’s strategic maneuvers. These factors collectively paint a picture of the challenges and opportunities facing Canada's economy.
Bank Earnings Reflect Economic Uncertainty
The recent financial reports from major Canadian banks have revealed a mixed picture of the nation’s economic health. As the Globe and Mail reports, earnings results show robust performances in some areas while highlighting growing concerns in others. Banks have generally posted strong quarterly results, buoyed by higher interest rates which have improved their net interest margins. This uptick is largely attributed to the central bank's monetary policies aimed at combating inflation and stabilizing the economy.
However, the positive earnings are tempered by underlying economic uncertainties. Rising loan delinquencies and a slowing housing market are areas of concern. Increased interest rates, while beneficial for banks’ margins, have also led to higher borrowing costs for consumers and businesses. This dynamic has the potential to impact overall economic growth and consumer confidence.
Tariffs on Chinese EVs: A Strategic Shift
Another significant development is the imposition of new tariffs on Chinese electric vehicles. This move is part of a broader strategy to protect domestic automotive industries and address trade imbalances, aligning with public support for tariffs in key sectors. The tariffs are expected to increase the cost of Chinese EVs in Canada, which could have several implications for the market.
On one hand, the tariffs might provide a temporary boost to Canadian and North American manufacturers by reducing competition from lower-priced Chinese imports. This protectionist measure could encourage investments in local production and innovation, mirroring tariff threats boosting support for energy projects in other sectors. However, the increased cost of Chinese EVs may also lead to higher prices for consumers, potentially slowing the adoption of electric vehicles—a critical goal in Canada’s climate strategy.
The tariffs come at a time when the Canadian government is keen on accelerating the transition to electric mobility to meet its environmental targets, even as a critical crunch in electrical supply raises questions about grid readiness. Balancing the protection of domestic industries with the broader goal of reducing emissions will be a significant challenge moving forward.
Algoma Steel’s Strategic Evolution
In the steel industry, Algoma Steel has been making headlines with its strategic initiatives aimed at transforming its operations, in a broader shift toward clean grids and industrial decarbonization. The Globe and Mail highlights Algoma Steel's efforts to modernize its production processes and shift towards more sustainable practices. This includes significant investments in technology and infrastructure to enhance production efficiency and reduce environmental impact.
Algoma's focus on reducing carbon emissions aligns with broader industry trends towards sustainability. The company’s efforts are part of a larger push within the steel sector to address climate change and meet regulatory requirements. As one of Canada’s leading steel producers, Algoma’s actions could set a precedent for the industry, showcasing how traditional manufacturing sectors can adapt to evolving environmental standards.
Implications and Future Outlook
The interplay of these developments reflects a period of significant transition for Canada's economy, shaped in part by U.S. policy where Biden is seen as better for Canada's energy sector by some analysts. For banks, the challenge will be to navigate the balance between profitability and potential risks from a changing economic environment. The new tariffs on Chinese EVs represent a strategic shift with mixed implications for the automotive market, potentially influencing both domestic production and consumer prices. Meanwhile, Algoma Steel’s push towards sustainability could serve as a model for other industries seeking to align with environmental goals.
As these issues unfold, stakeholders across sectors will need to stay informed and adaptable. For policymakers, the challenge will be to support domestic industries while fostering innovation and sustainability, including the dilemma over electricity rates and innovation they must weigh. For businesses, the focus will be on navigating financial pressures and leveraging opportunities for growth. Consumers, in turn, will face the impact of these developments in their daily lives, from the cost of borrowing to the price of electric vehicles.
In summary, Canada’s current economic landscape is characterized by a blend of financial resilience, strategic adjustments, and evolving industry practices, amid policy volatility such as a tariff threat delaying Quebec's green energy bill earlier this year. As the country navigates these crossroads, the outcomes of these developments will play a crucial role in shaping the future economic environment.
Egypt-Huawei Smart Grid advances Egypt's energy sector with digital transformation, grid modernization, and ICT solutions, enhancing power generation, transmission, and distribution while enabling renewable integration, data analytics, cybersecurity, and scalable infrastructure nationwide.
Key Points
An Egypt-Huawei project to modernize Egypt's grid into a smart network using ICT, analytics, and scalable infrastructure.
✅ Gradual migration to a smart grid to absorb higher load
✅ Boosts generation, transmission, and distribution efficiency
✅ ICT training supports workforce and digital transformation
Egypt and China's tech giant Huawei on Thursday discussed the gradual transformation of Egypt's electricity network to a smart grid model, Egyptian Ministry of Electricity and Renewable Energy said.
Egyptian Minister of Electricity and Renewable Energy Mohamed Shaker met with Huawei's regional president Li Jiguang in Cairo, where they discussed the cooperation, the ministry said in a statement.
The meeting is part of Egypt's plans to develop its energy sector based on the latest technologies and smarter electricity infrastructure initiatives, it added.
During the meeting, Shaker hailed the existing cooperation between Egypt and China in several mega projects, citing regional efforts like the Philippines power grid upgrades, welcoming further cooperation with China to benefit from its expertise and technological progress.
"The future vision of the Egyptian electricity sector is based on the gradual transformation of the current network from a typical one to a smart grid that would help absorb the large amounts of generated power," Shaker said.
Shaker highlighted his ministry's efforts to improve its services, including power generation, transportation and grid improvements across distribution.
Li, president of Huawei Northern Africa Enterprise Business Group, commended the rapid and remarkable development of the projects implemented by the Egyptian ministry to establish a strong infrastructure along with a smart grid that supports the digital grid transformation.
The Huawei official added that despite the challenges the corporation faced in the first half of 2020, it has managed to achieve revenues growth, which shows Huawei's strength and stability amid global challenges such as cybersecurity fears in critical infrastructure.
In late February, Egypt's Ministry of Higher Education and Scientific Research and Huawei discussed plans to provide training to develop the skills of Egyptian university students talented in information and communications technology, including emerging topics like 5G energy use considerations.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.