Darlington nuclear looks ahead

By Toronto Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
As Ontario Power Generation makes its case for building new nuclear reactors at its Darlington site, the company is showing off its old ones.

Not very old, really — they’re the newest in Ontario, first delivering power in the early 1990s.

OPG gave journalists a rare tour of both the present and the future.

The present: A hulking, 1.1-kilometre-long, white-clad building just south of Highway 401 housing four reactors. A huge facility, but mostly hidden from public view by massive earthen berms.

The future: A scrubby patch of ground sloping down to the shores of Lake Ontario, sandwiched between the existing nuclear station and the St. Marys Cement plant to the east.

ThatÂ’s where OPG wants to build first two, and ultimately four, new reactors, with the first units due to start up about a decade from now.

Environmental hearings on the plan are underway a few kilometres from the plant in the village of Courtice, east of Oshawa — but the company hasn’t even picked the type of new reactor it wants to build.

The timing, in some ways, couldnÂ’t be worse for an environmental hearing, with the Japanese nuclear disaster sill unfolding.

But Brian Duncan, OPGÂ’s vice-president in charge of Darlington, insists the type of damage wreaked in Japan wonÂ’t happen here.

Canada simply doesnÂ’t get that kind of quake, Duncan said.

“For that Japanese plant, it was the tsunami that took out their auxiliary cooling” that created the disaster, Duncan said.

“It was the one-two punch. It’s just incredible for this area to see something like that.”

Federal government seismologists have told the environmental panel on the proposed reactors that the Japanese quake was immensely powerful and close to the surface of the Earth. That lifted the ocean floor several metres, displacing huge volumes of water that surged over the land, overwhelming the nuclear plants and causing massive destruction across the landscape.

Quakes in Ontario are weaker and deeper within the EarthÂ’s crust, they said. They wonÂ’t displace the lakebed, so thereÂ’s no likelihood of a massive Lake Ontario wave washing ashore at Darlington or its older sister, the Pickering nuclear station.

Duncan acknowledges that there are lessons to be learned from Japan.

The first one has already hit home. Emergency planning generally focuses on events within the plant.

But what happens if, as in Japan, the surrounding area is also devastated, with roads and bridges knocked out?

“You’re going to have workers in the plant. How do you get food and water to them?” Duncan asks. Better docking facilities may be needed, for emergency supply by water.

The backup generators that run the plantÂ’s critical systems needed to keep hot fuel cool, and to maintain plant controls, have fuel for a month.

But the Japanese crisis has persisted longer than that.

The hot, used fuel must be stored in cooling pools — with the water circulated by electric pumps — for 10 years before it can be stored in dry, air-cooled containers.

Then thereÂ’s the long-term problem, still unsolved, that hangs over all nuclear plants: A permanent storage facility for the spent fuel, which remains highly radioactive, has still not been found.

The Nuclear Waste Management Organization is talking to several communities that have expressed interest in hosting a permanent storage facility. Currently, spent fuel must be housed on the site.

The complex plans for dealing with emergencies are evident everywhere.

A massive building on the plantÂ’s south side is filled with less than nothing.

ItÂ’s a vacuum building. Should an accident happen and the reactor building fill with radioactive steam, the vacuum buildingÂ’s low pressure will suck in the steam and turn it into water, to be contained in the building.

Everywhere in the plant are “steam doors” to keep steam from damaging sensitive electronic equipment. And everyone in the plant routinely passes through radiation detectors as they move from area to area.

But for now, the plant is running smoothly, with three reactors at full power and one out for scheduled maintenance. Each reactor is colour coded, so technicians can be sure they’re working on the right one — a vital safety issue in a plant where four identical reactors are lined up in a row.

Darlington alone supplied about 19 per cent of OntarioÂ’s electricity last year.

One of the problems currently occupying the attention of power system planners is what to do when Darlington isnÂ’t there.

ThatÂ’s no academic exercise, as the existing plant is due for a mid-life refit starting in 2016 that will sharply reduce its output for several years.

Related News

Coronavirus puts electric carmakers on alert over lithium supplies

Western Lithium Supply Localization is accelerating as EV battery makers diversify from China, boosting lithium hydroxide sourcing in North America and Europe, amid Covid-19 disruptions and rising prices, with geothermal brines and local processing.

 

Key Points

An industry shift to source lithium and processing near EV hubs, reducing China reliance and supply chain risk.

✅ EV makers seek North American and European lithium hydroxide

✅ Prices rise amid Covid-19 and logistics constraints

✅ New extraction: geothermal and oilfield brine projects

 

The global outbreak of coronavirus will accelerate efforts by western carmakers to localise supplies of lithium for electric car batteries, according to US producer Livent.

The industry was keen to diversify away from China, which produces the bulk of the world’s lithium, a critical material for lithium-ion batteries, said Paul Graves, Livent’s chief executive.

“It’s a conversation that’s starting to happen that was not happening even six months ago,” especially in the US, the former Goldman Sachs banker added.

China produced about 79 per cent of the lithium hydroxide used in electric car batteries last year, according to consultancy CRU, a supply chain that has been disrupted by the virus outbreak and EV shortages in some markets.

Prices for lithium hydroxide rose 3.1 per cent last month, their first increase since May 2018, according to Benchmark Mineral Intelligence, due to the impact of the Covid-19 bug.

Chinese lithium producer Ganfeng Lithium, which supplies major carmakers from Tesla to Volkswagen, said it had raised prices by less than 10 per cent, due to higher production costs and logistical difficulties.

“We can get lithium from lots of places . . . is that really something we’re prepared to rely upon?” Mr Graves said. “People are going to relook at supply chains, including battery recycling initiatives that enhance resilience, and relook at their integrity . . . and they’re going to say is there something we need to do to change our supply chains to make them more shockproof?”

General Motors last week said it was looking to source battery minerals such as lithium and nickel from North America for its new range of electric cars that will use cells made in Ohio by South Korea’s LG Chem.

“Some of these critical minerals could be challenging to obtain; it’s not just cobalt you need to be concerned about but also battery-grade nickel and lithium as well,” said Andy Oury, a lead engineer for batteries at GM. “We’re doing all of this with an eye to sourcing as much of the raw material from North America as possible.”

However, George Heppel, an analyst at CRU, warned it would be difficult to compete with China on costs. “China is always going to be the most competitive place to buy battery raw materials. That’s not likely to change anytime soon,” he said.

Livent, which extracts lithium from brines in northern Argentina, is looking at extracting the mineral from geothermal resources in the US and also wants to build a processing plant in Europe.

The Philadelphia-based company is also working with Canadian start-up E3 Metals to extract lithium from brines in Alberta's oil and gasfields for new projects in Canada.

“We’ll look at doing more in the US and more in Europe,” said Mr Graves, underscoring evolving Canada-U.S. collaboration across EV supply chains.


 

 

Related News

View more

Japanese utilities buy into vast offshore wind farm in UK

Japan Offshore Wind Investment signals Japanese utilities entering UK offshore wind, as J-Power and Kansai Electric buy into Innogy's Triton Knoll, leveraging North Sea expertise, 9.5MW turbines, and 15-year fixed-rate contracts.

 

Key Points

Japanese utilities buying UK offshore wind stakes to import expertise, as J-Power and Kansai join Innogy's Triton Knoll.

✅ $900M deal: J-Power 25%, Kansai Electric ~16% in Innogy unit

✅ Triton Knoll: 860MW, up to 90 9.5MW turbines, 15-year fixed PPA

✅ Goal: Transfer North Sea expertise to develop Japan offshore wind

 

Two of Japan's biggest power companies will buy around 40% of a German-owned developer of offshore wind farms in the U.K., seeking to learn from Britain's lead in this sector, as highlighted by a UK offshore wind milestone this week, and bring the know-how back home.

Tokyo-based Electric Power Development, better known as J-Power, will join Osaka regional utility Kansai Electric Power in investing in a unit of Germany's Innogy.

The deal, estimated to be worth around $900 million, will give J-Power a 25% stake and Kansai Electric a roughly 16% share. It will mark the first investment in an offshore wind project by Japanese power companies, as other markets shift strategies, with Poland backing wind over nuclear signaling broader momentum.

Innogy plans to start up the 860-megawatt Triton Knoll offshore wind project -- one of the biggest of its kind in the world -- in the North Sea in 2021. The vast installation will have up to 90 9.5MW turbines and sell its output to local utilities under a 15-year fixed-rate contract.

J-Power, which supplies mainly fossil-fuel-based electricity to Japanese regional utilities, will set up a subsidiary backed by the government-run Development Bank of Japan to participate in the Innogy project. Engineers will study firsthand construction and maintenance methods.

While land-based wind turbines are proliferating worldwide, offshore wind farms have progressed mainly in Europe, though U.S. offshore wind competitiveness is improving in key markets. Installed capacity totaled more than 18,000MW at the end of 2017, which at maximum capacity can produce as much power as 18 nuclear reactors.

Japan has hardly any offshore wind farms in commercial operation, and has little in the way of engineering know-how in this field or infrastructure for linking such installations to the land power grid, with a recent Japan grid blackout analysis underscoring these challenges. But there are plans for a total of 4,000MW of offshore wind power capacity, including projects under feasibility studies.

J-Power set up a renewable energy division in June to look for opportunities to expand into wind and geothermal energy in Japan, and efforts like a Japan hydrogen energy system are emerging to support decarbonization. Kansai Electric also seeks know-how for increasing its reliance on renewable energy, even as it hurries to restart idled nuclear reactors.

They are not the only Japanese investors is in this field. In Asia, trading house Marubeni will invest in a Taiwanese venture with plans for a 600MW offshore wind farm.

 

Related News

View more

Biden administration pushes to revitalize coal communities with clean energy projects

Coal-to-Clean Energy Hubs leverage Bipartisan Infrastructure Law and Inflation Reduction Act funding to repurpose mine lands with microgrids, advanced nuclear, carbon capture, and rare earth processing, boosting energy security, jobs, and grid modernization.

 

Key Points

They are federal projects converting coal communities and mine lands into clean energy hubs, repurposing infrastructure.

✅ DOE demos on mine lands: microgrids, nuclear, carbon capture.

✅ Funding from BIL, CHIPS and IRA targets energy communities.

✅ Rare earths from coal waste bolster EV supply chains.

 

The Biden administration is channeling hundreds of millions of dollars in clean energy funding from recent legislation into its efforts to turn coal communities into clean energy hubs, the White House said.

The administration gave an update on its push across agencies to kick-start projects nationwide with funding Congress approved during Biden’s first two years in office. The effort includes $450 million from the Bipartisan Infrastructure Law that the Department of Energy will allocate to an array of new clean energy demonstration projects on former mine lands.

“These projects could focus on a range of technologies from microgrids to advanced nuclear to power plans with carbon capture,” Energy Secretary Jennifer Granholm said on a call with reporters Monday. “They’ll prove out the potential to reactivate or repurpose existing infrastructure like transmission lines and substations across an aging U.S. power grid, and these projects could spur new economic development in these communities.”

Among the projects the White House highlighted, it said $16 million from the infrastructure law will go to the University of North Dakota and West Virginia University to create design studies for the first-ever full-scale refinery facility in the U.S. that could extract and separate rare earth elements and minerals from coal mine waste streams. The materials are critical for electric vehicle-battery components that are currently heavily sourced from outside the U.S.

“Those efforts will pave the way toward building a first of its kind facility that produces essential materials for solar panels, wind turbines, EVs and more while cleaning up polluted land and water and creating good-paying jobs for local workers,” Granholm said.

Biden created an interagency working group focused on revitalizing coal-power communities through federal investments when he took office. In 2021, the group selected 25 priority areas ranging from West Virginia to Wyoming to focus on development, as high natural gas prices strengthened the case for clean electricity. There are nearly 18,000 identified mine sites across 1.5 million acres in the United States, according to the White House.

The massive effort fits into a broader Biden administration push to both fight climate change and support communities that have lost economic activity during a transition away from fossil fuel sources such as coal. While Biden’s most ambitious clean energy plans fell flat in Congress in the face of opposition from Republicans and some Democrats after the previous administration’s power plant overhaul, three major laws still unlocked funding for his administration to deploy.

Many of the initiatives are made possible through the Bipartisan Infrastructure Law, Chips and Science Act and the Inflation Reduction Act, even without a clean electricity standard on the books. The task force aims to make sure communities most affected by the changing energy landscape are taking maximum advantage of the federal benefits.

“Those new and expanded operations are coming to energy communities and creating good paying jobs,” Biden’s senior advisor for clean energy innovation and implementation John Podesta said on the call. “These laws can provide substantial federal support to energy communities like capping abandoned oil and gas wells, extracting critical minerals, building battery factories and launching demonstration projects in carbon capture or green hydrogen.”

The administration touted the potential benefits of the Inflation Reduction Act, a bill passed by Democrats to spur clean energy investments last year, even as early assessments show mixed results to date. At the time, U.S. consumers were dealing with decades-high inflation fueled in part by an energy crisis and high gas prices that drove debate — a point Republicans emphasized as the plan moved through Congress.

Deputy Treasury Secretary Wally Adeyemo said the Inflation Reduction Act aims to both “lower the deficit, as well as promote our energy security, lowering energy costs for consumers and combatting climate change.”

“As the Treasury works to implement the law, we’re focused on ensuring that all Americans benefit from the growth of the clean energy economy, particularly those who live in communities that have been dependent on the energy sector for job for a long time,” Adeyemo told reporters. “Economic growth and productivity are higher when all communities are able to reach their full potential.”

 

Related News

View more

B.C. ordered to pay $10M for denying Squamish power project

Greengen Misfeasance Ruling details a B.C. Supreme Court decision awarding $10.125 million over wrongfully denied Crown land and water licence permits for a Fries Creek run-of-river hydro project under a BC Hydro contract.

 

Key Points

A B.C. Supreme Court ruling awarding $10.125M for wrongful denial of Crown land and water licences on Greengen's project.

✅ $10.125M damages for misfeasance in public office

✅ Denial of Crown land tenure and water licence permits

✅ Tied to Fries Creek run-of-river and BC Hydro EPA

 

A B.C. Supreme Court judge has ordered the provincial government to pay $10.125 million after it denied permits to a company that wanted to build a run-of-the river independent power project near Squamish.

In his Oct. 10 decision, Justice Kevin Loo said the plaintiff, Greengen Holdings Ltd., “lost an opportunity to achieve a completed and profitable hydro-electric project” after government representatives wrongfully exercised their legal authority, a transgression described in the ruling as “misfeasance,” with separate concerns reflected in an Ontario market gaming investigation reported elsewhere.

Between 2003 and 2009, the company sought to develop a hydro-electric project on and around Fries Creek, which sits opposite the Brackendale neighbourhood on the other side of the Squamish River. To do so, Greengen Holdings Ltd. required a water licence from the Minister of the Environment and tenure over Crown land from the Minister of Agriculture.

After a lengthy process involving extensive communications between Greengen and various provincial and other ministries and regulatory agencies, the permits were denied, according to Loo. Both decisions cited impacts on Squamish Nation cultural sites that could not be mitigated.

Elsewhere, an Indigenous-owned project in James Bay proceeded despite repeated denials, underscoring varied approaches to community participation.

40-year electricity plan relied on Crown land
The case dates back to December 2005, when BC Hydro issued an open call for power with Greengen. The company submitted a tender several months later.

On July 26, 2006, BC Hydro awarded Greengen an energy purchase agreement, amid evolving LNG electricity demand across the province, under which Greengen would be entitled to supply electricity at a fixed price for 40 years.

Unlike conventional hydroelectric projects, such as new BC generating stations recently commissioned, which store large volumes of water in reservoirs, and in so doing flood large tracts of land, a run of the river project often requires little or no water storage. Instead, from a high elevation, they divert water from a stream or river channel.

Water is then sent into a pressured pipeline known as a penstock, and later passed through turbines to generate electricity, Loo explained, as utilities pursue long-term plans like the Hydro-Québec strategy to reduce fossil fuel reliance. The system returns water to the original stream or river, or into another body of water. 

The project called for most of that infrastructure to be built on Crown land, according to the ruling.

All sides seemed to support the project
In early 2005, company principle Terry Sonderhoff discussed the Fries Creek project in a preliminary meeting with Squamish Nation Chief Ian Campbell.

“Mr. Sonderhoff testified that Chief Campbell seemed supportive of the project at the time,” Loo said.

 

Related News

View more

FPL stages massive response to Irma but power may not be back for days or weeks

FPL Power Restoration mobilizes Florida linemen and mutual-aid utility crews to repair the grid, track outages with smart meters, prioritize hospitals and essential services, and accelerate hurricane recovery across the state.

 

Key Points

FPL Power Restoration is the utility's hurricane effort to rebuild the grid and quickly restore service across Florida.

✅ 18,000 mutual-aid utility workers deployed from 28 states

✅ Smart meters pinpoint outages and accelerate repairs

✅ Critical facilities prioritized before neighborhood restorations

 

Teams of Florida Power & Light linemen, assisted by thousands of out-of-state utility workers and 200 Ontario workers who joined the effort, scrambled across Florida Monday to tackle the Herculean task of turning the lights back on in the Sunshine State.

The job is quite simply mind-boggling as Irma caused extensive damages to the power grid and the outages have broken previous records, and in other storms Louisiana's grid needed a complete rebuild after Hurricane Laura to restore service.

By 3 p.m. Monday, some 3.47 million of the company's 4.9 million customers in Florida were without power. This breaks the record of 3.24 million knocked off the grid during Hurricane Wilma in 2005, according to FPL spokesman Bill Orlove.

Prepared to face massive outages, FPL brought some 18,000 utility workers from 28 states here to join FPL crews, including Canadian power crews arriving to help restore service, to enable them to act more quickly.

“That’s the thing about the utility industry,” said  Alys Daly, an FPL spokeswoman. “It’s truly a family.”

Even with what is believed to be the largest assembly of utility workers ever assembled for a single storm in the United States, power restoration is expected to take weeks, not days in some areas.

FPL vowed to work as quickly as possible as they assess the damage and send out crews to restore power.

"We understand that people need to have power right away to get their lives back to normal," Daly said.

The priority, she said, were medical and emergency management facilities and then essential service providers like gas stations and grocery stores.

After that, FPL will endeavor to repair the problems that will restore power to the maximum number of people possible. Then it's individual neighborhoods.

As of 3 p.m. Monday, 219,040 of FPL's 307,600 customers on the Space Coast had no power. That's an improvement over the 260,600 earlier in the day.

Daly was unable to say Monday how many crews FPL had working in Brevard County. In some areas, power came back relatively swiftly, much quicker than expected.

" I was definitely surprised at how quickly they got our power back on here in NE Palm Bay," said Kelli Coats. "We lost power last night around 9 p.m Sunday and regained power around 8:30 a.m. today."

Others, many of them beachside, were looking at a full 24 hours without power and it's possible it could extend into Tuesday or longer.

One reason for improved response times since 2005, Daly said, is the installation of nearly 5 million "Smart Meters" at residences. These new devices, which replaced older analog models, allows FPL crews to track a neighborhood's power status via handheld computers, pinpointing the cause of an outage so it can be repaired.

Quick restoration is key as stores and restaurants struggle to re-open, and Gulf Power crews restored power in the early push. Without electricity many of them just can't re-start operations and get goods and services to consumers.

At the Atlanta-based Waffle House, which Federal Emergency Management Administration use to gauge the severity of damage and service to an area, restaurant executives are reviewing its operations in Florida and should have a better handle Monday afternoon how quickly restaurants will re-open.

"Right now, we're in an assessment phase," said Pat Warner, spokesman for Waffle House. "We're looking at which stores have power and which ones have damage."

FEMA's color-coded Waffle House Index started after the hurricanes in the early 2000s. It works like this: When an official phones a Waffle House to see if it is open,  the next stop is to assess it's level of service. If it's open and serving a full menu, the index is green. When the restaurant is open but serving a limited menu, it's yellow. When it's closed, it's red.

 

Related News

View more

Federal net-zero electricity regulations will permit some natural gas power generation

Canada Clean Electricity Regulations allow flexible, technology-neutral pathways to a 2035 net-zero grid, permitting limited natural gas with carbon capture, strict emissions standards, and exemptions for emergencies and peak demand across provinces and territories.

 

Key Points

Federal draft rules for a 2035 net-zero grid, allowing limited gas with CCS under strict performance and compliance standards.

✅ Performance cap: 30 tCO2 per GWh annually for gas plants

✅ CCS must sequester 95% of emissions to comply

✅ Emergency and peak demand exemptions permitted

 

After facing pushback from Alberta and Saskatchewan, and amid looming power challenges nationwide, Canada's draft net-zero electricity regulations — released today — will permit some natural gas power generation. 

Environment Minister Steven Guilbeault released Ottawa's proposed Clean Electricity Regulations on Thursday.

Provinces and territories will have a minimum 75-day window to comment on the draft regulations. The final rules are intended to pave the way to a net-zero power grid in Canada, aligning with 2035 clean electricity goals established nationally. 

Calling the regulations "technology neutral," Guilbeault said the federal government believes there's enough flexibility to accommodate the different energy needs of Canada's diverse provinces and territories, including how Ontario is embracing clean power in its planning. 

"What we're talking about is not a fossil fuel-free grid by 2035; it's a net zero grid by 2035," Guilbeault said. 

"We understand there will be some fossil fuels remaining … but we're working to minimize those, and the fossil fuels that will be used in 2035 will have to comply with rigorous environmental and emission standards," he added. 

Some analysts argue that scrapping coal-fired electricity can be costly and ineffective, underscoring the trade-offs in transition planning.

While non-emitting sources of electricity — hydroelectricity, wind and solar and nuclear — should not have any issues complying with the regulations, natural gas plants will have to meet specific criteria.

Those operations, the government said, will need to emit the equivalent of 30 tonnes of carbon dioxide per gigawatt hour or less annually to help balance demand and emissions across the grid.

Federal officials said existing natural gas power plants could comply with that performance standard with the help of carbon capture and storage systems, which would be required to sequester 95 per cent of their emissions.

"In other words, it's achievable, and it is achievable by existing technology," said a government official speaking to reporters Thursday on background and not for attribution.

The regulations will also allow a certain level of natural gas power production without the need to capture emissions. Capturing emissions will be exempted during emergencies and peak periods when renewables cannot keep up with demand. 

Some newer plants might not have to comply with the rules until the 2040s, because the regulations apply to plants 20 years after they are commissioned, which dovetails with net-zero by 2050 commitments from electricity associations. 

The two-decade grace period does not apply to plants that open after the regulations are expected to be finalized in 2025.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.