New Zealand improves reliability with smart technology

By Electricity Forum


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
With goals of improving power reliability for consumers and adding more renewable energy, such as wind and solar to the grid, WEL Networks of Hamilton, New Zealand, is implementing GE smart grid technology.

GE’s outage management software will help WEL reduce outages and more quickly restore power when outages do occur. Eventually, this smart grid solution will work in conjunction with smart meters and advanced metering infrastructure to provide real-time knowledge of the grid’s status. This knowledge will enable both proactive actions to prevent outages and reactive actions — such as intelligent re-routing, pinpoint repair deployment and circuit restorations — to reduce customer impact and help extend the life of utility assets.

“Power reliability and quality are two key factors behind our decision to implement GE’s distribution management system (DMS),” said Dr. Julian Elder, chief executive of WEL Networks. “GE’s DMS system also will help us integrate renewables, which will help reduce New Zealand’s overall carbon emissions and provide more secure levels of supply on a regional basis.”

“Our smart grid distribution management system technology serves as the backbone on which WEL Networks will ultimately build its smarter grid,” said Bob Gilligan, vice president of GE Energy’s transmission and distribution business. “In addition to helping WEL integrate renewable energy resources, the DMS will also provide the utility with necessary information to improve grid reliability and power quality.”

This project supports the New Zealand governmentÂ’s goal of carbon neutrality and generating 90 percent renewable electricity by 2025, from 70 percent today.

Traditionally, electricity has flowed one way, from a power station to the customer. As more renewable energy is generated by alternative sources, power will enter the network from multiple locations. GEÂ’s DMS provides the utility with live information about the network to help manage the distribution of renewable energy.

The DMS deployed by WEL is one of several solutions in GE’s smart grid portfolio. The efficiency gains achieved by upgrading to a smarter grid from a conventional one would be akin to switching from a typewriter to a personal computer. The smart grid is a banner for many products, including hardware, like smart meters and capacitors, and software, like geospatial information systems, distribution management systems and demand-side response. The smart grid is not “one” product, but rather, a solution suite of products and software technologies improving the grid’s overall performance.

WEL Networks is an electricity distribution company that owns, develops and maintains the electricity network of lines, cables, substations and associated infrastructure. Its network connects 82,000 customers to the national transmission and generation facilities and is the fifth largest electricity utility in New Zealand out of a total of 28 utilities.

Related News

Opponent of Site C dam sharing concerns with northerners

Site C Dam Controversy highlights Peace River risks, BC Hydro claims, Indigenous rights under Treaty 8, environmental assessment findings, and potential impacts to agriculture and the Peace-Athabasca Delta across Alberta and the Northwest Territories.

 

Key Points

Debate over BC Hydro's Site C dam: clean energy vs Indigenous rights, Peace-Athabasca Delta impacts, and agriculture.

✅ Potential drying of Peace-Athabasca Delta and wildlife habitat

✅ Treaty 8 rights and First Nations legal challenges

✅ Loss of prime Peace Valley farmland; alternatives in renewables

 

One of the leading opponents of the Site C dam in northeastern B.C. is sharing her concerns with northerners this week.

Proponents of the Site C dam say it will be a cost-effective source of clean electricity, even as a major Alberta wind farm was scrapped elsewhere in Canada, and that it will be able to produce enough energy to power the equivalent of 450,000 homes per year in B.C. But a number of Indigenous groups and environmentalists are against the project.

Wendy Holm is an economist and agronomist who did an environmental assessment of the dam focusing on its potential impacts on agriculture.

On Tuesday she spoke at a town hall presentation in Fort Smith, N.W.T., organized by the Slave River Coalition. She is also speaking at an event in Yellowknife on Friday, as small modular reactors in Yukon receive study as a potential long-term option.

 

Worried about downstream impacts, Northern leaders urge action on Site C dam

"I learned that people outside of British Columbia are as concerned with this dam as we are," Holm said.

"There's just a lot of concern with what's happening on the Peace River and this dam and the implications for Alberta, where hydro's share has diminished in recent decades, and the Northwest Territories."

If completed, BC Hydro's Site C energy project will be the third dam on the Peace River in northeast B.C. and the largest public works project in B.C. history. The $10.7-billion project was approved by both the provincial and federal governments as B.C. moves to streamline clean energy permitting for future projects.

Amy Lusk, co-ordinator of the Slave River Coalition, said many issues were discussed at the town hall, but she also left with a sense of hope.

"I think sometimes in our little corner of the world, we are up against so much when it comes to industrial development and threats to our water," she said.

"To kind of take away that message of, this is not a done deal, and that we do have a few options in place to try and stop this and not to lose hope, I think was a very important message for the community."

 

Drying of the Peace-Athabasca Delta

Holm said her main concern for the Northwest Territories is how it could affect the Peace-Athabasca Delta. She said the two dams already on the river are responsible for two-thirds of the drying that's happening in the delta.

"These are very real issues and very present in the minds of northerners who want to stay connected to a traditional lifestyle, want to have access to those wild foods," she said.

Lusk said northerners are fed up with defending waters "time after time after time."

BC Hydro, however, said studies commissioned during the environmental assessment of Site C show the project will have no measurable effect on the delta, which is located 1,100 kilometres away.

Holm said the fight against the Site C dam is also important when it comes to First Nations treaty rights.

The West Moberly and Prophet River First Nations applied for an injunction to halt construction on Site C, as well as a treaty infringement lawsuit against the B.C. government. They argue the dam would cause irreparable harm to their territories and way of life, which are rights protected under Treaty 8.

 

Agricultural land

While the project is located in B.C., Holm said its impacts on prime horticulture land would also affect northerners, something that's important given issues of food security and nutrition.

"This is some of the best agriculture land in all of Canada," she said of the Peace Valley.

According to BC Hydro, around 2.6 million hectares of land in the Peace agricultural region would remain available for agricultural production while 3,800 hectares would be unavailable. It has also proposed a number of mitigation efforts, including a $20-million agricultural compensation fund.

Holm said renewable energy, including tidal energy for remote communities, will be cheaper and less destructive than the dam, and there's a connection between the dams on the Peace River and water sharing with the U.S.

"When you run out of water there's nothing else you can use. You can't use orange juice to irrigate your fields or to run your industries or to power your homes," she said.

 

Related News

View more

TransAlta Scraps Wind Farm as Alberta's Energy Future Blusters

Alberta Wind Energy Policy Changes highlight TransAlta's Riplinger cancellation amid UCP buffer zones for pristine viewscapes, regulatory uncertainty, and market redesign debates, reshaping Alberta's renewables investment climate and clean energy diversification plans.

 

Key Points

UCP rules and market shifts reshaping wind siting, permits, and finance, increasing uncertainty and delays for new projects.

✅ 35-km buffer near pristine viewscapes limits wind siting

✅ TransAlta cancels 300 MW Riplinger project

✅ Market redesign uncertainty chills renewables investment

 

The winds of change are blowing through Alberta's energy landscape today, and they're not necessarily carrying good news for renewable energy development. TransAlta, a major Canadian energy company, recently announced the cancellation of a significant wind farm project, citing a confluence of factors that create uncertainty for the future of wind power in the province. This decision throws a spotlight on the ongoing debate between responsible development and fostering a clean energy future in Alberta.

The scrapped project, the Riplinger wind farm near Cardston, Alberta, was envisioned as a 300-megawatt facility capable of providing clean electricity to the province. However, TransAlta pointed to recent regulatory changes implemented by the United Conservative Party (UCP) government, following the end of the renewable energy moratorium in Alberta, as a key reason for the project's demise. These changes include the establishment of a 35-kilometer buffer zone around designated "pristine viewscapes," which significantly restricts potential wind farm locations.

John Kousinioris, CEO of TransAlta, expressed frustration with the lack of clarity surrounding the future of renewable energy policy in Alberta. He highlighted this, along with the aforementioned rule changes, as major factors in the project's cancellation. TransAlta has also placed three other power projects on hold, indicating a broader concern about the current investment climate for renewable energy in the province.

The news has been met with mixed reactions. While some residents living near the proposed wind farm site celebrate the decision due to concerns about potential impacts on tourism and the environment, others worry about the implications for Alberta's clean energy ambitions, including renewable energy job growth in the province. The province, a major energy producer in Canada, has traditionally relied heavily on fossil fuels, and this decision might be seen as a setback for its goals of diversifying its energy mix.

The Alberta government defends its changes to renewable energy policy, arguing that they are necessary to ensure responsible development and protect sensitive ecological areas. However, the TransAlta decision raises questions about the potential unintended consequences of these changes. Critics argue that the restrictions might discourage investment in renewable energy and the province's ability to sell clean power to wider markets altogether, hindering Alberta's progress towards a more sustainable future.

Adding to the uncertainty is the ongoing process of redesigning Alberta's energy market. The aim is to incorporate more renewable energy sources, including solar energy expansion across the grid, but the details of this redesign remain unclear. This lack of transparency makes it difficult for companies like TransAlta to make sound investment decisions, further dampening enthusiasm for renewable energy projects.

The future of wind energy development in Alberta remains to be seen. TransAlta's decision to scrap the Riplinger project is a significant development, and it will be interesting to observe how other companies respond to the changing regulatory landscape, as a Warren Buffett-linked developer pursues a $200 million wind project in Alberta. Striking a balance between responsible development, protecting the environment, and fostering a clean energy future will be a crucial challenge for Alberta moving forward.

This situation highlights the complex considerations involved in transitioning to a renewable energy future, where court rulings on wind projects can influence policy and investment decisions. While environmental concerns are paramount, ensuring a stable and predictable investment climate is equally important. Open communication and collaboration between industry, government, and stakeholders will be key to navigating these challenges and ensuring Alberta can harness the power of wind energy for a sustainable future.

 

Related News

View more

Ukraine Prepares for Winter Amid Energy Challenges

Ukraine Winter Energy Resilience focuses on energy security, grid repairs, renewable power, EU support, heating reliability, electricity imports, and conservation measures to stabilize infrastructure and protect households amid conflict and severe cold.

 

Key Points

A strategy to secure heat and power via repairs, renewables, imports, and conservation during wartime winter.

✅ Grid repairs and hardening of power plants and transmission lines

✅ Diversified supply: renewables, electricity imports, fuel reserves

✅ Public conservation to cut peak demand and safeguard essential services

 

As winter approaches, Ukraine is bracing for a challenging season, especially in the energy sector amid global energy instability and price pressures, which has been heavily impacted by the ongoing conflict with Russia. With the weather forecast predicting colder temperatures, the Ukrainian government is ramping up efforts to secure energy supplies and bolster infrastructure, aiming to ensure that citizens have access to heating and electricity during the harsh months ahead.

The Energy Landscape in Ukraine

The conflict has severely disrupted Ukraine’s energy infrastructure, leading to widespread damage and inefficiencies. Key facilities, including power plants and transmission lines, have been targeted amid energy ceasefire violations reported by both sides, resulting in significant energy shortages. As a response, the government has implemented a series of measures aimed at stabilizing the energy sector, ensuring that the nation can withstand the winter months.

One of the primary strategies has been the repair and reinforcement of energy infrastructure. Officials have prioritized critical facilities that are essential for electricity generation and distribution. Emergency repairs and upgrades are being carried out to restore functionality and improve resilience against potential attacks.

In addition to repairing existing infrastructure, Ukraine is actively seeking to diversify its energy sources. This includes increasing reliance on renewable energy, such as wind and solar, which can be less susceptible to disruption. The shift toward renewables not only enhances energy security and supports moving away from fossil fuels in line with Ukraine's long-term environmental goals.

International Support and Collaboration

Ukraine's challenges have not gone unnoticed on the international stage. Countries and organizations around the world have pledged energy security support to help Ukraine fortify its energy sector. This assistance includes financial aid, technical expertise, and the provision of materials needed for infrastructure repairs.

The European Union, in particular, has been a key ally, providing both immediate and long-term support to Ukraine's energy efforts. The EU's commitment to helping Ukraine transition to a more sustainable energy model, including steps toward ENTSO-E synchronization to bolster grid stability, is reflected in various initiatives aimed at increasing energy efficiency and integrating renewable sources.

Furthermore, international organizations have mobilized resources to assist in the restoration of damaged infrastructure. This collaboration not only enhances Ukraine's energy capabilities but also strengthens ties with global partners, fostering a sense of solidarity amidst the ongoing conflict.

Preparing for Winter Challenges

As temperatures drop, the demand for heating will surge, putting additional pressure on an already strained energy system. To address this, the Ukrainian government is urging citizens to prepare for potential shortages. Officials are promoting energy conservation measures, encouraging households to reduce consumption and use energy more efficiently.

Public awareness campaigns are being launched to educate citizens about the importance of energy saving and the steps they can take to minimize their energy use and prevent outages during peak demand. These initiatives aim to foster a collective sense of responsibility as the nation braces for the winter ahead.

In addition to conservation efforts, the government is exploring alternative energy supplies. This includes negotiating with neighboring countries for electricity imports and enhancing domestic production where feasible. By securing a diverse range of energy sources, Ukraine aims to mitigate the risk of shortages and ensure that essential services remain operational.

The Role of Resilience and Innovation

Despite the challenges, the resilience of the Ukrainian people and their commitment to overcoming adversity shine through. Communities are coming together to support one another, sharing resources and information to help navigate the difficulties of winter.

Innovative solutions are also emerging as part of the response to the energy crisis. Local initiatives aimed at promoting energy efficiency and the use of alternative energy sources are gaining traction. From community-led solar projects to energy-efficient building practices, Ukrainians are finding ways to adapt and thrive even in the face of uncertainty.

Looking Ahead

As Ukraine prepares for the winter months, the focus remains on ensuring energy security and maintaining the functionality of critical infrastructure. While challenges loom, the collective efforts of the government, international partners, and citizens demonstrate a strong commitment to resilience and adaptation.

In conclusion, the upcoming winter presents significant challenges for Ukraine's energy sector, yet the nation's determination to secure its energy future remains unwavering. With ongoing repairs, international support, and community innovation, Ukraine is working diligently to navigate the complexities of this winter, aiming to emerge stronger and more resilient in the face of adversity. The resilience shown today will be crucial as the country continues to confront the ongoing impacts of conflict and seeks to build a sustainable future.

 

Related News

View more

Uzbekistan Looks To Export Electricity To Afghanistan

Surkhan-Pul-e-Khumri Power Line links Uzbekistan and Afghanistan via a 260-kilometer transmission line, boosting electricity exports, grid reliability, and regional trade; ADB-backed financing could open Pakistan's energy market with 24 million kWh daily.

 

Key Points

A 260-km line to expand Uzbekistan power exports to Afghanistan, ADB-funded, with possible future links to Pakistan.

✅ 260 km Surkhan-Pul-e-Khumri transmission link

✅ +70% electricity exports; up to 24M kWh daily

✅ ADB $70M co-financing; $32M from Uzbekistan

 

Senior officials with Uzbekistan’s state-run power company have said work has begun on building power cables to Afghanistan that will enable them to increase exports by 70 per cent, echoing regional trends like Ukraine resuming electricity exports after grid repairs.

Uzbekenergo chief executive Ulugbek Mustafayev said in a press conference on March 24 that construction of the Afghan section of the 260-kilometer Surkhan-Pul-e-Khumri line will start in June.

The Asian Development Bank has pledged $70 million toward the final expected $150 million bill of the project. Another $32 million will come from Uzbekistan.

Mustafayev said the transmission line would give Uzbekistan the option of exporting up to 24 million kilowatt hours to Afghanistan daily, similar to Ukraine's electricity export resumption amid shifting regional demand.

“We could potentially even reach Pakistan’s energy market,” he said, noting broader regional ambitions like Iran's bid to be a power hub linking regional grids.

#google#

This project was given fresh impetus by Afghan President Ashraf Ghani’s visit to Tashkent in December, mirroring cross-border energy cooperation such as Iran-Iraq energy talks in the region. His Uzbek counterpart, Shavkat Mirziyoyev, had announced at the time that work was set to begin imminently on the line, which will run from the village of Surkhan in Uzbekistan’s Surkhandarya region to Pul-e-Khumri, a town in Afghanistan just south of Kunduz.

In January, Mirziyoyev issued a decree ordering that the rate for electricity deliveries to Afghanistan be dropped from $0.076 to $0.05 per kilowatt.

Mustafayev said up to 6 billion kilowatt hours of electricity could eventually be sent through the power lines. More than 60 billion kilowatt hours of electricity was produced in Uzbekistan in 2017.

According to Tulabai Kurbonov, an Uzbek journalist specializing in energy issues, the power line will enable the electrification of the the Hairatan-Mazar-i-Sharif railroad joining the two countries. Trains currently run on diesel. Switching over to electricity will help reduce the cost of transporting cargo.

There is some unhappiness, however, over the fact that Uzbekistan plans to sell power to Afghanistan when it suffers from significant shortages domestically and wider Central Asia electricity shortages persist.

"In the villages of the Ferghana Valley, especially in winter, people are suffering from a shortage of electricity,” said Munavvar Ibragimova, a reporter based in the Ferghana Valley. “You should not be selling electricity abroad before you can provide for your own population. What we clearly see here is the favoring of the state’s interests over those of the people.”

 

Related News

View more

What 2018 Grid Edge Trends Reveal About 2019

2019 Grid Edge Trends highlight evolving demand response, DER orchestration, real-time operations, AMI data, and EV charging, as wholesale markets seek flexibility and resiliency amid tighter reserve margins and fossil baseload retirements.

 

Key Points

Shifts toward DER-enabled demand response and real-time, behind-the-meter flexibility.

✅ Real-time DER dispatch enhances reliability during tight reserves

✅ AMI and ICT improve forecasting, monitoring, and control of resources

✅ Demand response shifts toward aggregated behind-the-meter orchestration

 

Which grid edge trends will continue into 2019 as the digital grid matures and what kind of disruption is on the horizon in the coming year?

From advanced metering infrastructure endpoints to electric-vehicle chargers, grid edge venture capital investments to demand response events, hundreds of data points go into tracking new trends at the edge of the grid amid ongoing grid modernization discussions across utilities.

Trends across these variables tell a story of transition, but perhaps not yet transformation. Customers hold more power than ever before in 2019, with utilities and vendors innovating to take advantage of new opportunities behind the meter. Meanwhile, external factors can always throw things off-course, including the data center boom that is posing new power challenges, and reliability is top of mind in light of last year's extreme weather events. What does the 2018 data say about 2019?

For one thing, demand response evolved, enabled by new information and communications technology. Last year, wholesale market operators increasingly sought to leverage the dispatch of distributed energy resource flexibility in close to real time. Three independent system operators and regional transmission organizations called on demand response five times in total for relief in the summer of 2018, including the NYISO.

The demand response events called in the last 18 months send a clear message: Grid operators will continue to call events year-round. This story unfolds as reserve margins continue to tighten, fossil baseload generation retirements continue, and system operators are increasingly faced with proving the resiliency and reliability of their systems while efforts to invest in a smarter electricity infrastructure gain momentum across the country.

In 2019, the total amount of flexible demand response capacity for wholesale market participation will remain about the same. However, the way operators and aggregators are using demand response is changing as information and communications technology systems improve and utilities are using AI to adapt to electricity demands, allowing the behavior of resources to be more accurately forecasted, monitored and controlled.

These improvements are allowing customer-sited resources to offer  flexibility services closer to real-time operations and become more reactive to system needs. At the same time, traditional demand response will continue to evolve toward the orchestration of DERs as an aggregate flexible resource to better enable growing levels of renewable energy on the grid.

 

Related News

View more

Electric Motor Testing Training

Electric Motor Testing Training covers on-line and off-line diagnostics, predictive maintenance, condition monitoring, failure analysis, and reliability practices to reduce downtime, optimize energy efficiency, and extend motor life in industrial facilities.

 

Key Points

An instructor-led course teaching on-line/off-line tests to diagnose failures, improve reliability, and cut downtime.

✅ On-line and off-line test methods and tools

✅ Failure modes, root cause analysis, and KPIs

✅ Predictive maintenance, condition monitoring, ROI

 

Our 12-Hour Electric Motor Testing Training live online instructor-led course introduces students to the basics of on-line and off-line motor testing techniques, with context from VFD drive training principles applicable to diagnostics.

September 10-11 , 2020 - 10:00 am - 4:30 pm ET

Our course teaches students the leading cause of motor failure. Electric motors fail. That is a certainty. And unexpectded motor failures cost a company hundreds of thousands of dollars. Learn the techniques and obtain valuable information to detect motor problems prior to failure, avoiding costly downtime, with awareness of lightning protection systems training that complements plant surge mitigation. This course focuses electric motor maintence professionals to achieve results from electrical motor testing that will optimize their plant and shop operations.

Our comprehensive Electric Motor Testing course emphasizes basic and advanced information about electric motor testing equipment and procedures, along with grounding practices per NEC 250 for safety and compliance. When completed, students will have the ability to learn electric motor testing techniques that results in increased electric motor reliability. This always leads to an increase in overall plant efficiency while at the same time decreasing costly motor repairs.

Students will also learn how to acquire motor test results that result in fact-based, proper motor maintenance management. Students will understand the reasons that electric motors fail, including grounding deficiencies highlighted in grounding guidelines for disaster prevention, and how to find problems quickly and return motors to service.

 

COURSE OBJECTIVE:

This course is designed to enable participants to:

  • Describe Various Equipment Used For Motor Testing And Maintenance.
  • Recognize The Cause And Source Of Electric Motor Problems, including storm-related hazards described in electrical safety tips for seasonal preparedness.
  • Explain How To Solve Existing And Potential Motor Problems, integrating substation maintenance practices to reduce upstream disruptions, Thereby Minimizing Equipment Disoperation And Process Downtime.
  • Analyze Types Of Motor Loads And Their Energy Efficiency Considerations, including insights relevant to hydroelectric projects in utility settings.

 

Complete Course Details Here

https://electricityforum.com/electrical-training/motor-testing-training

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.