Alternative Energy Projects - Home Energy Systems


Alternative Energy Projects

Alternative energy projects integrate solar PV, wind turbines, battery storage, and smart grid controls, using power electronics, inverters, and HVDC to optimize grid integration, reliability, and decarbonization in electrical engineering applications.

 

What Are Alternative Energy Projects?

Projects deploying renewables and storage with power electronics to ensure efficient, reliable grid integration.

✅ Solar PV, wind, and storage integrated via power converters

✅ Smart inverters, MPPT, and grid-forming control strategies

✅ HVDC links, microgrids, and protection coordination

 

Alternative energy projects are technologies that use alternative energy sources (wind energy, solar energy, among others) instead of conventional fossil fuels that damage the environment with toxic greenhouse (GHG) emissions. Natural Resources Canada (NRCAN) and the Department of Energy (DOE) are among some of the North American governmental organizations looking for ways to use alternative energy sources. While using the alternative energy source is important, so is educating the public about ways that they can someday use future alternative energy projects. Here are some energy systems the government is working on for your home: For a concise primer on definitions and policy context, see what alternative energy means to better frame the technologies discussed below.

 

Alternative Energy Projects - Home Solar Photovoltaic (PV) Systems

As one of several major categories, the forms of alternative energy place solar alongside wind, geothermal, and hydrogen options for residential planning.

This alternative energy project is a great way to preserve Earth's fossil-fuel resources and an efficient way to reduce air pollution. Another benefit of home PV systems is that it reduces the amount of power bought from local utilities thus making the residence less vulnerable to fluctuating price increases. A drawback to a home PV system are the extremely high installation costs, however, funding could be available from governments as an incentive to invest in alternative power. Unobstructed and clear access to the sun’s rays for most or all of the day is required throughout the year for well-designed PV systems. Location affects performance meaning that the roof of a house must be facing south (best option), east or west. Flat roofs are great options for solar electric systems because the PV modules are flat on the roof facing the sky or mounted on frames on an optimal angle facing south. One option for commercial application includes building structures that can create provide shade (such as window awnings) or covered parking. For homeowners evaluating PV feasibility, a detailed guide to solar power clarifies system sizing, orientation, and incentive considerations.

 

Alternative Energy Projects - Solar Concentrator System

Solar concentrators are alternative energy projects that track and focus the sun's energy; the sun's energy is then converted to hot water and space heat for day-to-day consumption. These alternative energy projects also have thermal storage, so it can distribute the sun's energy during the night or during a cloudy day. In addition to thermal applications, alternative energy power resources explain how concentrators integrate with broader energy management strategies.

 

Alternative Energy Projects - Hydrogen Electrolyzer

Hydrogen could be a valuable energy source in the future, so alternative energy projects are being funded by governments to heat residential homes. One such project, the hybrid hydrogen electrolyzer/high efficiency furnace system works by generating hydrogen from water using electricity. The generated hydrogen is then used to replace the natural gas that is conventionally used in furnaces. These hybrid energy systems can be installed in a variety of houses, including single detached houses. For system comparisons and component basics, an overview of alternative energy systems outlines how electrolyzers interface with storage and heating equipment.

 

Alternative Energy Projects - Geo Power

Geothermal Energy is also being used to provide heat to residential homes. One such alternative energy project, known as the Geo Power System, takes heat from the ground and sends it into the house. This tube-in-tube ground heat exchanger, made from polyethylene and aluminum is inserted vertically into a bore-hole in the ground either in the basement or crawlspace of a house. The alternative energy project is supposed to contribute energy during the winter months and absorb energy during the summer months in the ground. For site assessment and retrofit pathways, these alternative energy solutions highlight best practices for efficient geothermal installations.

 

Alternative Energy Projects - Solid-Oxide Fuel Cells

Fuel-cell combined heat and power (CHP) systems are alternative energy projects that can heat houses and provide hot water while electricity is sent to and from the electricity grid. The continued issues this residential alternative energy project faces include grid connection, thermal storage and proper fuel-cell size. To see how residential CHP fits within the wider clean energy mix, a primer on renewable and alternative energy offers context on adoption trends and grid impacts.

 

Related Articles

Related News

Alternative Energy Sources – Clean Electric Power Options

Alternative energy sources encompass solar PV, wind, hydroelectric, and geothermal generation, leveraging power electronics, inverters, HVDC, storage, and smart grid integration to deliver efficient, low-carbon electricity and resilient microgrids and stable operation.

 

What Are Alternative Energy Sources?

Technologies that convert renewables to electricity using power electronics, storage, and advanced grid control.

✅ Includes solar PV, wind turbines, hydroelectric, and geothermal

✅ Uses inverters, MPPT, converters, HVDC, and protection relays

✅ Integrates storage, microgrids, smart grid controls, and V2G

 

Are there other alternative energy sources besides renewables? There are other alternative energy sources that are used instead of conventional energy sources, such as oil and coal, that produce (or hardly produce) greenhouse gas emissions (GHG) that are harmful for the environment. For a broader definition of the term, see this overview at what is alternative energy to understand key concepts.

 

Alternative Energy Sources – Nuclear Energy

Nuclear energy is one of the few alternative energy sources that can generate a lot of electricity from very little fuel, which makes it a very abundant energy source. Nuclear energy is generated when atoms are either split (fission) or merged (fusion) to create energy from the reaction. It’s a clean energy because, unlike coal or oil, nuclear energy doesn’t introduce harmful gases, such as carbon dioxide, into the environment. However, nuclear energy becomes harmful during the production stage. The leftover waste is highly radioactive (unstable continuously decaying elements with high-energy particles or rays that penetrate and damage anything that it touches), which makes it hard to contain. Nuclear waste has to be stored in a secure location until alternative containing options are determined. Nuclear energy is used to generate electricity, launch space ships, and to power weapons. Comparative context across non-fossil options is outlined in forms of alternative energy for additional perspective.

For contrast with resources that naturally replenish, explore renewable energy sources to see how they differ in fuel cycles and emissions profiles.

 

Alternative Energy Sources – Natural Gas

Natural gas is considered a nonrenewable fossil fuel, but it’s considered clean because it doesn’t produce the greenhouse gas, carbon dioxide. Natural gas’s main ingredient is methane, with all other core elements filtered through an extensive filtering process. Advantages of natural gas include its global abundance, low cost and ease of use (natural gas plants can come online very quickly). However, isolating methane is quite a complex process, which makes it a disadvantage. And, even though natural gas doesn’t introduce carbons into the air, it still produces greenhouse gases. Natural gas can also be used to make electricity. Energy industry experts believe that natural gas will have a bigger role in electricity production as future demand for electricity increases. Within the broader mix of alternative energy fuels, natural gas is often positioned as a transitional option.

Grid planners evaluate flexible generation, storage, and demand-side measures among various alternative energy solutions to integrate resources efficiently.

 

Alternative Energy Sources – Hydrogen Fuel

Hydrogen hasn’t become a money-making venture, unlike other alternative energy sources, because the energy return on hydrogen isn’t very high. In other words, more energy is needed during the manufacturing process than the amount of hydrogen that is actually produced. At this point, hydrogen has proven to be an environment-friendly fuel source for vehicles. Hydrogen fuel is used mostly in batteries, by combining oxygen and hydrogen to produce power. The only waste factor is water vapor, which is a lot friendlier than the greenhouse gas, carbon dioxide. Ultimately, advancements in technology are required in hydrogen production in order for this form of alternative energy to become profitable. Renewable electricity from sources such as solar power can drive electrolysis to lower hydrogen's lifecycle emissions.

For a strategic view of how renewables complement low-carbon options, review renewable alternative energy to understand deployment pathways and tradeoffs.

 

 

Related Articles

View more

Alternative Energy Cost - Green Energy Premiums

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

View more

Biomass Energy - Green Power Solutions

Biomass energy converts organic feedstocks into renewable power via combustion, gasification, and anaerobic digestion, enabling CHP systems, grid integration, carbon-neutral generation, improved thermal efficiency, and dispatchable biofuels for resilient electrical infrastructure.

 

What Is Biomass Energy?

Biomass energy produces electricity from feedstocks through combustion or digestion, enabling CHP and grid reliability.

✅ CHP raises electrical efficiency to 70% with heat recovery

✅ Gasification feeds syngas to turbines or SOFC for power

✅ Dispatchable output supports frequency and voltage stability

 

Biomass energy comes from biomass feedstock (crops and residues, farm animal wastes, industrial wood, etc.). The heat from this substantial renewable resource can generate electricity, fuel and other forms of energy. It has been estimated that just one eighth of the total biomass energy produced annually could provide all of humanity’s current demand for energy. For a deeper overview of how biomass fits within the clean energy landscape, see this guide on biomass renewable energy and its practical applications today.

Some forms of biomass fuels (or biofuels), derived from biomass feedstock, can be solid, liquid, or gas. Kitchen scraps, sewage, the leftovers of the food processing industries, paper, sawdust, and lawn clippings are some of the available biomass energy sources. Biomass energy has received a lot of attention because an opportunity to convert waste into something very valuable has presented itself. These pathways are often discussed alongside other forms of alternative energy that leverage different feedstocks and conversion methods.

 

Biomass Energy – How can we use it?

Biomass energy can be converted to generate electricity, fuel vehicles and heat buildings using biofuel technologies. At the moment, biomass energy sources used in power plants include agricultural and farm residues, food processing residues, wood residues and methane gas from land fills. Biomass energy producers hope to significantly expand the supply of biomass energy by using trees and grasses as well. In power markets, biomass can contribute to renewable electricity portfolios alongside wind and solar resources.

Currently, there are more than 350 biomass energy plants generating 7,000 megawatts of biomass power in the United States. The producers who own these plants are quite diverse; they range from the electrical utilities, independent power producers, the wood manufacturing industry, and the pulp and paper industry. Such facilities are part of broader trends in renewable power generation that emphasize reliability and grid integration.

Biomass energy is considered a renewable energy source because it can replenish itself (regrown), unlike fossil fuels such as coal and oil, which when used, are gone. And, unlike coal and oil, biomass energy is an alternative energy source because it doesn’t hurt the environment with harmful chemicals, such as carbon dioxide, which cause greenhouse gas emissions (GHG). Using renewable biomass resources not only reduce greenhouse gases, but they also reduce air pollutants and landfill wastes. This classification aligns with definitions of alternative energy that prioritize low emissions and resource sustainability.

As policies evolve, many jurisdictions frame biomass within broader renewable alternative energy strategies that support decarbonization goals.

 

Biomass Energy in Today’s Marketplace

Within the spectrum of renewable energy sources, biomass competes and collaborates with wind, solar, and hydro depending on local resource availability.

  • High costs in handling and transportation, as well as high moisture content, have long outweighed the low price of biomass energy feedstocks. Fuels that are filled with moisture are hard to burn properly and heat release is slow and hard to control. However, fuel upgrading options, such as pelletization and drying remedy this situation, thus making biomass energy more economically attractive.
  • Biomass energy can also make be useful in blending and co-firing applications with coal because of the low SO2, NOx, and metals emissions from biomass energy fuels, and their CO2 neutral status.

 

Biomass Energy – Benefits of Cogeneration

Cogeneration, the practice of producing both electricity and useful heat, is a great way of improving energy efficiency. Some sawmills, for example, use a lot of heat from boilers powered by biomass energy to supply energy to their kiln-drying operations. But any extra heat can help gasify biomass energy fuels so they can be used in a gas turbine, which is more efficient than a simple steam boiler. Additional savings can be produced by using combined cycle technology, which takes additional waste heat from the gas turbine to give power to a steam-driven turbine.

 

Related Articles

View more

Alternative Energy Solar Power Explained

Alternative Energy Solar Power converts sunlight via photovoltaics into electricity using PV modules, inverters, MPPT, and battery storage for grid-tied systems, microgrids, and off-grid resilience, improving efficiency, reliability, and decarbonization.

 

What Is Alternative Energy Solar Power?

A renewable electrical system converting solar irradiance to AC via PV modules, MPPT inverters, and optional storage.

✅ PV arrays generate DC; power electronics regulate voltage and current.

✅ Inverters with MPPT perform DC–AC conversion, grid sync, and protection.

✅ Battery storage and EMS enable peak shaving, backup, and microgrid control.

 

Alternative energy solar power is, perhaps, the first energy source that comes to mind when most people think of alternative energy sources, but — unlike wind — alternative energy solar power is still a long way from being considered a mainstream source of electricity generation. In fact, it accounts for less than one per cent of the world’s electricity production. For readers new to the topic, what is alternative energy clarifies key definitions and the role solar plays among emerging options.

Two main ways to harness the sun's energy to generate alternative energy solar power include: photovoltaic (PV), where solar cells directly convert sunlight into electricity, and solar-thermal power. PV is a proven alternative energy solar power technology that is most appropriate for small-scale applications to provide heat and power to individual houses and businesses. Sunlight falls on a layer of semiconductors, which excites electrons. This, in turn, creates an electrical current that can be transmitted via electrical cables to serve useful applications. Alternative energy solar power solar PV cells are already cost effective for powering houses and businesses in some regions. As with alternative energy wind power, costs have reduced in the past few years thanks to technological developments. But, unlike alternative energy wind power, however, large scale electricity production using alternative energy solar power costs about 22 cents per kilowatt-hour, significantly more expensive than its fossil fuel generation competitors and nuclear power. Comparative cost and performance data across technologies are summarized in alternative energy power, which details where PV is most competitive.

Solar-thermal energy is a completely different technology. It collects and concentrates the sun's rays to heat up fuel such glycol or any other liquid that heats up easily. The heat trapped within this medium is then used transferred through a heat exchanger so that heated water can be used for regular hot water applications like bathing and space heating and heating swimming pools, etc. Fossil fuels are sometimes used as a back-up to heat the water in the boiler if the sun is not shining and cannot heat the system. There are three different methods for concentrating the sun’s rays:

  • Parabolic Trough — This method uses long, parallel rows of glass mirrors in the shape of a trough to concentrate the sun’s rays directly at the “absorber tube," which is often filled with oil, to achieve maximum effect.
  • Power Tower — Similar in principle to parabolic-trough technology, the mirrors are placed in a circular pattern. At the center of the circle is a tower, at the top of which is a receiver filled with water, air, liquid metal or molten salt that moves to a power block and is used to power a steam turbine.
  • Parabolic Disk System — In this system, dishes rather than troughs are used to concentrate the power of the sun.

To see how these concentrating approaches integrate with storage, controls, and grid interconnection, alternative energy systems offers design-level guidance for practitioners.

 

Advantages of Alternative Energy Solar Power

In spite of its cost versus other sources of energy, alternative energy solar power is attracting interest due to the following:

  • Alternative energy solar power makes use of a renewable natural resource that is readily available in many parts of the world.
  • The process used to generate alternative energy solar power is emission-free.
  • Costs have greatly reduced thanks to technological advances in solar power technlogy to a point that it can compete with fossil fuel alternatives in specific circumstances.
  • The technology is scalable in that it can be used for domestic heating purposes or on a larger scale for commercial electricity generation, as solar water heaters are an established technology, widely available and simple to install and maintain.

For a deeper dive into real-world performance benefits, case studies in advantages of solar power highlight emissions reductions and lifecycle savings.

 

Disadvantages of Alternative Energy Solar Power

The biggest barriers to increasing alternative energy solar power generation are the cost, the amount of land required for large-scale electricity production, and the intermittent nature of the energy source. In terms of the latter, thermal systems do not work at night or in inclement weather. Storage of hot water for commercial or domestic use is simple because only insulated tanks are needed, but further technology advancements are required to improve storage for the higher-temperature liquids required to generate electricity on a large scale and storage of the electricity itself. Emerging roadmaps in alternative energy solutions discuss thermal storage media and hybrid configurations that mitigate intermittency challenges.

 

Outlook for Alternative Energy Solar Power

Although alternative energy wind power is more economical and has been more widely adopted for large-scale power production than solar energy, solar energy is the most flexible in scale and application. It also is widely available and an environmentally benign source of alternative energy. Broader market drivers and renewable policy trends are tracked under renewable alternative energy, providing useful context for long-term solar adoption.

It is currently a $7 billion per year business that is growing at 40 per cent per annum. As part of the wider clean-energy portfolio, the taxonomy in forms of alternative energy situates solar alongside complementary technologies.

 

Related Articles

View more

Alternative Energy Tax Credits - Green Energy Cost Savings

Alternative energy tax credits reduce CAPEX for solar PV, wind turbines, battery storage, EV charging, and high-efficiency HVAC, with IRS incentives, rebates, and depreciation accelerating power electronics upgrades and grid integration for clean energy projects.

 

What Are Alternative Energy Tax Credits?

Fiscal incentives lowering costs for EE-led renewable systems, backing PV, wind, storage, and grid modernization.

✅ Eligible assets: PV inverters, wind generators, BESS, EVSE

✅ Requires NEC, IEEE 1547, UL 1741, and interconnection compliance

✅ Boosts CAPEX ROI via ITC, PTC, MACRS, transferable credits

 

How can I earn money using alternative energy? New financial incentives are available to homeowners and businesses for a number of alternative energy and energy efficiency measures. For a broader overview of current programs, see the resource at alternative energy incentives which summarizes eligibility and timelines.

  • Alternative energy tax credits for residential and commercial photovoltaics, solar water heating systems, geothermal heat pumps, and other renewable technologies.
  • Alternative energy tax credits for homeowners for energy efficiency improvements to existing homes.
  • Alternative energy tax credits for builders of highly efficient new homes.
  • Alternative energy tax deductions for owners or designers of highly efficient commercial buildings.
  • Alternative energy tax rebates for energy efficient appliances

     

    Alternative Energy Tax Credits Using Solar and Renewables For Residential Homes

    If you're new to the space, this concise primer on what is alternative energy helps frame the technologies covered in this section.

    For new and existing homes, alternative energy tax credit limitations have been removed by some country's governments for many alternative energy systems including geothermal heat pumps, solar water heaters, solar photovoltaics, small wind energy, fuel cells and microturbine systems. Qualified products can receive an alternative energy tax credit equal to 30 per cent of their cost. Many homeowners start by reviewing the latest renewable energy tax credits before requesting contractor quotes.

    Some examples of alternative energy tax credit qualified products are:

    When weighing options like PV and solar thermal, this overview of alternative energy solar power clarifies system types, site suitability, and typical payback periods.

  • Solar water heating systems property certified by the Solar Rating and Certification Corporation (SRCC) which provide at least 50 per cent of the system demand.
  • Photovoltaic systems which provide electric power for the residence.
  • Wind energy systems which provide 100 kW or less electric power to the residence.
  • Geothermal heat pumps which satisfy the ENERGY STAR criteria.
  • Fuel cells with a capacity = 0.5 kW and efficiency = 30 per cent.
  • Microturbines with a maximum capacity of 2,000 kW and a minimum efficiency of 26%.

    Alternative Energy Tax Credits For Existing Homes - Energy Efficiency

    To align upgrades strategically, compare technologies using this guide to renewable alternative energy so your efficiency measures complement future renewable additions.

    Qualified products receive an alternative energy tax credit of 30% of their cost, up to the $1,500 limit.

    Some examples of alternative energy tax credit qualified products are:

  • Insulation material which meets 2009 IEEC and amendments.
  • Exterior windows with SHGC = 0.30 and U-factor = 0.30.
  • Exterior doors with SHGC = 0.30 and U-factor = 0.30.
  • Furnaces using natural gas or propane with an AFUE = 95.
  • Geothermal heat pumps (Not subject to $1,500 cap):
  • Hot water boiler with natural gas, propane, or oil furnace and AFUE = 90 per cent.
  • Advanced main air circulating fan used in natural gas, propane, or oil furnace that uses no more than 2% of the total annual energy use of the furnace.
  • Water heater using natural gas, propane, or oil with EF = 0.82 or a thermal efficiency = 90%.
  • Water heater using an electric heat pump with EF of 2.0 or greater.
  • Biomass stoves with efficiency rating of at least 75 per cent and used to heat a home or heat water.

     

    Alternative Energy Tax Credits For Commercial Buildings

    Owners or tenants (or designers, in the case of publicly-owned buildings) of new or existing commercial buildings may qualify for a tax deduction of up to $1.80 per square foot. The buildings must be constructed or reconstructed to save at least 50 per cent of the heating, cooling, water heating, and interior lighting energy cost of a building that meets ASHRAE Standard 90.1-2001.

    Each of the three energy-using systems of the building — the envelope, interior lighting system, and heating and cooling system — is eligible for one third of the incentive ($0.60/ft) if it meets its share of the whole-building savings goal. Case studies of compliant facilities can be found among curated alternative energy projects that detail design choices and savings outcomes.

    Software meeting federal tax laws for accuracy and consistency determines projected energy savings. Third party inspectors review the plans and verify building parameters to determine compliance.

    Alternative Energy Tax Credits For Businesses

    The business investment tax credit varies from 10% to 30% depending upon they type of system installed. This alternative energy tax credit is possibly available to businesses that purchase solar water heaters, solar photovoltaics, small wind energy, geothermal heat pumps, fuel cells and microturbine systems.

    Combined Incentives For Alternative Energy Tax Credits

    In many cases, multiple tax incentives may be claimed. In the case of a new home for example, the builder may claim credit for the high efficiency home and the homeowner may claim tax credits for solar hot water, photovoltaic, and fuel cell systems. Other financial incentives, such as local utility rebates, further reduce the cost of building or owning a solar and energy efficient home. To supplement credits and rebates, many jurisdictions also offer targeted alternative energy grants that can further reduce upfront costs.

 

 

Related Articles

View more

Alternative Energy Grants - Sustainable Energy Development

Alternative energy grants fund renewable energy R&D, power systems upgrades, and grid modernization, supporting solar, wind, microgrids, battery storage, high-efficiency inverters, and electrification projects for utilities, manufacturers, and engineers, focused on decarbonization and smart grid.

 

What Are Alternative Energy Grants?

Grants that fund renewable power systems, grid upgrades, and storage for electrical engineering projects.

✅ Funds power electronics, inverters, and grid-integration R&D

✅ Supports microgrids, DERs, and smart grid reliability projects

✅ Covers feasibility studies, prototypes, and pilot deployments

 

Alternative energy grants - Wind, solar, geothermal and other alternative energy soures are the new "in" to replace forms of energy that harm the environment such as fossil fuels, so both Canadian and the U.S. governments are giving alternative energy grants (free conditional money) to individuals, businesses and local governments to promote the use and development of alternative energy sources. Here are three alternative energy grants currently offered by the U.S. government. For broader context on the field, the overview at what is alternative energy explains key terms and categories clearly.

 

Alternative Energy Grants - Energy Efficiency and Conservation Block Grant (EECBG) Program

These alternative energy grants help eligible entities in beginning their conservation and energy efficiency strategies. For those interested in applying for these alternative energy grants, they must have reduced their fossil fuel emissions, reduced total energy usage and improved energy efficiency within the company. Furthermore, those eligible must develop and implement an energy efficiency and conservation strategy with the assistance of a third-party technical consultant. Also, eligible entities must conduct regular residential and commercial building energy audits to monitor results and financial incentive programs (loan programs, rebate programs, waive permit fees) with the goal of improving energy efficiency must be in place. Other requirements are also required to be eligible for this alternative energy grant. To identify complementary rebates and policy tools, agencies can review alternative energy incentives relevant to their jurisdiction for alignment with EECBG goals.

 

Alternative Energy Grants - State Energy Program

Ultimately, provinces and states are expected to lower their overall fossil fuel carbon emissions so that the use of alternative energy sources can become more prevalent. Financial support, in whole or in part, may be provided for salaries, materials, and supplies, equipment, travel, publication costs, and services required for deployment of alternative energy activities and initiatives. The states energy program goes to competing states for funding to implement activities relating to a number of programmatic areas such as building codes and standards, alternative fuels, industrial efficiency, building efficiency, and alternative energy technologies. Many states layer alternative energy tax credits on top of SEP funds to catalyze private investment.

 

Alternative Energy Grants - Rural Energy for America Program (REAP)

The REAP program provides alternative energy grants to rural small businesses & agricultural producers for the purchase & installation of alternative energy systems in rural areas. Alternative energy grants are limited to 25 per cent of the project cost or $500,000 – whichever is less. Alternative energy grant applications of $20,000 or less are greatly favored in the competitive, selection process. Projects needing larger grants can improve their chances by simultaneously seeking a REAP guaranteed loan. For the loan seekers, the details are the same as the aforementioned alternative energy grant, but provides 60 to 85% per cent loan guarantees to commercial lenders financing such projects. Loans up to $25 million can be guaranteed. Combination grant and guaranteed loan assistance up to 75 per cent of total project cost; such “combo” proposals may improve a project’s access to grant assistance and speed approvals. Prospective applicants can benchmark typical capital and O&M figures using resources on alternative energy cost to prepare stronger pro formas.

Case studies of farm-scale solar, wind, and efficiency upgrades in the alternative energy projects library illustrate successful REAP financing structures.

 

Alternative Energy Grants - State Energy Special Projects

The State Energy Program aims to develop and deploy energy efficiency and alternative energy technologies and practices. The State Energy Program (SEP) makes it possible for states in the U.S. to design and carry out energy efficiency and alternative energy programs tailored to their State-specific needs, while contributing to national energy priorities. The State Energy Program enables the States to address both national energy initiatives and local energy priorities through two funding mechanisms: alterntive energy formula grants and Special Projects grants. States utilize these funds to design and implement energy projects tailored to meet community needs, economic conditions, individual energy situations, and climactic variations. SEP Special Projects funds are awarded on a competitive basis to States from each of the four end-use sectors (buildings, industrial, power technologies, and transportation) and the Federal Energy Management Program (FEMP) for cost-shared technology projects. Special Projects often accelerate alternative energy development by targeting pre-commercial demonstrations and regional testbeds.

For program designers seeking cross-sector approaches, curated alternative energy solutions can inform competitive proposals and stakeholder engagement plans.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.