Sustainable Development Technology Canada (SDTC) will invest $43.4 million in 15 new clean technology projects. Funding for the projects, which demonstrate strong potential for environmental, social and economic benefits, has been approved in principle by SDTC's Board of Directors.
Projects earmarked for support in SDTC's sixth funding round - its largest to date - include the development and demonstration of energy-efficient, low-cost solid-state lighting, led by Group IV Semiconductor Inc. of Ottawa; on-demand insulation to reduce energy use in transparent structures such as greenhouses, led by Montreal- based Sunarc of Canada Inc.; and small-scale electricity generation from tidal power, led by Clean Current Power Systems Inc. of Vancouver.
"The projects chosen for SDTC funding are win-win for both Canada's economy and the environment," said SDTC Chairman James M. Stanford. "Each of the projects is subjected to an exhaustive review process and must be represented by a consortium of organizations rather than a single company. These requirements improve the opportunities for successful technology demonstration and strengthen their market readiness."
Reflecting their solid prospects to deliver both commercial and environmental benefits, other private and public sector consortia partners are investing an additional $116 million in the 15 projects. This represents almost a 3:1 ratio of industry-partner contribution to SDTC investment.
The technologies are targeted to the power generation, energy utilization, transportation, agriculture and forestry, and waste management economic sectors. Demonstration of the technologies will be carried out in five provinces.
With this new investment, SDTC is on track to allocate all of its funds equitably up to December 2010.
"We need a framework for new technologies for Canada to lead the world in developing clean energy solutions," said the Honourable R. John Efford, Minister of Natural Resources Canada. "Funding these projects will help technological potential become reality, help us address climate change and create new economic opportunities in the years to come."
"Green products and technologies are a growing market and that's why they are a cornerstone of our most recent climate change plan," said the Honourable StDephane Dion, Minister of the Environment. "Through SDTC, the Government of Canada supports innovative solutions which will not only allow us to meet our Kyoto target, but also provide for cleaner cities, cleaner air and high value jobs for Canadians."
Since April 2002, SDTC has completed six funding rounds, committed $132 million to 61 clean technology projects, and leveraged $347 million from project consortia members. SDTC currently manages $479 million in projects.
SDTC will launch its next call for Statements of Interest (SOIs) on August 24, 2005. The upcoming call for SOIs will include, for the first time, a request for projects with technologies that address water and soil quality issues as well as climate change and clean air, reflecting the expanded mandate given to SDTC in the 2004 federal budget.
"This larger role endorses sustainable development as a comprehensive goal focusing on the protection and efficient use of the world's natural capital - air, land and water - each of which is linked to the other," said Vicky J. Sharpe, President and CEO of SDTC. "This approach will help us make more holistic decisions that support the competitiveness of Canadian industry and the Government of Canada's green technology initiatives."
Sustainable Development Technology Canada is a foundation created by the Government of Canada that operates a $550 million fund to support the development and demonstration of clean technologies - solutions that address issues of climate change, clean air, and water and soil quality to deliver environmental, economic and health benefits to Canadians.
An arm's length, not-for-profit corporation, SDTC fills the void in the innovation chain between research and commercialization - helping clean technology developers move through the development and demonstration phases, in preparation for commercialization. SDTC applies a stringent due diligence process when selecting technologies to support and requires every applicant to involve a consortia of partners in their project.
SDTC encourages collaboration among private, financial, academic, public sector partners and with the Government of Canada and all levels of government to build a sustainable development infrastructure in Canada.
Polycrystalline Tin Selenide Thermoelectrics enable waste heat recovery with ZT 3.1, matching single crystals while cutting costs, powering greener car engines, industrial furnaces, and thermoelectric generators via p-type and emerging n-type designs.
Key Points
Low-cost tin selenide devices that turn waste heat into power, achieving ZT 3.1 and enabling p-type and n-type modules.
✅ Oxygen removal prevents heat-leaking tin oxide grain skins.
✅ Polycrystalline ingots match single-crystal ZT 3.1 at lower cost.
✅ N-type tin selenide in development to pair with p-type.
So-called thermoelectric generators turn waste heat into electricity without producing greenhouse gas emissions, providing what seems like a free lunch. But despite helping power the Mars rovers, the high cost of these devices has prevented their widespread use. Now, researchers have found a way to make cheap thermoelectrics that work just as well as the pricey kind. The work could pave the way for a new generation of greener car engines, industrial furnaces, and other energy-generating devices.
“This looks like a very smart way to realize high performance,” says Li-Dong Zhao, a materials scientist at Beihang University who was not involved with the work. He notes there are still a few more steps to take before these materials can become high-performing thermoelectric generators. However, he says, “I think this will be used in the not too far future.”
Thermoelectrics are semiconductor devices placed on a hot surface, like a gas-powered car engine or on heat-generating electronics using thin-film converters to capture waste heat. That gives them a hot side and a cool side, away from the hot surface. They work by using the heat to push electrical charges from one to the other, a process of turning thermal energy into electricity that depends on the temperature gradient. If a device allows the hot side to warm up the cool side, the electricity stops flowing. A device’s success at preventing this, as well as its ability to conduct electrons, feeds into a score known as the figure of merit, or ZT.
Over the past 2 decades, researchers have produced thermoelectric materials with increasing ZTs, while related advances such as nighttime solar cells have broadened thermal-to-electric concepts. The record came in 2014 when Mercouri Kanatzidis, a materials scientist at Northwestern University, and his colleagues came up with a single crystal of tin selenide with a ZT of 3.1. Yet the material was difficult to make and too fragile to work with. “For practical applications, it’s a non-starter,” Kanatzidis says.
So, his team decided to make its thermoelectrics from readily available tin and selenium powders, an approach that, once processed, makes grains of polycrystalline tin selenide instead of the single crystals. The polycrystalline grains are cheap and can be heated and compressed into ingots that are 3 to 5 centimeters long, which can be made into devices. The polycrystalline ingots are also more robust, and Kanatzidis expected the boundaries between the individual grains to slow the passage of heat. But when his team tested the polycrystalline materials, the thermal conductivity shot up, dropping their ZT scores as low as 1.2.
In 2016, the Northwestern team discovered the source of the problem: an ultrathin skin of tin oxide was forming around individual grains of polycrystalline tin selenide before they were pressed into ingots. And that skin acted as an express lane for the heat to travel from grain to grain through the material. So, in their current study, Kanatzidis and his colleagues came up with a way to use heat to drive any oxygen away from the powdery precursors, leaving pristine polycrystalline tin selenide, whereas other devices can generate electricity from thin air using ambient moisture.
The result, which they report today in Nature Materials, was not only a thermal conductivity below that of single-crystal tin selenide but also a ZT of 3.1, a development that echoes nighttime renewable devices showing electricity from cold conditions. “This opens the door for new devices to be built from polycrystalline tin selenide pellets and their applications to be explored,” Kanatzidis says.
Getting through that door will still take some time. The polycrystalline tin selenide the team makes is spiked with sodium atoms, creating what is known as a “p-type” material that conducts positive charges. To make working devices, researchers also need an “n-type” version to conduct negative charges.
Zhao’s team recently reported making an n-type single-crystal tin selenide by spiking it with bromine atoms. And Kanatzidis says his team is now working on making an n-type polycrystalline version. Once n-type and p-type tin selenide devices are paired, researchers should have a clear path to making a new generation of ultra-efficient thermoelectric generators. Those could be installed everywhere from automobile exhaust pipes to water heaters and industrial furnaces to scavenge energy from some of the 65% of fossil fuel energy that winds up as waste heat.
UK Offshore Wind Expansion will make wind the main power source, driving renewable energy, offshore projects, smart grids, battery storage, and interconnectors to cut carbon emissions, boost exports, and attract global investment.
Key Points
A UK strategy to scale offshore wind, integrate smart grids and storage, cut emissions and drive investment and exports
✅ 30% energy target by 2030, backed by CfD support
✅ 250m industry investment and smart grid build-out
✅ Battery storage and interconnectors balance intermittency
Plans are afoot to make wind the UKs main power source for the first time in history amid ambitious targets to generate 30 percent of its total energy supply by 2030, up from 8 percent at present.
A recently inked deal will see the offshore wind industry invest 250 million into technology and infrastructure over the next 11 years, with the government committing up to 557 million in support, under a renewable energy auction that boosts wind and tidal projects, as part of its bid to lower carbon emissions to 80 percent of 1990 levels by 2050.
Offshore wind investment is crucial for meeting decarbonisation targets while increasing energy production, says Dominic Szanto, Director, Energy and Infrastructure at JLL. The governments approach over the last seven years has been to promise support to the industry, provided that cost reduction targets were met. This certainty has led to the development of larger, more efficient wind turbines which means the cost of offshore wind energy is a third of what it was in 2012.
Boosting the wind industry
Offshore wind power has been gathering pace in the UK and has grown despite COVID-19 disruptions in recent years. Earlier this year, the Hornsea One wind farm, the worlds largest offshore generator which is located off the Yorkshire coast, started producing electricity. When fully operational in 2020, the project will supply energy to over a million homes, and a further two phases are planned over the coming decade.
Over 10 gigawatts of offshore wind either already has government support or is eligible to apply for it in the near future, following a 10 GW contract award that underscores momentum, representing over 30 billion of likely investment opportunities.
Capital is coming from European utility firms and increasingly from Asian strategic investors looking to learn from the UKs experience. The attractive government support mechanism means banks are keen to lend into the sector, says Szanto.
New investment in the UKs offshore wind sector will also help to counter the growing influence of China. The UK is currently the worlds largest offshore wind market, but by 2021 it will be outstripped by China.
Through its new deal, the government hopes to increase wind power exports fivefold to 2.6 billion per year by 2030, with the UKs manufacturing and engineering skills driving projects in growth markets in Europe and Asia and in developing countries supported by the World Bank support through financing and advisory programs.
Over the next two decades, theres a massive opportunity for the UK to maintain its industry leading position by designing, constructing, operating and financing offshore wind projects, says Szanto. Building on projects such as the Hywind project in Scotland, it could become a major export to countries like the USA and Japan, where U.S. lessons from the U.K. are informing policy and coastal waters are much deeper.
Wind-powered smart grids
As wind power becomes a major contributor to the UKs energy supply, which will be increasingly made up of renewable sources in coming decades, there are key infrastructure challenges to overcome.
A real challenge is that the UKs power generation is becoming far more decentralised, with smaller power stations such as onshore wind farms and solar parks and more prosumers residential houses with rooftop solar coupled with a significant rise in intermittent generation, says Szanto. The grid was never designed to manage energy use like that.
One potential part of the solution is to use offshore wind farms in other sites in European waters.
By developing connections between wind projects from neighbouring countries, it will create super-grids that will help mitigate intermittency issues, says Szanto.
More advanced energy storage batteries will also be key for when less energy is generated on still days. There is a growing need for batteries that can store large amounts of energy and smart technology to discharge that energy. Were going through a revolution where new technology companies are working to enable a much smarter grid.
Future smart grids, based on developing technology such as blockchain, might enable the direct trading of energy between generators and consumers, with algorithms that can manage many localised sources and, critically, ensure a smooth power supply.
Investors seeking a higher-yield market are increasingly turning to battery technology, Szanto says. In a future smart grid, for example, batteries could store electricity bought cheaply at low-usage times then sold at peak usage prices or be used to provide backup energy services to other companies.
Majors investing in the transition
Its not just new energy technology companies driving change; established oil and gas companies are accelerating spending on renewable energy. Shell has committed to $1-2 billion per year on clean energy technologies out of a $25-30 billion budget, while Equinor plans to spend 15-20 percent of its budget on renewables by 2030.
The oil and gas majors have the global footprint to deliver offshore wind projects in every country, says Szanto. This could also create co-investment opportunities for other investors in the sector especially as nascent wind markets such as the U.S., where the U.S. offshore wind timeline is still developing, and Japan evolve.
European energy giants, for example, have bid to build New Yorks first offshore wind project.
As offshore wind becomes a globalised sector, with a trillion-dollar market outlook emerging, the major fuel companies will have increasingly large roles. They have the resources to undertake the years-long, cost-intensive developments of wind projects, driven by a need for new business models as the world looks beyond carbon-based fuels, says Szanto.
Oil and gas heavyweights are also making wind, solar and energy storage acquisitions BP acquired solar developer Lightsource and car-charging network Chargemaster, while Shell spent $400 million on solar and battery companies.
The public perception is that renewable energy is niche, but its now a mainstream form of energy generation., concludes Szanto.
Every nation in the world is aligned in wanting a decarbonised future. In terms of electricity, that means renewable energy and for offshore wind energy, the outlook is extremely positive.
Alberta wind power surpasses coal as AESO reports record renewable energy feeding the grid, with natural gas conversions, solar growth, energy storage, and decarbonization momentum lowering carbon intensity across Alberta's electricity system.
Key Points
AESO data shows wind surpassing coal in Alberta, driven by coal retirements, gas conversions, and growing renewables.
✅ AESO reports wind output above coal several times this week
✅ Coal units retire or convert to natural gas, boosting renewables
✅ Carbon intensity falls; storage and solar improve grid reliability
Marking a significant shift in Alberta energy history, wind generation trends provided more power to the province's energy grid than coal several times this week.
According to data from the Alberta Energy System Operator (AESO) released this week, wind generation units contributed more energy to the grid than coal at times for several days. On Friday afternoon, wind farms contributed more than 1,700 megawatts of power to the grid, compared to around 1,260 megawatts from coal stations.
"The grid is going through a period of transformative change when we look at the generation fleet, specifically as it relates to the coal assets in the province," Mike Deising, AESO spokesperson, told CTV News in an interview.
The shift in electricity generation comes as more coal plants come offline in Alberta, or transition to cleaner energy through natural gas generation, including the last of TransAlta's units at the Keephills Plant west of Edmonton.
Only three coal generation stations remain online in the province, at the Genesee plant southwest of Edmonton, as the coal phase-out timeline advances. Less available coal power, means renewable energy like wind and solar make up a greater portion of the grid.
EVOLUTION OF THE GRID "Our grid is changing, and it's evolving," Deising said, adding that more units have converted to natural gas and companies are making significant investments into solar and wind energy.
For energy analyst Kevin Birn with IHS Markit, that trend is only going to continue.
"What we've seen for the last 24 to 36 months is a dramatic acceleration in ambition, policy, and projects globally around cleaner forms of energy or lower carbon forms of energy," Birn said.
Birn, who is also chief analyst of Canadian Oil Markets, added that not only has the public appetite for cleaner energy helped fuel the shift, but technological advancements have made renewables like wind and solar more cost-efficient.
"Alberta was traditionally heavily coal-reliant," he said. "(Now) western Canada has quite a diverse energy base."
LESS CARBON-INTENSIVE According to Birn, the shift in energy production marks a significant reduction in carbon emissions as Alberta progresses toward its last coal plant closure milestone.
Ten years ago, IHS Markit estimates that Alberta's grid contributed about 900 kilograms of carbon dioxide equivalent per megawatt-hour of energy generation.
"That (figure is) really representing the dominance and role of coal in that grid," Birn said.
Current estimates show that figure is closer to 600 kilograms of CO2 equivalent.
"That means the power you and I are using is less carbon-intensive," Birn said, adding that figure will continue to fall over the next couple of years.
RENEWABLES HERE TO STAY While many debate whether Alberta's energy is getting clean enough fast enough, Birn believes change is coming.
"It's been a half-decade of incredible price volatility in the oil market which had really dominated this sector and region," the analyst said.
"When I think of the future, I see the power sector building on large-scale renewables, which means decarbonization, and that provides an opportunity for those tech companies looking for clean energy places to land facilities."
Coal and natural gas are considered baseline assets by the AESO, where generation capacity does not shift dramatically, though some utilities report declining coal returns in other markets.
"Wind is a variable resource. It will generate when the wind is blowing, and it obviously won't when the wind is not," Deising said. "Wind and solar can ramp quickly, but they can drop off quite quickly, and we have to be prepared.
"We factor that into our daily planning and assessments," he added. "We follow those trends and know where the renewables are going to show up on the system, how many renewables are going to show up."
Deising says one wind plant in Alberta currently has an energy storage capacity to preserve renewably generated electricity during summer demand records and peak hours as needed. As the technology becomes more affordable, he expects more plants to follow suit.
"As a system operator, our job is to make sure as (the grid) is evolving we can continue to provide reliable power to Albertans at every moment every day," Deising said. "We just have to watch the system more carefully."
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
Calgary Winter Energy Usage Surge highlights soaring electricity demand, added megawatt-hours, and grid reliability challenges driven by extreme cold, heating loads, and climate change, with summer air conditioning also shifting seasonal peaks.
Key Points
A spike in Calgary's power use from extreme cold, adding 22k MWh and testing reliability as heating demand rises.
✅ +22,000 MWh vs Feb 2018 amid fourth-coldest February
✅ Heating loads spike; summer A/C now drives peak demand
✅ Grid reliability monitored; more solar and green resources ahead
February was so cold in Calgary that the city used enough extra energy to power 3,400 homes for a whole year, echoing record-breaking demand in B.C. in 2021 during severe cold.
Enmax Power Corporation, the primary electricity utility in the city, says the city 's energy consumption was up 22,000 megawatt hours last month compared with Februray 2018.
"We've seen through this cold period our system has held up very well. It's been very reliable," Enmax vice-president Andre van Dijk told the Calgary Eyeopener on Friday. "You know, in the absence of a windstorm combined with cold temperatures and that sort of thing, the system has actually held up pretty well."
The past month was the fourth coldest in Calgary's history, and similar conditions have pushed all-time high demand in B.C. in recent years across the West. The average temperature for last month was –18.1 C. The long-term average for February is –5.4 C.
Watching use, predicting issues
The electricity company monitors demand and load on a daily basis, always trying to predict issues before they happen, van Dijk said, and utilities have introduced winter payment plans to help customers manage bills during prolonged cold.
One of the issues they're watching is climate change, and how extreme temperatures and weather affect both the grid's reliability, as seen when Quebec shattered consumption records during cold snaps, and the public's energy use.
The colder it gets, the higher you turn up the heat. The hotter it is, the more you use air conditioning.
He also noted that using fuels then contributes to climate change, creating a cycle.
"We are seeing variations in temperature and we've seen large weather events across the continent, across the world, in fact, that impact electrical systems, whether that's flooding, as we've experienced here, or high winds, tornadoes," van Dijk said.
"Climate change and changing weather patterns have definitely had had an impact on us as an electrical industry."
In 2012, he said, Calgary switched from using the most power during winter to using the most during summer, in large part due to air conditioning, he said.
"Temperature is a strong influencer of energy consumption and of our demand," van Dijk said.
Christmas tree lights have also become primarily LED, van Dijk said, which cuts down on a big energy draw in the winter.
He said he expects more solar and other green resources will be added into the electrical system in the future to mitigate how much the increasingly levels of energy use impact climate change, and to help moderate electricity costs in Alberta over time.
U.S. Energy Transition traces the shift from coal and oil to natural gas, nuclear power, and renewables like wind and solar, driven by efficiency, grid modernization, climate goals, and economic innovation.
Key Points
The U.S. Energy Transition is the shift from fossil fuels to cleaner power, driven by tech, policy, and markets.
✅ Shift from coal and oil to gas, nuclear, wind, and solar
✅ Enabled by grid modernization, storage, and efficiency
✅ Aims to cut emissions while ensuring reliability and affordability
The evolution of energy use in the United States is a dynamic narrative that reflects technological advancements, economic shifts, environmental awareness, and societal changes over time. From the nation's early reliance on wood and coal to the modern era dominated by oil, natural gas, and renewable sources, the story of energy consumption in the U.S. is a testament to innovation and adaptation.
Early Energy Sources: Wood and Coal
In the early days of U.S. history, energy needs were primarily met through renewable resources such as wood for heating and cooking. As industrialization took hold in the 19th century, coal emerged as a dominant energy source, fueling steam engines and powering factories, railways, and urban growth. The widespread availability of coal spurred economic development and shaped the nation's infrastructure.
The Rise of Petroleum and Natural Gas
The discovery and commercialization of petroleum in the late 19th century transformed the energy landscape once again. Oil quickly became a cornerstone of the U.S. economy, powering transportation, industry, and residential heating, and informing debates about U.S. energy security in policy circles. Concurrently, natural gas emerged as a significant energy source, particularly for heating and electricity generation, as pipelines expanded across the country.
Electricity Revolution
The 20th century witnessed a revolution in electricity generation and consumption, and understanding where electricity comes from helps contextualize how systems evolved. The development of hydroelectric power, spurred by projects like the Hoover Dam and Tennessee Valley Authority, provided clean and renewable energy to millions of Americans. The widespread electrification of rural areas and the proliferation of appliances in homes and businesses transformed daily life and spurred economic growth.
Nuclear Power and Energy Diversification
In the mid-20th century, nuclear power emerged as a promising alternative to fossil fuels, promising abundant energy with minimal greenhouse gas emissions. Despite concerns about safety and waste disposal, nuclear power plants became a significant part of the U.S. energy mix, providing a stable base load of electricity, even as the aging U.S. power grid complicates integration of variable renewables.
Renewable Energy Revolution
In recent decades, the U.S. has seen a growing emphasis on renewable energy sources such as wind, solar, and geothermal power, yet market shocks and high fuel prices alone have not guaranteed a rapid green revolution, prompting broader policy and investment responses. Advances in technology, declining costs, and environmental concerns have driven investments in clean energy infrastructure and policies promoting renewable energy adoption. States like California and Texas lead the nation in wind and solar energy production, demonstrating the feasibility and benefits of transitioning to sustainable energy sources.
Energy Efficiency and Conservation
Alongside shifts in energy sources, improvements in energy efficiency and conservation have played a crucial role in reducing per capita energy consumption and greenhouse gas emissions. Energy-efficient appliances, building codes, and transportation innovations have helped mitigate the environmental impact of energy use while reducing costs for consumers and businesses, and weather and economic factors also influence demand; for example, U.S. power demand fell in 2023 on milder weather, underscoring the interplay between efficiency and usage.
Challenges and Opportunities
Looking ahead, the U.S. faces both challenges and opportunities in its energy future, as recent energy crisis effects ripple across electricity, gas, and EVs alike. Addressing climate change requires further investments in renewable energy, grid modernization, and energy storage technologies. Balancing energy security, affordability, and environmental sustainability remains a complex task that requires collaboration between government, industry, and society.
Conclusion
The evolution of energy use throughout U.S. history reflects a continuous quest for innovation, economic growth, and environmental stewardship. From wood and coal to nuclear power and renewables, each era has brought new challenges and opportunities in meeting the nation's energy needs. As the U.S. transitions towards a cleaner and more sustainable energy future, leveraging technological advancements and embracing policy solutions, amid debates over U.S. energy dominance, will be essential in shaping the next chapter of America's energy story.