Germany considers U-turn on nuclear phaseout


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Germany Nuclear Power Extension debated as Olaf Scholz weighs energy crisis, gas shortages from Russia, slow grid expansion in Bavaria, and renewables delays; stress test results may guide policy alongside coal plant reactivations.

 

Key Points

A proposal to delay Germany's nuclear phaseout to stabilize power supply amid gas cuts and slow grid upgrades.

✅ Driven by Russia gas cuts and Nord Stream 1 curtailment

✅ Targets Bavaria grid bottlenecks; renewables deployment delays

✅ Decision awaits grid stress test; coalition parties remain split

 

The German chancellor on Wednesday said it might make sense to extend the lifetime of Germany's three remaining nuclear power plants.

Germany famously decided to stop using atomic energy in 2011, and the last remaining plants were set to close at the end of this year.

However, an increasing number of politicians have been arguing for the postponement of the closures amid energy concerns arising from Russia's invasion of Ukraine. The issue divides members of Scholz's ruling traffic-light coalition.

What did the chancellor say?
Visiting a factory in western Germany, where a vital gas turbine is being stored, Chancellor Olaf Scholz was responding to a question about extending the lifetime of the power stations.

He said the nuclear power plants in question were only relevant for a small proportion of electricity production. "Nevertheless, that can make sense," he said.

The German government has previously said that renewable energy alternatives are the key to solving the country's energy problems.

However, Scholz said this was not happening quickly enough in some parts of Germany, such as Bavaria.

"The expansion of power line capacities, of the transmission grid in the south, has not progressed as quickly as was planned," the chancellor said.

"We will act for the whole of Germany, we will support all regions of Germany in the best possible way so that the energy supply for all citizens and all companies can be guaranteed as best as possible."

The phaseout has been planned for a long time. Germany's Social Democrat government, under Merkel's predecessor Gerhard Schröder, had announced that Germany would stop using nuclear power by 2022 as planned.

Schröder's successor Angela Merkel — herself a former physicist — had initially sought to extend to life of existing nuclear plants to as late as 2037. She viewed nuclear power as a bridging technology to sustain the country until new alternatives could be found.

However, Merkel decided to ditch atomic energy in 2011, after the Fukushima nuclear disaster in Japan, setting Germany on a path to become the first major economy to phase out coal and nuclear in tandem.

Nuclear power accounted for 13.3% of German electricity supply in 2021. This was generated by six power plants, of which three were switched off at the end of 2021. The remaining three — Emsland, Isar and Neckarwestheim — were due to shut down at the end of 2022. 

Germany's energy mix 1st half of 2022
The need to fill an energy gap has emerged after Russia dramatically reduced gas deliveries to Germany through the Nord Stream 1 pipeline, though nuclear power would do little to solve the gas issue according to some officials. Officials in Berlin say the Kremlin is seeking to punish the country — which is heavily reliant on Moscow's gas — for its support of Ukraine and sanctions on Russia.

Germany has already said it will temporarily fire up mothballed coal and oil power plants in a bid to solve the looming power crisis.

Social Democrat Scholz and Germany's energy minister, Robert Habeck, from the Green Party, a junior partner in the three-way coalition government, had previously ruled out any postponement of the nuclear phasout, despite debate over a possible resurgence of nuclear energy among some lawmakers. The third member of Scholz's coalition, the neoliberal Free Democrats, has voiced support for the extension, as has the opposition conservative CDU-CSU bloc.

Berlin has said it will await the outcome of a new "stress test" of Germany's electric grid before deciding on the phaseout.

 

Related News

Related News

Hydro-Québec will refund a total of $535 million to customers who were account holders in 2018 or 2019

Hydro-Québec Bill 34 Refund issues $535M customer credits tied to electricity rates, consumption-based rebates, and variance accounts, averaging $60 per account and 2.49% of 2018-2019 usage, via bill credits or mailed cheques.

 

Key Points

A $535M credit refunding 2.49% of 2018-2019 usage to Hydro-Québec customers via bill credits or cheques.

✅ Applies to 2018-2019 consumption; average refund about $60.

✅ Current customers get bill credits; former customers receive cheques.

✅ Refund equals 2.49% of usage from variance accounts under prior rates.

 

Following the adoption of Bill 34 in December 2019, a total amount of $535 million will be refunded to customers who were Hydro-Québec account holders in 2018 or 2019. This amount was accumulated in variance accounts required under the previous rate system between January 1, 2018, and December 31, 2019.

If you are still a Hydro-Québec customer, a credit will be applied to your bill in the coming weeks, and improving billing layout clarity is a focus in some provinces as well. The amount will be indicated on your bill.

An average refund amount of $60. The refund amount is calculated based on the quantity of electricity that each customer consumed in 2018 and 2019. The refund will correspond to 2,49% of each customer's consumption between January 1, 2018, and December 31, 2019, for an average of approximately $60, while Ontario hydro rates are set to increase on Nov. 1.

The following chart provides an overview of the refund amount based on the type of home. Naturally, the number of occupants, electricity use habits and features of the home, such as insulation and energy efficiency, may have a significant impact on the amount of the refund, and in other provinces, oversight debates continue following a BC Hydro fund surplus revelation.

What if you were an account holder in 2018 or 2019 but you are no longer a Hydro-Québec customer?
People who were account holders in 2018 or 2019, but who are no longer Hydro-Québec customers will receive their credit by cheque, a lump sum credit approach seen elsewhere.

To receive their cheque, these people must get in touch to update their address in one of the following ways:  

If they have a Hydro-Québec Customer Space and remember their access code, they can update their profile.

Anyone without a Customer Space or who doesn't remember their access code can fill out the Request for a credit form at the following address: www.hydroquebec.com/credit in which they can indicate the address where they wish to receive their cheque, where applicable.

Those who cannot send us their address online can call 514 385-7252 or 1 888 385-7252 to give it to a customer services representative, as utilities like Hydro One have moved to reconnect customers in some cases. Note that the process will take longer on the phone, especially if the call volume is high.

UPDATE: Hydro-Québec will be returning an additional $35 million to customers under the adoption of Bill 34, amid overcharging allegations reported elsewhere.

Energy Minister Jonatan Julien announced on Tuesday that the public utility will be refunding a total of $535 million to customers between January and April.

The legislation, which was passed in December, allows the Quebec government to take control of the rates charged for electricity in the province, including decisions on whether to seek a rate hike next year under the new framework.

 

Related News

View more

Basin Electric and Clenera Renewable Energy Announce Power Purchase Agreement for Montana Solar Project

Cabin Creek Solar Project Montana delivers 150 MW of utility-scale solar under a Power Purchase Agreement, with Basin Electric and Clenera supplying renewable energy, enhancing grid reliability, and reducing carbon emissions for 30,000 homes.

 

Key Points

A 150 MW solar PPA near Baker by Basin Electric and Clenera, delivering reliable renewable power and carbon reduction.

✅ 150 MW across two 75 MW sites near Baker, Montana

✅ PPA supports Basin Electric's diverse, cost-effective portfolio

✅ Cuts 265,000 tons CO2 and powers 30,000 homes

 

A new solar project in Montana will provide another 150 megawatts (MW) of affordable, renewable power to Basin Electric customers and co-op members across the region.

Basin Electric Power Cooperative (Basin Electric) and Clenera Renewable Energy, announced today the execution of a Power Purchase Agreement (PPA) for the Cabin Creek Solar Project. Cabin Creek is Basin Electric's second solar PPA, and the result of the cooperative's continuing goal of providing a diverse mix of energy sources that are cost-effective for its members.

When completed, Cabin Creek will consist of two, 75-MW projects in southeastern Montana, five miles west of Baker. According to Clenera, the project will eliminate 265,000 tons of carbon dioxide per year and power 30,000 homes, while communities such as the Ermineskin First Nation advance their own generation efforts.

"Renewable technology has advanced dramatically in recent years, with rapid growth in Alberta underscoring broader trends, which means even more affordable power for Basin Electric's customers," said Paul Sukut, CEO and general manager of Basin Electric. "Basin Electric is excited to purchase the output from this project to help serve our members' growing energy needs. Adding solar further promotes our all-of-the-above energy solution as we generate energy using a diverse resource portfolio including coal, natural gas, and other renewable resources to provide reliable, affordable, and environmentally safe generation.

"Clenera is proud to partner with Basin Electric Power Cooperative to support the construction of the Cabin Creek Solar projects in Montana," said Jared McKee, Clenera's director of Business Development. "We truly believe that Basin Electric will be a valuable partner as we aim to deliver today's new era of reliable, battery storage increasingly enabling round-the-clock service, affordable, and clean energy."

"We're pleased that Southeast Electric will be home to the Cabin Creek Solar Project," said Jack Hamblin, manager of Southeast Electric Cooperative, a Basin Electric Class C member headquartered in Ekalaka, Montana. "This project is one more example of cooperatives working together to use economies of scale to add affordable generation for all their members - similar to what was done 70 years ago when cooperatives were first built."

Basin Electric Class A member Upper Missouri Power Cooperative, headquartered in Sidney, Montana, provides wholesale power to Southeast Electric and 10 other distribution cooperatives in western North Dakota and eastern Montana. "It is encouraging to witness the development of cost-competitive energy, including projects in Alberta contracted at lower cost than natural gas that demonstrate market shifts, like the Cabin Creek Solar Project, which will be part of the energy mix we purchase from Basin Electric for our member systems, said Claire Vigesaa, Upper Missouri's general manager. "The energy needs in our region are growing and this project will help us serve both our members, and our communities as a whole."

Cabin Creek will bring significant economic benefits to the local area. According to Clenera, the project will contribute $8 million in property taxes to Fallon County and $5 million for the state of Montana over 35 years. They say it will also create approximately 300 construction jobs and two to three full-time jobs.

"This project underscores the efforts by Montana's electric cooperatives to continue to embrace more carbon-free technology," said Gary Wiens, CEO of Montana Electric Cooperatives' Association. "It also demonstrates Basin Electric's commitment to seek development of renewable energy projects in our state. It's exciting that these two projects combined are 50 times larger than our current largest solar array in Montana."

Cabin Creek is anticipated to begin operations in late 2023.

 

Related News

View more

Renewables Surpass Coal in India's Energy Capacity Shift

India Renewable Energy Surge 2024 signals coal's decline as solar and wind capacity soar, aided by policy incentives, grid upgrades, energy storage, and falling costs, accelerating decarbonization and clean power growth.

 

Key Points

Q1 2024 saw renewables outpace coal in new capacity, led by cheaper solar, wind, policy support, and storage.

✅ 71.5% of new Q1 capacity came from renewables

✅ Solar and wind expand on falling costs and faster permitting

✅ Grid integration needs storage, skills, and just transition

 

In a landmark shift for the world's second-most populous nation, coal has finally been dethroned as the king of India's energy supply. The first quarter of 2024 saw a historic surge in renewable energy capacity, particularly on-grid solar development across states, pushing its share of power generation past 71.5%. This remarkable feat marks a turning point in India's journey towards a cleaner and more sustainable energy future.

For decades, coal has been the backbone of India's power sector, fueling rapid economic growth but also leading to concerning levels of air pollution. However, a confluence of factors has driven this dramatic shift, even as coal generation surges create short-term fluctuations in the mix. Firstly, the cost of solar and wind power has plummeted in recent years, making them increasingly competitive with coal. Secondly, the Indian government has set ambitious renewable energy targets, aiming for 50% of cumulative power generation capacity from non-fossil fuel sources by 2030. Thirdly, growing public awareness about the environmental impact of coal has spurred a demand for cleaner alternatives.

This surge in renewables is not just about replacing coal. The first quarter of 2024 witnessed a record-breaking addition of 13,669 megawatts (MW) of power generation capacity, with renewables accounting for a staggering 71.5% of that figure, aligning with 30% global renewable electricity milestones seen worldwide. This rapid expansion is driven by factors like falling equipment costs, streamlined permitting processes, and attractive government incentives. Solar and wind energy are leading the charge, and in other major markets renewables are projected to reach one-fourth of U.S. generation in the near term, with large-scale solar farms and wind turbine installations dotting the Indian landscape.

The transition away from coal presents both opportunities and challenges. On the positive side, cleaner air will lead to significant health benefits for millions of Indians. Additionally, India can establish itself as a global leader in the renewable energy sector, attracting investments and creating new jobs, echoing how China's solar PV expansion reshaped markets in the previous decade. However, challenges remain. Integrating such a large amount of variable renewable energy sources like solar and wind into the grid requires robust energy storage solutions. Furthermore, millions of jobs in the coal sector need to be transitioned to new opportunities in the green economy.

Despite these challenges, India's move towards renewables is a significant development with global implications, as U.S. renewable electricity surpassed coal in 2022, underscoring broader momentum. It demonstrates the growing viability of clean energy solutions and paves the way for other developing nations to follow suit. India's success story can inspire a global shift towards a more sustainable energy future, one powered by the sun, wind, and other renewable resources.

Looking ahead, continued government support, technological advancements, and innovative financing mechanisms will be crucial for sustaining India's renewable energy momentum. The future of India's energy sector is undoubtedly bright, fueled by the clean and abundant power of the sun and the wind, as wind and solar surpassed coal in the U.S. in recent comparisons. The world will be watching closely to see if India can successfully navigate this energy transition, setting an example for other nations struggling to balance development with environmental responsibility.

 

Related News

View more

California’s Solar Power Cost Shift: A Misguided Policy Threatening Energy Equity

California Rooftop Solar Cost Shift examines PG&E rate hikes, net metering changes, and utility infrastructure spending impacts on low-income households, distributed generation, and clean energy adoption, potentially raising bills and undermining grid resilience.

 

Key Points

A claim that rooftop solar shifts fixed grid costs to others; critics cite PG&E rates, avoided costs, and impacts.

✅ PG&E rates outpace national average, underscoring cost drivers.

✅ Net metering cuts risk burdening low- and middle-income homes.

✅ Distributed generation avoids infrastructure spend and grid strain.

 

California is grappling with soaring electricity prices across the state, with Pacific Gas & Electric (PG&E) rates more than double the national average and increasing at an average of 12.5% annually over the past six years. In response, Governor Gavin Newsom issued an executive order directing state energy agencies to identify ways to reduce power costs. However, recent policy shifts targeting rooftop solar users may exacerbate the problem rather than alleviate it.

The "Cost Shift" Theory

A central justification for these pricing changes is the "cost shift" theory. This theory posits that homeowners with rooftop solar panels reduce their electricity consumption from the grid, thereby shifting the fixed costs of maintaining and operating the electrical grid onto non-solar customers. Proponents argue that this leads to higher rates for those without solar installations.

However, this theory is based on a flawed assumption: that PG&E owns 100% of the electricity generated by its customers and is entitled to full profits even for energy it does not deliver. In reality, rooftop solar users supply only about half of their energy needs and still pay for the rest. Moreover, their investments in solar infrastructure reduce grid strain and save ratepayers billions by avoiding costly infrastructure projects and reducing energy demand growth, aligning with efforts to revamp electricity rates to clean the grid as well.

Impact on Low- and Middle-Income Households

The majority of rooftop solar users are low- and middle-income households. These individuals often invest in solar panels to lower their energy bills and reduce their carbon footprint. Policy changes that undermine the financial viability of rooftop solar disproportionately affect these communities, and efforts to overturn income-based charges add uncertainty about affordability and access.

For instance, Assembly Bill 942 proposes to retroactively alter contracts for millions of solar consumers, cutting the compensation they receive from providing energy to the grid, raising questions about major changes to your electric bill that could follow if their home is sold or transferred. This would force those with solar leases—predominantly lower-income individuals—to buy out their contracts when selling their homes, potentially incurring significant financial burdens.

The Real Drivers of Rising Energy Costs

While rooftop solar users are being blamed for rising electricity rates, calls for action have mounted as the true culprits lie elsewhere. Unchecked utility infrastructure spending has been a significant factor in escalating costs. For example, PG&E's rates have increased rapidly, yet the utility's spending on infrastructure projects has often been criticized for inefficiency and lack of accountability. Instead of targeting solar users, policymakers should scrutinize utility profit motives and infrastructure investments to identify areas where costs can be reduced without sacrificing service quality.

California's approach to addressing rising electricity costs by targeting rooftop solar users is misguided. The "cost shift" theory is based on flawed assumptions and overlooks the substantial benefits that rooftop solar provides to the grid and ratepayers. To achieve a sustainable and equitable energy future, the state must focus on controlling utility spending, promoting clean energy access for all, especially as it exports its energy policies across the West, and ensuring that policies support—not undermine—the adoption of renewable energy technologies.

 

Related News

View more

Quebec Hit by Widespread Power Outages Following Severe Windstorm

Quebec Windstorm 2025 disrupted Montreal and surrounding regions, triggering power outages, Hydro-Québec repairs, fallen trees, infrastructure damage, and transport delays, while emergency response and community resilience accelerated restoration and recovery efforts across the province.

 

Key Points

A severe April 29 windstorm with 100 km/h gusts caused outages, damage, and emergency recovery across Quebec.

✅ Gusts exceeded 100 km/h across Montreal and nearby regions

✅ Hydro-Québec restored power; crews cleared debris and lines

✅ Communities shared resources, shelters, and volunteer support

 

A powerful windstorm swept across Quebec on April 29, 2025, leaving tens of thousands of residents without electricity and causing significant damage to infrastructure. The storm's intensity disrupted daily life, leading to widespread outages across the province, fallen trees, and transportation delays.

Storm's Impact

The windstorm, characterized by gusts exceeding 100 km/h, struck various regions of Quebec, including Montreal and its surrounding areas. Hydro-Québec reported extensive power outages affecting numerous customers. The storm's ferocity led to the uprooting of trees, downing of power lines, and significant damage to buildings and vehicles.

Response and Recovery Efforts

In the aftermath, emergency services and utility companies mobilized to restore power and clear debris. Hydro-Québec crews worked tirelessly, much like Sudbury Hydro teams did in Ontario, to repair damaged infrastructure, while municipal authorities coordinated efforts to ensure public safety and facilitate the restoration process. Despite these efforts, some areas experienced prolonged outages, highlighting the storm's severity.

Community Resilience

Residents demonstrated remarkable resilience during the crisis. Many communities came together to support one another, as seen when Toronto neighborhoods rallied during lingering outages, sharing resources and providing assistance to those in need. Local shelters were set up to offer warmth and supplies to displaced individuals, and volunteers played a crucial role in the recovery process.

Lessons Learned

The storm underscored the importance of preparedness and infrastructure resilience, including vulnerabilities highlighted by a recent manhole fire affecting Hydro-Québec customers. In response, discussions have been initiated regarding the strengthening of power grids and the implementation of more robust emergency response strategies to mitigate the impact of future natural disasters.

As Quebec continues to recover, the collective efforts of its residents and emergency services serve as a testament to the province's strength and unity, even as similar strong-wind outages affect other regions, in the face of adversity.

 

Related News

View more

How Ukraine Unplugged from Russia and Joined Europe's Power Grid with Unprecedented Speed

Ukraine-ENTSO-E Grid Synchronization links Ukraine and Moldova to the European grid via secure interconnection, matching frequency for stability, resilience, and energy security, enabling cross-border support, islanding recovery, and coordinated load balancing during wartime disruptions.

 

Key Points

Rapid alignment of Ukraine and Moldova into the European grid to enable secure interconnection and system stability.

✅ Matches 50 Hz frequency across interconnected systems

✅ Enables cross-border support and electricity trading

✅ Improves resilience, stability, and energy security

 

On February 24 Ukraine’s electric grid operator disconnected the country’s power system from the larger Russian-operated network to which it had always been linked. The long-planned disconnection was meant to be a 72-hour trial proving that Ukraine could operate on its own and to protect electricity supply before winter as contingencies were tested. The test was a requirement for eventually linking with the European grid, which Ukraine had been working toward since 2017. But four hours after the exercise started, Russia invaded.

Ukraine’s connection to Europe—which was not supposed to occur until 2023—became urgent, and engineers aimed to safely achieve it in just a matter of weeks. On March 16 they reached the key milestone of synchronizing the two systems. It was “a year’s work in two weeks,” according to a statement by Kadri Simson, the European Union commissioner for energy. That is unusual in this field. “For [power grid operators] to move this quickly and with such agility is unprecedented,” says Paul Deane, an energy policy researcher at the University College Cork in Ireland. “No power system has ever synchronized this quickly before.”

Ukraine initiated the process of joining Europe’s grid in 2005 and began working toward that goal in earnest in 2017, as did Moldova. It was part of an ongoing effort to align with Europe, as seen in the Baltic states’ disconnection from the Russian grid, and decrease reliance on Russia, which had repeatedly threatened Ukraine’s sovereignty. “Ukraine simply wanted to decouple from Russian dominance in every sense of the word, and the grid is part of that,” says Suriya Jayanti, an Eastern European policy expert and former U.S. diplomat who served as energy chief at the U.S. embassy in Kyiv from 2018 to 2020.

After the late February trial period, Ukrenergo, the Ukrainian grid operator, had intended to temporarily rejoin the system that powers Russia and Belarus. But the Russian invasion made that untenable. “That left Ukraine in isolation mode, which would be incredibly dangerous from a power supply perspective,” Jayanti says. “It means that there’s nowhere for Ukraine to import electricity from. It’s an orphan.” That was a particularly precarious situation given Russian attacks on key energy infrastructure such as the Zaporizhzhia nuclear power plant and ongoing strikes on Ukraine’s power grid that posed continuing risks. (According to Jayanti, Ukraine’s grid was ultimately able to run alone for as long as it did because power demand dropped by about a third as Ukrainians fled the country.)

Three days after the invasion, Ukrenergo sent a letter to the European Network of Transmission System Operators for Electricity (ENTSO-E) requesting authorization to connect to the European grid early. Moldelectrica, the Moldovan operator, made the same request the following day. While European operators wanted to support Ukraine, they had to protect their own grids, amid renewed focus on protecting the U.S. power grid from Russian hacking, so the emergency connection process had to be done carefully. “Utilities and system operators are notoriously risk-averse because the job is to keep the lights on, to keep everyone safe,” says Laura Mehigan, an energy researcher at University College Cork.

An electric grid is a network of power-generating sources and transmission infrastructure that produces electricity and carries it from places such as power plants, wind farms and solar arrays to houses, hospitals and public transit systems. “You can’t just experiment with a power system and hope that it works,” Deane says. Getting power where it is it needed when it is needed is an intricate process, and there is little room for error, as incidents involving Russian hackers targeting U.S. utilities have highlighted for operators worldwide.

Crucial to this mission is grid interconnection. Linked systems can share electricity across vast areas, often using HVDC technology, so that a surplus of energy generated in one location can meet demand in another. “More interconnection means we can move power around more quickly, more efficiently, more cost effectively and take advantage of low-carbon or zero-carbon power sources,” says James Glynn, a senior research scholar at the Center on Global Energy Policy at Columbia University. But connecting these massive networks with many moving parts is no small order.

One of the primary challenges of interconnecting grids is synchronizing them, which is what Ukrenergo, Moldelectrica and ENTSO-E accomplished last week. Synchronization is essential for sharing electricity. The task involves aligning the frequencies of every energy-generation facility in the connecting systems. Frequency is like the heartbeat of the electric grid. Across Europe, energy-generating turbines spin 50 times per second in near-perfect unison, and when disputes disrupt that balance, slow clocks across Europe can result, reminding operators of the stakes. For Ukraine and Moldova to join in, their systems had to be adjusted to match that rhythm. “We can’t stop the power system for an hour and then try to synchronize,” Deane says. “This has to be done while the system is operating.” It is like jumping onto a moving train or a spinning ride at the playground: the train or ride is not stopping, so you had better time the jump perfectly.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified