With vast reserves, Montana eyes coal expansion

By Reuters


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Underneath Montana lies an estimated $1.5 trillion of coal, but with uncertainty about future environmental rules, investors are wary about opening new mines in the rugged western U.S. state.

Many say a big boost to Montana coal production can only follow November's national election, when a new president could lead the way in clarifying environmental laws and encouraging cleaner coal technology. Montana ends the long U.S. state-by-state presidential primary process.

"Nothing is going to happen until we have a carbon law, that's the bottom line," Montana Gov. Brian Schweitzer told Reuters. "It needs a new president."

"But what's happening right now is the partnerships are being formed, the capital is being raised, the coal is being acquired, so everybody is ready to move as soon as we have a carbon law."

The state produced 43.4 million tons of coal in 2007, up 3.7 percent on the year, the biggest growth rate of any state. That output is just a tenth of that in neighboring Wyoming, where coal is generally easier to extract and transport.

Yet Montana, which borders Canada, sits on America's greatest coal reserves: 120 billion tons, worth about $1.5 trillion at current prices, according to Jay Gunderson, a research geologist at the Montana Bureau of Mines and Geology.

"Coal demand is up all over the world," said John O'Laughlin, Westmoreland Coal Company's vice president, coal operations. "With the price for a barrel of oil, there's a lot of interest in Montana coal. But we've got to figure out a way to sequester the CO2. That's what is holding us back."

The company's 34-year-old Absaloka mine in southeast Montana reached a record 7.35 million tons output last year. In 2009, it plans to expand into adjacent Crow Indian reservation land for the first time.

All the presidential candidates back an expansion of some form of coal using more environmentally friendly technology.

"We're sitting on the world's largest supply of energy in our coal resources," presumed Republican nominee Sen. John McCain said recently. "That has to be one of the fundamental components of energy independence."

Among the Democrats, Sen. Barack Obama has said he would increase resources for commercialization and development of low-emission coal plants, and Sen. Hillary Clinton has called on industry to implement clean coal technology.

"It has been kind of refreshing to hear Hillary and Obama talk about clean coal," Westmoreland's O'Laughlin said. "There is at least a glimmer of acceptance."

Montana has not opened a new coal mine in decades.

"Companies are reluctant to invest billions of dollars in infrastructure not knowing what the government is going to do about CO2," said Gunderson at the Bureau of Mines and Geology.

At Absaloka, a single machine - a dragline excavator that scoops out slabs of rolling countryside to get near the coal - costs $120 million. Elsewhere, workers dynamite sections of earth and expensive trucks with wheels taller than people carry away coal to be crushed in a vast facility before transport.

Great Northern Properties is the largest private holder of U.S. coal reserves with 20 billion tons, mostly in Montana and North Dakota. Chuck Kerr, president of the Houston-based company, said the nation will eventually tap Montana's coal.

"It's not a matter of if, it's a matter of when," he said in an interview. "The silent majority back coal development because it's a very cheap source of fuel."

Gov. Schweitzer has long championed Fischer-Tropsch technology to convert coal into liquid fuels that can be burned in a greener way than traditional coal, but no one has yet invested the many billions needed for such a plant.

"It is incredibly expensive to deploy," Kerr said.

But there are signs of other new projects.

John DeMichiei, president and CEO of Bull Mountain Coal Mining Inc, expects to get private financing by July 15 for what he said could be the largest underground coal mine in the world, located 35 miles north of Billings, Montana.

"It takes extreme capital investment," he said. "With these sales prices starting to at least support this type of capital investment, I think you will see more investment in Montana in terms of coal."

DeMichiei hopes to begin large-scale production at Bull Mountain by September 2009, with production of 14 million tons a year. The mine, with 430 million tons in reserve, now produces just 40,000 tons a month, he said in an interview.

The company's main investor is Airlie Group of Greenwich, Connecticut. "We are in discussions with a number of parties to get the mine fully financed and build a railroad and get it to be one of the largest long wall mines in the United States, if not the largest," Airlie Managing Director Andy Dwyer said.

But he added: Wyoming's "Powder River Basin has established rail lines and transportation hubs and the ability to substantially expand. So if there isn't going to be any substantial increase in demand then quite frankly the Powder River Basin can meet a good deal of that demand."

Schweitzer said despite its greater reserves and plans for expansion, Montana may never surpass Wyoming in production. "The world of hydrocarbons will be over and we'll still have 90 percent of our coal in the ground," he predicted.

"Wind and solar and hydrogen - they'll be the energy sources of the future. Forty, 50 years from now hydrocarbons won't be an energy source of any large quality."

Related News

A tidal project in Scottish waters just generated enough electricity to power nearly 4,000 homes

MeyGen Tidal Stream Project delivers record 13.8 GWh to Scotland's grid, showcasing renewable ocean energy. Simec Atlantis Energy's 6 MW array of tidal turbines advances EU power goals and plans an ocean-powered data center.

 

Key Points

A Scottish tidal energy array exporting record power, using four 1.5 MW turbines and driving renewable innovation.

✅ Delivered 13.8 GWh to the grid in 2019, a project record.

✅ Four 1.5 MW turbines in Phase 1A, 6 MW installed.

✅ Plans include an ocean-powered data center near site.

 

A tidal power project in waters off the north coast of Scotland, where Scotland’s wind farms also deliver significant output, sent more than 13.8 gigawatt hours (GWh) of electricity to the grid last year, according to an operational update issued Monday. This figure – a record – almost doubled the previous high of 7.4 GWh in 2018.

In total, the MeyGen tidal stream array has now exported more than 25.5 GWh of electricity to the grid since the start of 2017, according to owners Simec Atlantis Energy. Phase 1A of the project is made up of four 1.5 megawatt (MW) turbines.

The 13.8 GWh of electricity exported in 2019 equates to the average yearly electricity consumption of roughly 3,800 “typical” homes in the U.K., where wind power records have been set recently, according to the company, with revenue generation amounting to £3.9 million ($5.09 million).

Onshore maintenance is now set to be carried out on the AR1500 turbine used by the scheme, with Atlantis aiming to redeploy the technology in spring.

In addition to the production of electricity, Atlantis is also planning to develop an “ocean-powered data centre” near the MeyGen project.

The European Commission has described “ocean energy” as being both abundant and renewable, and milestones like the biggest offshore windfarm starting U.K. supply underscore wider momentum, too. It’s estimated that ocean energy could potentially contribute roughly 10% of the European Union’s power demand by the year 2050, according to the Commission.

While tidal power has been around for decades — EDF’s 240 MW La Rance Tidal Power Plant in France was built as far back as 1966, and the country’s first offshore wind turbine has begun producing electricity — recent years have seen a number of new projects take shape.

In December last year, Scottish tidal energy business Nova Innovation was issued with a permit to develop a project in Nova Scotia, Canada, aiming to harness the Bay of Fundy tides in the region further.

In an announcement at the time, the firm said a total of 15 tidal stream turbines would be installed by the year 2023. The project, according to the firm, will produce enough electricity to power 600 homes, as companies like Sustainable Marine begin delivering tidal energy to the Nova Scotia grid.

Elsewhere, a business called Orbital Marine Power is developing what it describes as the world’s most powerful tidal turbine, with grid-supplied output already demonstrated.

The company says the turbine will have a swept area of more than 600 square meters and be able to generate “over 2 MW from tidal stream resources.” It will use a 72-meter-long “floating superstructure” to support two 1 MW turbines.

 

Related News

View more

Are major changes coming to your electric bill?

California Income-Based Electricity Rates propose a fixed monthly fee set by income as utilities and the CPUC weigh progressive pricing, aiming to cut low-income bills while PG&E, SCE, and SDG&E retain usage-based charges.

 

Key Points

CPUC plan adds income-tiered fixed fees to lower low-income bills while keeping per-kWh usage charges.

✅ Adds fixed monthly fees by income to complement per-kWh charges

✅ Cuts bills for low-income households; higher earners pay more

✅ Utilities say revenue neutral; conservation signals preserved

 

California’s electric bills — already some of the highest in the nation — are rising as electricity prices soar across the state, but regulators are debating a new plan to charge customers based on their income level. 

Typically what you pay for electricity depends on how much you use. But the state’s three largest electric utilities — Southern California Edison Company, Pacific Gas and Electric Company and San Diego Gas & Electric Company — have proposed a plan to charge customers not just for how much energy they use, but also based on their household income, moving toward income-based flat-fee utility bills over time. Their proposal is one of several state regulators received designed to accommodate a new law to make energy less costly for California’s lowest-income customers.

Some state Republican lawmakers are warning the changes could produce unintended results, such as weakening incentives to conserve electricity or raising costs for customers using solar energy, and some have introduced a plan to overturn the charges in the Legislature.

But the utility companies say the measure would reduce electricity bills for the lowest income customers. Those residents would save about $300 per year, utilities estimate.

California households earning more than $180,000 a year would end up paying an average of $500 more a year on their electricity bills, according to the proposal from utility companies. 

The California Public Utilities Commission’s deadline for deciding on the suggested changes is July 1, 2024, as regulators face calls for action from consumers and advocates. The proposals come at a time when many moderate and low-income families are being priced out of California by rising housing costs.  

Who wants to change the fee structure?
Lawmakers passed and Gov. Gavin Newsom signed a comprehensive energy bill last summer that mandates restructuring electricity pricing across the state. 

The Legislature passed the measure in a “trailer-bill” process that limited deliberation. Included in the 21,000-word law are a few sentences requiring the public utilities commission to establish a “fixed monthly fee” based on each customer’s household income. 

A similar idea was first proposed in 2021 by researchers at UC Berkeley and the nonprofit thinktank Next 10. Their main recommendation was to split utility costs into two buckets. Fixed charges, which everyone has to pay just to be connected to the energy grid, would be based on income levels. Variable charges would depend on how much electricity you use.

Utilities say that part of customers’ bills still will be based on usage, but the other portion will reduce costs for lower- and middle-income customers, who “pay a greater percentage of their income towards their electricity bill relative to higher income customers,” the utilities argued in a recent filing. 

They said the current billing system is unjust, regressive and fails to recognize differences in energy usage among households,

“When we were putting together the reform proposal, front and center in our mind were customers who live paycheck to paycheck, who struggle to pay for essentials such as energy, housing and food,” Caroline Winn, CEO of San Diego Gas & Electric in a statement. 

The utilities say in their proposal that the changes likely would not reduce or increase their revenues.

James Sallee, an associate professor at UC Berkeley, said the utilities’ prior system of billing customers mostly by measuring their electric use to pay for what are essentially fixed costs for power is inefficient and regressive. 

The proposed changes “will shift the burden, on average, to a more progressive system that recovers more from higher income households and less from lower income households,” he said.

 

Related News

View more

Study: US Power Grid Has More Blackouts Than ENTIRE Developed World

US Power Grid Blackouts highlight aging infrastructure, rising outages, and declining reliability per DOE and NERC data, with weather-driven failures, cyberattack risk, and underinvestment stressing utilities, transmission lines, and modernization efforts.

 

Key Points

US power grid blackouts are outages caused by aging grid assets, severe weather, and cyber threats reducing reliability.

✅ DOE and NERC data show rising outage frequency and duration.

✅ Weather now drives 68-73% of major failures since 2008.

✅ Modernization, hardening, and cybersecurity investments are critical.

 

The United States power grid has more blackouts than any other country in the developed world, according to new data and U.S. blackout warnings that spotlight the country’s aging and unreliable electric system.

The data by the Department of Energy (DOE) and the North American Electric Reliability Corporation (NERC) shows that Americans face more power grid failures lasting at least an hour than residents of other developed nations.

And it’s getting worse.

Going back three decades, the US grid loses power 285 percent more often than it did in 1984, when record keeping began, International Business Times reported. The power outages cost businesses in the United States as much as $150 billion per year, according to the Department of Energy.

Customers in Japan lose power for an average of 4 minutes per year, as compared to customers in the US upper Midwest (92 minutes) and upper Northwest (214), University of Minnesota Professor Massoud Amin told the Times. Amin is director of the Technological Leadership Institute at the school.

#google#

The grid is becoming less dependable each year, he said.

“Each one of these blackouts costs tens of hundreds of millions, up to billions, of dollars in economic losses per event,” Amin said. “… We used to have two to five major weather events per year [that knocked out power], from the ‘50s to the ‘80s. Between 2008 and 2012, major outages caused by weather, reflecting extreme weather trends, increased to 70 to 130 outages per year. Weather used to account for about 17 to 21 percent of all root causes. Now, in the last five years, it’s accounting for 68 to 73 percent of all major outages.”

As previously reported by Off The Grid News, the power grid received a “D+” grade on its power grid report card from the American Society of Civil Engineers (ASCE) in 2013. The power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the 2013 ASCE report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, and limited maintenance have contributed to an increasing number of failures and power interruptions.”

As The Times noted, the US power grid as it exists today was built shortly after World War II, with the design dating back to Thomas Edison. While Edison was a genius, he and his contemporaries could not have envisioned all the strains the modern world would place upon the grid and the multitude of tech gadgets many Americans treat as an extension of their body. While the drain on the grid has advanced substantially, the infrastructure itself has not.

There are approximately 5 million miles of electrical transmission lines throughout the United States, and thousands of power generating plants dot the landscape. The electrical grid is managed by a group of 3,300 different utilities and serve about 150 million customers, The Times said. The entire power grid system is currently valued at $876 billion.

Many believe the grid is vulnerable to an attack on substations and other threats.

Former Department of Homeland Security Secretary Janet Napolitano once said that a power grid cyber attack is a matter of “when” not “if,” as Russians hacked utilities incidents have shown.

 

Related News

View more

Minnesota bill mandating 100% carbon-free electricity by 2040

Minnesota 100% Carbon-Free Electricity advances renewable energy: wind, solar, hydropower, hydrogen, biogas from landfill gas and anaerobic digestion; excludes incineration in environmental justice areas; uses renewable energy credits and streamlined permitting.

 

Key Points

Minnesota's mandate requires utilities to deliver 100% carbon-free power by 2040 with targets and EJ safeguards.

✅ Utilities must hit 90% carbon-free by 2035; 100% by 2040.

✅ Incineration in EJ areas excluded; biogas, wind, solar allowed.

✅ Compliance via renewable credits; streamlined permitting.

 

Minnesota Gov. Tim Walz, D, is expected to soon sign a bill establishing a clean electricity standard requiring utilities in the state to provide electricity from 100% carbon-free sources by 2040. The bill also calls for utilities to generate at least 55% of their electricity from renewable energy sources by 2035, a trajectory similar to New Mexico's clean electricity push underway this decade.

Electricity generated from landfill gas and anaerobic digestion are named as approved renewable energy technologies, but electricity generated from incinerators operating in “environmental justice areas”, reflecting concerns about renewable facilities violating pollution rules in some states, will not be counted toward the goal. Wind, solar, and certain hydropower and hydrogen energy sources are also considered renewable in the bill. 

The bill defines EJ areas as places where at least 40% of residents are not white, 35% of households have an income that’s below 200% of the federal poverty line, and 40% or more of residents over age 5 have “limited” English proficiency. Areas the U.S. state defines as “Indian country” are also considered EJ areas.

Some of the state’s largest electric utilities, like Xcel Energy and Minnesota Power, have already pledged to move to carbon-free energy, and utilities such as Alliant Energy have outlined carbon-neutral plans in the region, but this bill speeds up that goal by 10 years, Minnesota Public Radio reported. The bill calls for public utilities operating in the state to be 80% carbon-free and other electric utilities to be 60% carbon-free by 2030. All utilities must be 90% carbon-free by 2035 before ultimately hitting the 100% mark in 2040, according to the bill.  

The bill gives utilities some leniency if they demonstrate to state regulators that they can’t offer affordable power while working toward the benchmarks, acknowledging reliability challenges seen in places like California's grid during the clean energy transition. It also allows utilities to buy renewable energy credits to meet the standard instead of generating the energy themselves. 

Patrick Serfass, executive director of the American Biogas Council, said the bill will incentivize more biogas-related electricity projects, “which means the recycling of more organic material and more renewable electricity in the state. Those are all good things,” he said. ABC sees significant potential for biogas production in Minnesota, though the federal climate law has delivered mixed results for accelerating clean power deployment.

The bill also aims to streamline the permitting process for new energy projects in the state, even as some states consider limits on clean energy that would constrain utility use, and calls for higher minimum wage requirements for workers.

 

Related News

View more

N.L. lags behind Canada in energy efficiency, but there's a silver lining to the stats

Newfoundland and Labrador Energy Efficiency faces low rankings yet signs of progress: heat pumps, EV charging networks, stricter building codes, electrification to tap Muskrat Falls power and cut greenhouse gas emissions and energy poverty.

 

Key Points

Policies and programs improving N.L.'s energy use via electrification, EVs, heat pumps, and stronger building codes.

✅ Ranks last provincially but showing policy momentum

✅ Heat pump grants and EV charging network underway

✅ Stronger building codes and electrification can cut emissions

 

Ah, another day, another depressing study that places Newfoundland and Labrador as lagging behind the rest of Canada.

We've been in this place before — least-fit kids, lowest birthrate — and now we can add a new dubious distinction to the pile: a ranking of the provinces according to energy efficiency placed Newfoundland and Labrador last.

Efficiency Canada released its first-ever provincial scorecard Nov. 20, comparing energy efficiency policies among the provinces. With energy efficiency a key part of reducing greenhouse gas emissions, Newfoundland and Labrador sat in 10th place, noted for its lack of policies on everything from promoting EV uptake in Atlantic Canada to improving efficient construction codes.

But before you click away to a happier story (about, say, a feline Instagram superstar) one of the scorecard's authors says there's a silver lining to the statistics.

"It's not that Newfoundland and Labrador is doing anything badly; it's just that it could do more," said Brendan Haley, the policy director at Efficiency Canada, a new think tank based at Carleton University.

"There's just a general lack of attention to implementing efficiency policies relative to other jurisdictions, including New Brunswick's EV rebate programs on transportation."

Looking at the scorecard and comparing N.L. with British Columbia, which snagged the No. 1 spot, isn't a great look. B.C. scored 56 points out of a possible 100, while N.L. got just 15.

Haley pointed out that B.C.'s provincial government is charting progress toward 2032, when all new builds will have to be net-zero energy ready; that is, buildings that can produce as much clean energy as they consume.  

While it might not be feasible to emulate that to a T here, Haley said the province could be mandating better energy efficiency standards for new, large building projects, and, at the same time, promote electrification of such projects as a way to soak up some of that surplus Muskrat Falls electricity.

Staring down Muskrat's 'extraordinary' pressure on N.L. electricity rates

It's impossible to talk about energy efficiency in N.L. without considering that dam dilemma. As Muskrat Falls comes online, likely at the end of 2020, customer power rates are set to rise in order to pay for it, and the province is still trying to figure out the headache that is rate mitigation.

"There is a strategic choice to be made in Newfoundland and Labrador," Haley told CBC Radio's On The Go.

While having more customers using Muskrat Falls power can help with rate mitigation, including through initiatives like N.L.'s EV push to grow demand, Haley noted simply using its excess electricity for the sake of it isn't a great goal.

"That should not be an excuse, I think, to almost have a policy of wasting energy on purpose, or saying that we don't need programs that help save electricity anymore," he said.

Energy poverty
Lots of N.L. homeowners are currently feeling a chill from the spectre of rising electricity rates.

Of course, that draft could be coming from a poorly insulated and heated house, as Efficiency Canada noted 38 per cent of all households in N.L. live in what it calls "energy poverty," where they spend more than six per cent of their after-tax income on energy — that's the second highest such rate in the country.

That poverty speaks for a need for N.L.to boost efficiency incentives for vulnerable populations, although Haley noted the government is making progress. The province recently expanded its home energy savings program, doubling in the last budget year to $2 million, which gives grants to low income households for upgrades like insulation.

Can you guess what products are selling like hotcakes as Muskrat Falls looms? Heat pumps

And since Efficiency Canada compiled its scorecard, the province has introduced a $1-million heat pump program, in which 1,000 homeowners could receive $1,000 toward the purchase of a heat pump. 

That program began accepting applications Oct. 15, and one month in, has had 682 people apply, according to the Department of Municipal Affairs and Environment, along with thousands of inquiries.

Heat pump popularity
Even without that program, heat pump sales have skyrocketed in the province since 2017. That popularity doesn't come as much of a surprise to Darren Brake, the president of KSAB Construction in Corner Brook.

With more than two decades in the home building business, he's been seeing consumer demand for home energy efficiency rise to the point where a year ago, his company transitioned into only building third-party certified energy efficient homes.

"Everybody's really concerned about the escalating power costs and energy costs, I assume because of Muskrat Falls," he said.

"It's evolving now, as we speak. Everybody is all about that monthly payment."

Brake uses spray foam installation in every house he builds, to seal up any potential leaks. Without sealing the building envelope, he says, a heat pump is far less efficient. (Lindsay Bird/CBC)
And in the weakest housing market in the province in half a century, Brake has been steadily moving his, building and selling seven in the last year.

Brake's houses include heat pumps, but he said the real savings come from their heavily insulated walls, roof and floors. Homeowners looking to install a heat pump in their leaky old house, he said, won't see lower power bills in quite the same way.

"They are energy efficient, but it's more about the building envelope to make a home efficient and easy to heat. You can put a heat pump in an older home that leaks a lot of air, and you won't get the same results," he said.

Charging network coming
The other big piece to the efficiency puzzle — in the scorecard's eyes — is electric vehicles. Those could, again, use some of that Muskrat Falls energy, as well as curtail gas guzzling, but Efficiency Canada pointed to a lack of policies and incentives surrounding electrifying transportation, such as Nova Scotia's vehicle-to-grid pilot that illustrates innovation elsewhere.

Unlike Quebec or B.C., the province doesn't offer a rebate for buying EVs, even as N.W.T. encourages EVs through targeted measures, and while electric vehicles got loud applause at the House of Assembly last week, it was absent of any policy or announcement beyond the province unveiling a EV licence plate design to be used in the near future.

Electric-vehicle charging network planned for N.L. in 2020

But since the scorecard was tallied, NL Hydro has unveiled plans for a Level 3 charging network for EVs across the island, dependent on funding, with N.L.'s first fast-charging network seen as just the beginning for local drivers.

NL Hydro says while its request for proposals for an island-wide charging network closed earlier in November, there is no progress update yet, even as N.B.'s fast-charging rollout advances along the Trans-Canada. (Credit: iStock/Getty Images)
That cash appears to still be in limbo, as "we are still progressing through the funding process," said an NL Hydro spokesperson in an email, with no "additional details to release at this time."

Still, the promise of a charging network — plus the swift uptake on the heat pump program — could boost N.L.'s energy efficiency scorecard next time it's tallied, said Haley.

"It is encouraging to see the province moving forward on smart and efficient electrification," he said.

 

Related News

View more

Thermal power plants’ PLF up on rising demand, lower hydro generation

India Coal Power PLF rose as capacity utilisation improved on rising peak demand and hydropower shortfall; thermal plants lifted plant load factor, IPPs lagged, and generation beat program targets amid weak rainfall and slower snowmelt.

 

Key Points

Coal plant load factor in India rose in May on higher demand and weak hydropower, with generation beating targets.

✅ PLF rose to 65.3% as demand climbed

✅ Hydel generation fell 14% YoY on poor rainfall

✅ IPP PLF at 57.8%, below 60% debt comfort

 

Capacity utilisation levels of coal-based power plants improved in May because of a surge in electricity demand and lower generation from hydroelectric sources. The plant load factor (PLF) of thermal power plants went up to 65.3% in the month, 1.7 percentage points higher than the year-ago period.

While PLFs of central and state government-owned plants were 75.5% and 64.5%, respectively, the same for independent power producers (IPPs) stood at 57.8%, even as coal and electricity shortages eased across the market. Though PLFs of IPPs were higher than May 2017 levels, it failed to cross the 60% mark, which eases debt servicing capabilities of power generation assets.

Thermal power plants generated 96,580 million units (MU) in May, 4% more than the programme set for the month and 5.2% higher than last year, partly supported by higher imported coal volumes in the market. On the other hand, hydel plants produced 10,638 MU, 10% lower than the target, reflecting a 14% decline from last year.

#google#

Peak demand of power on the last day of the month was 1,62,132 MW, 4.3% higher than the demand registered in the same day a year ago, underscoring India's position as the third-largest electricity producer globally.

According to sources, hydropower plants have been generating lesser than expected electricity due to inadequate rainfall and snow melting at a slower pace than previous years, even as the US reported a power generation jump year on year. Data for power generation from renewable sources have not been made available yet.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.