Renewable Alternative Energy Explained


Renewable Alternative Energy

Renewable alternative energy integrates solar PV, wind turbines, hydroelectric and biomass with power electronics, battery storage, smart grids, and grid-tied inverters to deliver sustainable electricity, demand response, and resilient microgrids.

 

What Is Renewable Alternative Energy?

Renewable alternative energy uses low-carbon sources with power electronics and storage to deliver reliable electricity.

✅ Power electronics: inverters, converters, MPPT for PV and wind

✅ Grid integration: synchronization, frequency control, protection

✅ Energy storage: batteries, BMS, supercapacitors, grid services

 

What are renewable alternative energy sources? Renewable energy sources, such as solar energy and wind energy, are alternative energy supplies that are refilled by natural processes when they're used. The ultimate source of all renewable energy is the sun. Electricity can be obtained from the sun directly (such as solar heating systems) or indirectly (as in hydro electricity, wind power, and biomass fuels). Renewable energy supplies can run out if they are used faster than they become replenished. For example, most of England's forests were cut down and used for fuel before the English started using coal. Renewable energy supplies have the chance to last forever if used wisely. For fundamentals and current trends, the Electricity Forum explains key renewable energy sources that complement these concepts.

There are other alternatives to our typical energy sources that are not renewable. Although these are "alternative energy" rather than "renewable energy", they use the energy we have more efficiently than older technologies. In doing this, they help us make our existing energy supplies last longer and give us more time before we run out of stored fossil and atomic fuels. However, parallels can be drawn between the two, which can make them interchangeable. Alternative energy sources don't threaten the environment even though they cannot necessarily be renewed. Renewable energy sources are, as we previously mentioned, renew them as fast as we use them. In this article, we focus on the energy sources that can be called both "alternative energy" and "renewable energy." We call them "renewable alternative energy sources." To clarify terminology, this overview of what is alternative energy outlines distinctions commonly used by educators and policymakers.

Using renewable alternative energy sources can save money, protect the environment, and assure future generations of people that efficient energy will be available.

Practical adoption is often driven by proven alternative energy solutions that reduce costs and emissions in real projects.

Here are a few renewable alternative energy sources that are in use today. Broader context on evolving technologies appears in this survey of forms of alternative energy relevant to the categories below.

 

Renewable Alternative Energy - Hydroelectric power

Hydropower represents one of the oldest and largest renewable power sources (this renewable alternative energy source has an existing capacity of over 80,000 MW). Hydropower plants convert the energy of flowing water into electricity. This is primarily done by damming rivers to create large reservoirs and then releasing water through turbines to produce electricity. Hydropower results in no emissions into the atmosphere but the process of damming a river can create significant ecological problems for water quality and for fish and wildlife habitat. Comparative evaluations with other alternative energy sources highlight trade-offs in capacity, siting, and ecological impacts.

 

Renewable Alternative Energy - Biomass Power

Biomass is second to hydropower as a leader in renewable alternative energy production and has an existing capacity of over 7,000 MW. As a renewable alternative energy source, biomass as a fuel consists of organic matter such as industrial waste, agricultural waste, wood, and bark. Biomass can be burned directly in specially designed power plants, or used to replace up to 15% of coal as a fuel in ordinary power plants. Biomass burns cleaner than coal because it has less sulfur, which equates to less sulfur dioxide being emitted into the atmosphere. Biomass can also be used indirectly, since it produces methane gas as it decays. Power can be produced from methane by burning in a boiler to produce steam to drive steam turbines. Steam can also be produce in gas turbines through internal combustion and reciprocating engines.

 

Renewable Alternative Energy - Geothermal Power

Geothermal power plants capitalize on high temperatures deep underground to make steam, which then powers turbines that produce renewable alternative energy. Geothermal power plants can draw from underground reservoirs of hot water or can heat water by pumping it into hot, dry rock. High underground high temperatures are accessed by drilling wells, sometimes more than a mile deep. In one sense, this geothermal energy is not renewable, since sometime in the future the core of the earth will cool. That time is so far off (hundreds of millions of years) that that we think of it as renewable. Geothermal heat pumps use compressors to pump heat out of the earth (for winter heating) or into the earth (when running as air conditioners in summer). The energy they pump into and out of the earth is renewable, since it is replaced by the cycle of the seasons. The energy that runs the compressor can either be renewable or conventional.

 

Renewable Alternative Energy - Solar Power

Solar power comes directly from the power of the sun and is used to produce renewable alternative energy, to produce heat, and for light. Solar represents a small share of the electric market in the United States – about one-half of one percent of electrical capacity. Solar power's contribution to heating and lighting is much larger because it can be produced either by power plants using the sun’s heat or by photovoltaic (PV) technology, which uses solar cells to convert sunlight directly to electricity. PV technology is more practical for residential use. Systems to use the heat of the sun directly can be either active or passive. In active systems, air or liquid circulate through solar collectors and bring heat to where it is used. In passive systems, buildings are built with heat-absorbing surfaces and windows set up to maximize solar heating in winter. Either renewable alternative energy solar technology is suitable for residential use. Systems to directly use the light of the sun are most common. The most usual device for using sunlight is the window, but skylights and skylight tubes are also used. Homeowners can explore design considerations in this primer on alternative energy solar power for residential applications.

 

Renewable Alternative Energy - Wind Power

Wind has been a fast growing energy source over the last decade mainly due to very significant improvements in wind power technology. Renewable alternative energy Wind power is produced by the wind's energy to turn aerodynamic blades that are mounted to a hub. The hub, which is connected to a shaft, turns a generator that produces electricity. Large utility-scale wind turbines range in size from 50 kilowatts to over four megawatts. Smaller wind towers (under 50 kW) are suitable for residential and agricultural use. Modern turbines are increasingly integrated into smart alternative energy systems that optimize output and grid reliability.

 

Renewable Alternative Energy - Fuel Cells

A fuel cell is an alternative energy device, but it is not necessarily a renewable energy device. It is only renewable if the source of the fuel used is renewable. A fuel cell is an electrochemical device, like a battery in that it converts the energy from a chemical reaction directly into electricity and heat. But unlike a battery, which is limited to the stored chemicals within, a fuel cell has the capability of generating energy as long as fuel is supplied. Modern fuel cells produce electricity by combining hydrogen and oxygen together without using combustion. The oxygen comes from the air, while the hydrogen can either be produced from water (using electricity) or extracted from fossil fuels. New fuel cells are being developed that can directly use fossil fuels. The 150-year-old fuel cell technology shows promise in providing energy for residential use and for powering vehicles.

 

Related Articles

Related News

Alternative Energy Grants - Sustainable Energy Development

Alternative energy grants fund renewable energy R&D, power systems upgrades, and grid modernization, supporting solar, wind, microgrids, battery storage, high-efficiency inverters, and electrification projects for utilities, manufacturers, and engineers, focused on decarbonization and smart grid.

 

What Are Alternative Energy Grants?

Grants that fund renewable power systems, grid upgrades, and storage for electrical engineering projects.

✅ Funds power electronics, inverters, and grid-integration R&D

✅ Supports microgrids, DERs, and smart grid reliability projects

✅ Covers feasibility studies, prototypes, and pilot deployments

 

Alternative energy grants - Wind, solar, geothermal and other alternative energy soures are the new "in" to replace forms of energy that harm the environment such as fossil fuels, so both Canadian and the U.S. governments are giving alternative energy grants (free conditional money) to individuals, businesses and local governments to promote the use and development of alternative energy sources. Here are three alternative energy grants currently offered by the U.S. government. For broader context on the field, the overview at what is alternative energy explains key terms and categories clearly.

 

Alternative Energy Grants - Energy Efficiency and Conservation Block Grant (EECBG) Program

These alternative energy grants help eligible entities in beginning their conservation and energy efficiency strategies. For those interested in applying for these alternative energy grants, they must have reduced their fossil fuel emissions, reduced total energy usage and improved energy efficiency within the company. Furthermore, those eligible must develop and implement an energy efficiency and conservation strategy with the assistance of a third-party technical consultant. Also, eligible entities must conduct regular residential and commercial building energy audits to monitor results and financial incentive programs (loan programs, rebate programs, waive permit fees) with the goal of improving energy efficiency must be in place. Other requirements are also required to be eligible for this alternative energy grant. To identify complementary rebates and policy tools, agencies can review alternative energy incentives relevant to their jurisdiction for alignment with EECBG goals.

 

Alternative Energy Grants - State Energy Program

Ultimately, provinces and states are expected to lower their overall fossil fuel carbon emissions so that the use of alternative energy sources can become more prevalent. Financial support, in whole or in part, may be provided for salaries, materials, and supplies, equipment, travel, publication costs, and services required for deployment of alternative energy activities and initiatives. The states energy program goes to competing states for funding to implement activities relating to a number of programmatic areas such as building codes and standards, alternative fuels, industrial efficiency, building efficiency, and alternative energy technologies. Many states layer alternative energy tax credits on top of SEP funds to catalyze private investment.

 

Alternative Energy Grants - Rural Energy for America Program (REAP)

The REAP program provides alternative energy grants to rural small businesses & agricultural producers for the purchase & installation of alternative energy systems in rural areas. Alternative energy grants are limited to 25 per cent of the project cost or $500,000 – whichever is less. Alternative energy grant applications of $20,000 or less are greatly favored in the competitive, selection process. Projects needing larger grants can improve their chances by simultaneously seeking a REAP guaranteed loan. For the loan seekers, the details are the same as the aforementioned alternative energy grant, but provides 60 to 85% per cent loan guarantees to commercial lenders financing such projects. Loans up to $25 million can be guaranteed. Combination grant and guaranteed loan assistance up to 75 per cent of total project cost; such “combo” proposals may improve a project’s access to grant assistance and speed approvals. Prospective applicants can benchmark typical capital and O&M figures using resources on alternative energy cost to prepare stronger pro formas.

Case studies of farm-scale solar, wind, and efficiency upgrades in the alternative energy projects library illustrate successful REAP financing structures.

 

Alternative Energy Grants - State Energy Special Projects

The State Energy Program aims to develop and deploy energy efficiency and alternative energy technologies and practices. The State Energy Program (SEP) makes it possible for states in the U.S. to design and carry out energy efficiency and alternative energy programs tailored to their State-specific needs, while contributing to national energy priorities. The State Energy Program enables the States to address both national energy initiatives and local energy priorities through two funding mechanisms: alterntive energy formula grants and Special Projects grants. States utilize these funds to design and implement energy projects tailored to meet community needs, economic conditions, individual energy situations, and climactic variations. SEP Special Projects funds are awarded on a competitive basis to States from each of the four end-use sectors (buildings, industrial, power technologies, and transportation) and the Federal Energy Management Program (FEMP) for cost-shared technology projects. Special Projects often accelerate alternative energy development by targeting pre-commercial demonstrations and regional testbeds.

For program designers seeking cross-sector approaches, curated alternative energy solutions can inform competitive proposals and stakeholder engagement plans.

 

Related Articles

View more

Alternative Energy Tax Credits - Green Energy Cost Savings

Alternative energy tax credits reduce CAPEX for solar PV, wind turbines, battery storage, EV charging, and high-efficiency HVAC, with IRS incentives, rebates, and depreciation accelerating power electronics upgrades and grid integration for clean energy projects.

 

What Are Alternative Energy Tax Credits?

Fiscal incentives lowering costs for EE-led renewable systems, backing PV, wind, storage, and grid modernization.

✅ Eligible assets: PV inverters, wind generators, BESS, EVSE

✅ Requires NEC, IEEE 1547, UL 1741, and interconnection compliance

✅ Boosts CAPEX ROI via ITC, PTC, MACRS, transferable credits

 

How can I earn money using alternative energy? New financial incentives are available to homeowners and businesses for a number of alternative energy and energy efficiency measures. For a broader overview of current programs, see the resource at alternative energy incentives which summarizes eligibility and timelines.

  • Alternative energy tax credits for residential and commercial photovoltaics, solar water heating systems, geothermal heat pumps, and other renewable technologies.
  • Alternative energy tax credits for homeowners for energy efficiency improvements to existing homes.
  • Alternative energy tax credits for builders of highly efficient new homes.
  • Alternative energy tax deductions for owners or designers of highly efficient commercial buildings.
  • Alternative energy tax rebates for energy efficient appliances

     

    Alternative Energy Tax Credits Using Solar and Renewables For Residential Homes

    If you're new to the space, this concise primer on what is alternative energy helps frame the technologies covered in this section.

    For new and existing homes, alternative energy tax credit limitations have been removed by some country's governments for many alternative energy systems including geothermal heat pumps, solar water heaters, solar photovoltaics, small wind energy, fuel cells and microturbine systems. Qualified products can receive an alternative energy tax credit equal to 30 per cent of their cost. Many homeowners start by reviewing the latest renewable energy tax credits before requesting contractor quotes.

    Some examples of alternative energy tax credit qualified products are:

    When weighing options like PV and solar thermal, this overview of alternative energy solar power clarifies system types, site suitability, and typical payback periods.

  • Solar water heating systems property certified by the Solar Rating and Certification Corporation (SRCC) which provide at least 50 per cent of the system demand.
  • Photovoltaic systems which provide electric power for the residence.
  • Wind energy systems which provide 100 kW or less electric power to the residence.
  • Geothermal heat pumps which satisfy the ENERGY STAR criteria.
  • Fuel cells with a capacity = 0.5 kW and efficiency = 30 per cent.
  • Microturbines with a maximum capacity of 2,000 kW and a minimum efficiency of 26%.

    Alternative Energy Tax Credits For Existing Homes - Energy Efficiency

    To align upgrades strategically, compare technologies using this guide to renewable alternative energy so your efficiency measures complement future renewable additions.

    Qualified products receive an alternative energy tax credit of 30% of their cost, up to the $1,500 limit.

    Some examples of alternative energy tax credit qualified products are:

  • Insulation material which meets 2009 IEEC and amendments.
  • Exterior windows with SHGC = 0.30 and U-factor = 0.30.
  • Exterior doors with SHGC = 0.30 and U-factor = 0.30.
  • Furnaces using natural gas or propane with an AFUE = 95.
  • Geothermal heat pumps (Not subject to $1,500 cap):
  • Hot water boiler with natural gas, propane, or oil furnace and AFUE = 90 per cent.
  • Advanced main air circulating fan used in natural gas, propane, or oil furnace that uses no more than 2% of the total annual energy use of the furnace.
  • Water heater using natural gas, propane, or oil with EF = 0.82 or a thermal efficiency = 90%.
  • Water heater using an electric heat pump with EF of 2.0 or greater.
  • Biomass stoves with efficiency rating of at least 75 per cent and used to heat a home or heat water.

     

    Alternative Energy Tax Credits For Commercial Buildings

    Owners or tenants (or designers, in the case of publicly-owned buildings) of new or existing commercial buildings may qualify for a tax deduction of up to $1.80 per square foot. The buildings must be constructed or reconstructed to save at least 50 per cent of the heating, cooling, water heating, and interior lighting energy cost of a building that meets ASHRAE Standard 90.1-2001.

    Each of the three energy-using systems of the building — the envelope, interior lighting system, and heating and cooling system — is eligible for one third of the incentive ($0.60/ft) if it meets its share of the whole-building savings goal. Case studies of compliant facilities can be found among curated alternative energy projects that detail design choices and savings outcomes.

    Software meeting federal tax laws for accuracy and consistency determines projected energy savings. Third party inspectors review the plans and verify building parameters to determine compliance.

    Alternative Energy Tax Credits For Businesses

    The business investment tax credit varies from 10% to 30% depending upon they type of system installed. This alternative energy tax credit is possibly available to businesses that purchase solar water heaters, solar photovoltaics, small wind energy, geothermal heat pumps, fuel cells and microturbine systems.

    Combined Incentives For Alternative Energy Tax Credits

    In many cases, multiple tax incentives may be claimed. In the case of a new home for example, the builder may claim credit for the high efficiency home and the homeowner may claim tax credits for solar hot water, photovoltaic, and fuel cell systems. Other financial incentives, such as local utility rebates, further reduce the cost of building or owning a solar and energy efficient home. To supplement credits and rebates, many jurisdictions also offer targeted alternative energy grants that can further reduce upfront costs.

 

 

Related Articles

View more

Forms Of Alternative Energy Explored

Forms of alternative energy span solar, wind, hydro, geothermal, and biomass, engineered with power electronics, inverters, and grid-tied systems for efficient generation, storage, and distribution across smart grids and microgrids.

 

What Are Forms of Alternative Energy?

They include solar PV, wind, hydro, geothermal, and biomass, converted via generators, inverters, and grid storage.

✅ Solar PV: MPPT inverters convert DC modules to AC for the grid.

✅ Wind: variable-speed turbines use converters to regulate frequency and voltage.

✅ Hydro, geothermal, biomass: dispatchable sources aid grid stability and storage.

 

Forms of Alternative Energy - Solar Energy

The sun is one gigantic star that constantly radiates an enormous amount of energy (solar energy). How much is "enormous?" Well, let's just say that the sun sends out more energy in one second than Earth has used since the beginning of time. Like most stars, the sun is a huge ball of gas made up mostly of helium gas and hydrogen. As a primer on solar technologies, the resource at solar power fundamentals offers context for how these systems scale.

The Earth, being the third planet from the sun, only receives a small portion of the sun's solar energy, however, that amount is more than enough to supply all our electric power needs. For comparisons across resources, see renewable energy sources to understand how solar's potential relates to wind, hydro, and more.

Two ways to make electricity from solar power are photovoltaic and solar thermal systems. Photovoltaic electric generation is produced using photovoltaic (PV) cells: the sunlight hits the solar cell and converts sunlight into electricity instantly and silently--without the hassle of wearing out any mechanical parts. These solar systems are mainly used to generate power in areas that are a long distance from electric power lines. For configurations and component choices, alternative energy systems guidance explains typical PV setups used off-grid and in hybrid applications.

Solar thermal systems (or concentrated solar power) use a solar collector with a mirrored surface to focus sunlight onto a receiver that heats a liquid into steam and then turned into electric power. The process is in the same vain as coal plants: coal is burned into steam, which is then turned into electricity. Deployment considerations are explored in alternative energy solutions that compare CSP with other utility-scale options.

Solar power is expected to be a global supplier of electricity between 2015 and 2020. Solar power's benefits are phenomenal: it's free, its supply can never deplete, it doesn't pollute, and it doesn't damage the environment. These benefits underpin broader renewable alternative energy strategies that accelerate decarbonization across sectors.

 

Forms Of Alternative Energy - Wind Energy

The sun’s heat reaching the planet earth creates winds, which makes wind a form of solar energy. How does it work? Well, as the sun's rays heat the Earth’s air is heated by the sun, it expands and regions of high and low pressure are formed, these high and low movements create wind energy. For context on definitions and categories, what is alternative energy clarifies how wind fits within the broader mix.

Harnessing wind energy is done using contraptions such as wind turbines. Large wind turbines are built close together to operate on wind farms to produce large amounts of power for electrical utilities. Smaller small wind turbines can be used by homeowners and remote villages who want to generate their own electricity.

Generated Wind power, like other forms of alternative energy, can also be used for charging batteries, pumping water, or grinding grain. All of this can be done without causing greenhouse gas emissions which damage the environment. This form of alternative energy also uses minimal land area, but intermittent wind patterns make it difficult for this form of alternative energy to be a constant and reliable energy source.

 

Forms of Alternative Energy - Biomass Energy

Biomass energy is a way to turn your food waste into electricity. Biomass is any kind of organic matter (anything that was once alive) that can be used as an energy source. Besides food waste, crops, wood, animal and yard waste are examples of biomass. People have used this form of alternative energy for thousands of years - longer than any other energy source.

Biomass feedstock (farm animal wastes, crops and residues, etc.) is the main ingredient of biomass energy. The heat in this form of alternative energy is used to generate power, fuels and other energy options. The biomass fuels (or biofuels), which comes from biomass feedstock, can be used in a solid, liquid, or gas state. Disposed food, paper, sewage, lawn clippings and sawdust, are some available biomass energy resources used for power production.

 

Forms of Alternative Energy - Geothermal Energy

Geothermal is a Greek word: geo (earth) and therme (heat). This form of alternative energy comes from the heat, which is from the earth's core (almost 4,000 miles beneath the earth’s surface). Earth's double-layered core is made from melted rock (hot magma), which surrounds a solid iron center. The heat comes from the slow decay of radioactive particles produce high temperatures that constantly rise to the earth's surface. Geothermal electricity is created by pumping a fluid (oil or water) into the Earth, allowing it to evaporate and using the hot gases vented from the earth's crust to run turbines linked to electrical generators. Further technical detail is summarized in geothermal energy basics for readers interested in plant designs and resource types.

In some areas on the planet (such as Iceland), there is very hot water or steam that is close enough to the surface where this alternative energy resource can be reached economically with a drill. When obtained, the steam, or hot water flashed to steam, turns a turbine, which then, turns a generator that produces electricity. Many experts believe that geothermal energy only be a minor contributor to the global energy supply because of the scarcity of geothermal sites in the world.

 

Related Articles

View more

Alternative Energy Solutions - Fresh Air Choices

Alternative energy solutions leverage renewables like solar PV and wind turbines, with battery storage, smart grids, power electronics, and advanced inverters enabling grid integration, microgrids, load balancing, and high-efficiency electrical systems.

 

What Are Alternative Energy Solutions?

Systems using renewables, storage, and power electronics to provide efficient, reliable, grid-integrated electrical power.

✅ Power electronics: MPPT, inverters, converters for grid-tied PV and wind.

✅ Energy storage and EMS for frequency regulation and peak shaving.

✅ Smart grids, microgrids, protection, SCADA, and IEC 61850.

 

Why are alternative energy solutions so important? Fossil fuels, such as coal and oil, continue to contribute to the ever-growing pollution in the environment by producing carbon dioxide and other harmful chemicals, which causes further damage to Earth's atmosphere by increasing the hole in the layer of the upper atmosphere (the ozone layer). The ozone layer, which protects Earth's inhabitants from the sun's radiation, prevents the snow in the Northern and Southern atmospheres from melting. These increased atmospheric temperatures, known as global warming, is a concern for governments all over the globe because flooding could occur on such catastrophic levels (much of North America, Europe and other parts of the world would be under water and countless lives would be lost). So, many of the world's nations are rallying together to reduce their fuel consumption and dependency on fossil fuels and find other alternative energy solutions. For readers new to the topic, see this overview of what constitutes alternative energy to understand how these technologies differ from conventional fuels.

According to the U.S. Department of Energy, fossil fuels currently give the U.S. more than 85 per cent of all consumed electric power and almost all of consumed transportation fuels. DOE points out that the likelihood that America's reliance on fossil fuels will continue to increase over the next two decades as the economy expands--even with aggressive development and deployment of new alternative energy technologies. In parallel, DOE and industry roadmaps highlight the role of renewable alternative energy in moderating long-term demand growth.

What does this mean? Energy is essential to economic growth. Without adequate energy supplies, a world population of six to ten billion people would not be possible. Every human life and every sector of the economy requires energy and even the most basic needs of humanity (such as food and water) could not be supplied without adequate energy supplies. Diverse renewable energy sources can help meet these fundamental needs while reducing environmental and supply risks.

For any alternative energy solution to be successful in today's marketplace, it must provide more energy than other large energy sources (fossil fuels and natural gas), which presents a formidable challenge. Why? Most of today's energy sources are already considered difficult to satisfy current demand. The difficulty doesn't exist in the resource being too small, but the challenge is to maintain a high rate of growth necessary to keep up with demand. How is this to be done? Here are some alternative energy solutions. For a broader primer on technology categories, explore the principal forms of alternative energy described by industry educators.

 

Alternative Energy Solutions - Hydro Power

Hydroelectricity is a well-established and cost-effective form of alternative energy. This alternative energy solution has helped support energy-intensive industries like rely on cheaper forms of electricity. Hydro Electricity also plays an important role in energy storage, but, hydro energy's potential won't be enough to power the global economy on hydroelectricity. However, hydro-electric energy projects will continue to be deployed wherever the resource is readily available. Readers can compare hydro with other options by reviewing key alternative energy sources and their typical applications.

 

Alternative Energy Solutions - Solar Power

Solar energy hasn't gone large scale mainly due to cost and distribution issues, but that hasn't stopped solar energy companies from making investments. In fact, recent expansions have resulted in 265 megawatts of energy and more than two billion dollars of investment in the U.S. economy. When cost isn't such a major factor, it's expected that solar energy will play a larger role in the world economy. Solar energy, particularly in thee electricity sector, will have to become much more cost efficient before it can compete with other energy resources. While there is no obvious floor to the price of solar energy, progress in the last few decades has been slow. Another factor affecting cost is electricity storage, which, at present, is not currently available to meet immediate high energy demands. But, if cost becomes roughly three times cheaper than other electricity sources that satisfy immediate demand, then solar energy stands a chance of becoming a major energy source. It's expected that prices will decrease dramatically with emerging solar technologies, such as photovoltaic cells. It remains be seen, however, if these reductions can give solar energy the competitive edge in the world economy. For technology pathways and case studies, see this guide to alternative energy solar power and its emerging cost trends.

 

Alternative Energy Solutions - Wind Power

Wind energy is helping many nations meet their ever-growing energy demands. Today, wind energy provides the U.S. with enough electricity to power over 9.7 million American homes. And, according to the National Renewable Energy Laboratory (NREL), there is a potential of 37 trillion kilowatt-hours of electricity that could be used to power the U.S. annually——nearly 10 times the country’s existing power needs. At the moment, there are over 400 American manufacturing plants that build wind components including blades, towers and other major turbine components. Plus, new wind energy manufacturers are currently coming online, being announced or expanding (over 100 since 2007). However, wind energy requires further development in technologies before they are ready to operate at full scale. Grid planners often analyze how alternative energy power integrates with reliability standards and transmission upgrades.

 

Alternative Energy Solutions - Geothermal Power

The geothermal potential is very large. At the moment, the technology for this alternative energy solution is limited to special locations (such as Iceland, Kenya and locations in California) with very steep thermal gradients, resulting in very large temperature differentials between the surface and the geological reservoir. For the time being, many of the possible energy resources are simply not large enough to operate at the scale necessary to satisfy a substantial fraction of the world’s energy demand. In some cases, like wind energy, the locations are large enough, but raise serious questions about the environmental impact of large-scale deployment.

 

What is the best alternative solution?

Governments continue to strive to find one energy solution that can power the world, but it might be that a collaboration of alternative energy solutions is best to saving the world.

 

Related Articles

View more

Alternative Energy Cost - Green Energy Premiums

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

View more

Alternative Energy Geothermal - Green Energy Alternatives

Alternative energy geothermal delivers baseload renewable electricity via hydrothermal reservoirs, binary-cycle ORC turbines, and EGS, using heat exchangers, generators, and power electronics for efficient grid integration, low emissions, and stable capacity.

 

What Is Alternative Energy Geothermal?

It converts subsurface heat to electricity via steam or ORC cycles, generators, and grid-tied power electronics.

✅ ORC and flash steam cycles drive turbines and synchronous generators

✅ Power electronics, inverters, and transformers enable grid integration

✅ EGS, drilling, and heat exchangers expand capacity with low emissions

 

Geothermal energy comes from heat stored beneath the Earth's surface. Also known as thermal energy, geothermal is considered to be an alternative energy because it produces very little greenhouse gas emissions (GHG), which harm the Earth once it's generated into electricity. Geothermal wells release these greenhouse gases, but not nearly as much as its fossil fuel counterparts oil and coal. For context on how this resource fits within energy policy, see our overview of what is alternative energy to understand key definitions.

Alternative energy geothermal is a product from Earth's original formation: radioactive decay of minerals thanks to volcanic eruptions and solar energy digested and stored from the Earth's surface. Thermal energy is produced from the continuous conduction of heat that emanates from the Earth's core that moves upward to the surface. This process is known as the geothermal gradient. If you've ever had the opportunity to bathe in hot springs, you'll be glad to know that the thermal heat comes from beneath the Earth. When comparing technologies, placing geothermal alongside other alternative energy sources highlights its base-load role and unique subsurface dependence.

 

Alternative Energy Geothermal - How can we use it?

In practice, many integrated alternative energy systems combine geothermal with insulation and smart controls to maximize year-round efficiency.

Energy producers have been able to convert alternative energy geothermal into electricity. These same producers have high hopes for geothermal energy because power can be generated 24 hours a day, unlike other intermittent renewable energies, like wind energy and solar energy. This contrasts with the variability seen in resources such as solar power during cloudy periods or at night.

Geothermal energy can also be used to heat pumps or for other direct uses such as cooling and heating buildings. The Earth's crust temperature a few feet below is buffered to a constant seven to 14 °C (45 to 58 °F), so a liquid can be pre-heated or pre-cooled in underground pipelines, providing no-cost cooling during the summer, and with a heat pump, heating during the winter months. Other direct uses include aquaculture, agriculture (greenhouses), and industry. Project planners often consult practical alternative energy solutions to evaluate lifecycle costs and integration pathways.

 

Alternative Energy Geothermal - How is geothermal electricity produced?

Within the broader family of forms of alternative energy, geothermal distinguishes itself through high capacity factors and minimal fuel risk.

Geothermal energy uses Earth's natural heat to generate electricity. Geothermal plants are built on or near reservoirs that contain Earth's hydrothermal resources (underground steam and heated water). The heat mining process begins when drills penetrate these reservoirs to obtain the steam and water to power electricity-generating turbines.

There are different ways to produce alternative energy geothermal. Two popular processes include:

  • Flash Steam Geothermal water with temperatures exceeding 350°F is extracted under extremely high pressure by flash steam plants. When the heated water surfaces, a sudden pressure reduction causes some of the hot water to flash off as steam. This flashed steam operates a generator, at which time, the extracted steam and water are reintroduced into the geothermal reservoir.
  • Dry Steam Dry steam is extracted directly from under the earth’s surface by dry steam plants to operate a generator. When the steam condenses into water, it is then reintroduced into the alternative energy geothermal reservoir.

     

    Alternative Energy Geothermal - Is Geothermal Energy a Sustainable Energy Source?

    Alternative Energy Geothermal is considered to be sustainable, cost-effective, great for the environment and reliable. Recent advances in technology have expanded alternative energy geothermal applicable uses (such as home heating), which could lead to global exploitation. However, advances in technology, cost, government incentives and implementation of geothermal power projects will determine if alternative energy geothermal will become a viable global competitor.

    Alternative Energy Geothermal - Is Geothermal Energy a Renewable Energy Source?

    Scientific evidence shows that geothermal sites can provide heat for many decades, but eventually these specific locations cool down, which brings into question if alternative energy geothermal truly is a renewable energy source, since renewables are defined as green energy sources that never deplete. Understanding how geothermal fits into renewable alternative energy frameworks can help policymakers set realistic targets.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.