HelioVolt, NREL win R&D 100 Award

subscribe

HelioVolt Corporation, a producer of highly-efficient thin film solar energy products, announced that it has garnered an R&D 100 Award from Research & Development (R&D) Magazine for work performed in partnership with the U.S. Department of EnergyÂ’s National Renewable Energy Laboratory (NREL).

Known as the “Oscars of Invention,” the R&D 100 Awards celebrate the year’s most significant commercial innovations from around the world.

HelioVolt and NREL received the award for demonstrating a simpler, faster end-to-end process for printing high quality thin film photovoltaic (PV) systems.

“This award-winning technology could have a significant impact on the penetration of solar energy in the marketplace,” NREL Director Dan Arvizu said. “Thin film technologies aim to lower costs by using significantly less material to produce electricity from the sun. We are proud to be working with innovators in the private sector to deliver the technologies and products that will make clean, renewable power a significant portion of our nation’s energy mix.”

The R&D 100 Award honored a hybrid process for producing large grain, high quality Copper Indium Gallium Selenide (CIGS) thin film solar devices. While CIGS has long been used to make the highest performing solar thin film devices, the materialÂ’s unique nanostructure required to deliver this performance potential has generally made low-cost, large-scale manufacture an ongoing challenge.

The award-winning collaboration employed a non-vacuum technique developed at NREL and licensed by HelioVolt to precisely apply liquid precursors under standard atmospheric conditions onto a printing plate and substrate which can be made from various building materials including glass, metals, roofing materials, and plastics.

HelioVoltÂ’s patented FASST process was then used to reactively bond the inks together into high-performance CIGS crystals, all in less than six minutes with a low thermal budget.

“HelioVolt's unique process expands the performance envelope of thin-film PV. This award marks an important milestone on the road from pilot line to wide-scale deployment,” said Dr. Arno Penzias, Nobel Laureate and advisory board member.

Dr. B.J. Stanbery, founder and CEO of HelioVolt added, “This NREL collaboration establishes FASST’s unique ability to combine both vacuum and standard atmospheric deposition techniques, giving us unprecedented flexibility for further improving the end-to-end process performance and cost in future full-scale production lines which will be required to fulfill the goals of our global expansion strategy.”

The FASST reactive transfer printing process drives cost advantages by manufacturing high-quality CIGS thin film products ten to one hundred times more rapidly than competitive methods. FASST can be combined with vacuum evaporation, ink-jet printing, or ultrasonic spray deposition processes, allowing for industry-leading flexibility to achieve the lowest cost process.

Confirmed through independent testing at Colorado State University, FASST has been proven to deliver solar cells exceeding 12 percent conversion efficiency in a record setting six minutes. These efficiencies place HelioVolt's CIGS devices among the highest performing solar thin film products on the market today.

HelioVolt is using FASST to develop both conventional module and next-generation building integrated photovoltaic (BIPV) products for the global solar energy market.

Related News

powerlines

ERCOT Issues RFP to Procure Capacity to Alleviate Winter Concerns

AUSTIN - The Electric Reliability Council of Texas (ERCOT) issued a request for proposals to stakeholders to procure up to 3,000 MW of generation or demand response capacity to meet load and reserve requirements during the winter 2023-24 peak load season (Dec. 1, 2023, through Feb. 29, 2024).

ERCOT cited “several factors, including significant peak load growth since last winter, recent and proposed retirements of dispatchable Generation Resources, and recent extreme winter weather events, including Winter Storm Elliott in December 2022, Winter Storm Uri in February 2021, and the 2018 and 2011 winter storms, each of which resulted in abnormally high…

READ MORE
china solar power

Solar Now ‘cheaper Than Grid Electricity’ In Every Chinese City, Study Finds

READ MORE

iran solar and wind

Iran to Become Regional Hub for Renewable Energies

READ MORE

nb ev charging network planned

NB Power launches public charging network for EVs

READ MORE

vancouver-reversal-on-gas-appliances

Vancouver's Reversal on Gas Appliances

READ MORE