Putting some wind beneath our energy wings

By Vancouver Sun


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
When a legend in the U.S. oil industry starts advocating investing in wind power, it's worth taking note.

T. Boone Pickens, the Texas oilman who claims he's drilled more dry holes and found more oil than just about anyone in the industry, is turning the page, to a degree, on the black gold that made him a billionaire.

He is intensely concerned about the U.S.'s dependence on foreign oil, about 70 per cent of which it imports.

His plan to reduce that dependence? Invest in wind power.

He's already invested in the technology in the United States and is spending millions on an advertising campaign to tell his compatriots that wind is the way to go – to the point where he thinks it can represent 20 per cent of the U.S. electricity supply by 2030. He likes it because it is clean, green and renewable.

It produces no greenhouse-gas emissions that contribute to harmful climate change.

Pickens's actions represent one more important validation of wind-generated power.

British Columbia faces the same climate-change challenges as do Pickens and his countrymen. And, like Pickens, the B.C. public has a strong desire to lessen its fossil-fuel use and add more green, renewable sources to our energy mix.

While we are fortunate not to be as oil-dependent as the U.S., we in B.C. use more electricity than we generate, despite an abundance of hydroelectric power. To meet demand, we import as much as 15 per cent of our electricity needs, which are supplied by the often carbon-intensive power from other jurisdictions.

This is in contrast to the B.C. Energy Plan goal of being self-sufficient.

Pickens, who, to date has invested in U.S. land-based wind farm projects, might be interested to know that B.C. is blessed with the very resource he endorses – literally in our own back yard. But there's a difference. B.C. is home to what is planned to be the first offshore wind farm in Canada.

On the northeast coast of Haida Gwaii (Queen Charlotte Islands) is the Hecate Strait where NaiKun Wind Group of Vancouver is proposing a project whose first phase would produce enough electricity to light up 120,000 homes.

It would also displace 26,000 tonnes of greenhouse gases per year on Haida Gwaii currently emitted as a result of high-cost, diesel generation on which this pristine set of islands ironically depends for most of its electricity needs.

NaiKun's project will consist of between 64 and 107 wind turbine towers with an undersea cable to transport the power back to the mainland near Prince Rupert.

Wind energy, as Pickens notes, is 100 per cent renewable and clean. And offshore wind is arguably stronger and more consistent than wind over land. It generates more energy, more efficiently. Plus, it complements hydroelectric power.

In the winter, when BC Hydro's reservoirs are the lowest (while demand for electricity is greatest), wind supply is high. That suits B.C. well. As for Hecate Strait, it is an ideal location for this project, with strong winds, a sandy seabed, shallow waters and proximity to the main provincial energy grid.

If Pickens can explore new approaches to energy, so can British Columbians. If Pickens can declare a goal of having wind power represent 20 per cent of the U.S. energy mix within several decades, B.C. – and Canada – can set the bar high, too.

The Canadian Wind Energy Association has set a rather modest goal of 10,000 MW of installed wind energy in Canada by 2010, enough to supply five per cent of Canada's electricity needs.

Wind power's time has come – offshore wind power in particular. Europeans have embraced wind power and so has the United States. Wind power is a viable, accepted and necessary part of our future energy supply. By using this proven technology, B.C. can be a leader in putting offshore wind at the forefront of our green energy mix.

Related News

Solar-powered pot: Edmonton-area producer unveils largest rooftop solar array

Freedom Cannabis solar array powers an Acheson cannabis facility with 4,574 rooftop panels, a 1,830-kilowatt system by Enmax, cutting greenhouse gas emissions, lowering energy costs, and advancing renewable energy, sustainability, and operational efficiency in Edmonton.

 

Key Points

A 1,830-kW rooftop solar system with 4,574 panels, cutting GHG emissions and energy costs at the Acheson facility.

✅ 1,830-kW array offsets 1,000+ tonnes GHG annually

✅ Supplies ~8% of annual power; saves $200k-$300k per year

✅ 4,574 rooftop panels installed by Enmax in Acheson

 

Electricity consumption is one of the biggest barriers to going green in the cannabis industry, where the energy demands of cannabis cultivation often complicate sustainability, but an Edmonton-area pot producer has come up with a sunny solution.

Freedom Cannabis unveiled the largest rooftop solar system used by a cannabis facility in Canada at its 126,000-square foot Acheson location, 20 kilometres west of Edmonton, as solar power in Alberta continues to surge, on Tuesday.

The "state-of-the-art" 1,830-kilowatt solar array—made up of 4,574 panels—was supplied by Enmax and will offset more than 1,000 tonnes of greenhouse gas emissions each year, reflecting how new Alberta solar facilities are undercutting natural gas on price, the company said.

The state-of-the-art solar array—made up of 4,574 panels—was supplied by Enmax and will offset more than 1,000 tonnes of greenhouse gas emissions at Freedom Cannabis every year. Nov. 12, 2019. (Freedom Cannabis)

That will supply roughly eight per cent of the building's annual power consumption and reduce costs by $200,000 to $300,000 annually.

"This strategy will supplement our operating costs for power by up to eight to 10 per cent, so it is something that in time will save us costs on power requirements," said Troy Dezwart, co-founder of Freedom Cannabis.

Dezwart said sustainability was an important issue to the company from its outset, aligning with an Alberta renewable energy surge that is expected to power thousands of jobs.

"We're fortunate enough to be able to have these types of options and pursue them," said Dezwart.

The entire system cost Freedom Cannabis $2.6 million to build, but nearly a million of that came from a provincial rebate program that has since been cancelled by the UCP government, even as a federal green electricity deal with an Edmonton company signals ongoing support.

The company cited a 2017 report that found cannabis growers in the U.S. used enough electricity to power 1.7-million homes, and said cannabis-related power consumption is expected to increase by 1,250 per cent in Ontario over the next five years, even though Canadian solar demand has been lagging overall.

“It’s more important than ever for businesses to manage their energy footprint, and solar is an important part of that solution,” Enmax director Jason Atkinson, said. “This solar installation will help reduce operating costs and offset a significant portion of GHG emissions for decades to come.”

Freedom says it has other initiatives underway to reduce its footprint, in a region planning the Edmonton airport solar farm among other projects, including water remediation and offering 100 per cent recyclable cannabis packaging tins.

The company's first crops are expected to go to market in December.

 

Related News

View more

New fuel cell concept brings biological design to better electricity generation

Quinone-mediated fuel cell uses a bio-inspired organic shuttle to carry electrons and protons to a nearby cobalt catalyst, improving hydrogen conversion, cutting platinum dependence, and raising efficiency while lowering costs for clean electricity.

 

Key Points

An affordable, bio-inspired fuel cell using an organic quinone shuttle and cobalt catalyst to move electrons efficiently

✅ Organic quinone shuttles electrons to a separate cobalt catalyst

✅ Reduces platinum use, lowering cost of hydrogen power

✅ Bio-inspired design aims to boost efficiency and durability

 

Fuel cells have long been viewed as a promising power source. But most fuel cells are too expensive, inefficient, or both. In a new approach, inspired by biology, a team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

Fuel cells have long been viewed as a promising power source. These devices, invented in the 1830s, generate electricity directly from chemicals, such as hydrogen and oxygen, and produce only water vapor as emissions. But most fuel cells are too expensive, inefficient, or both.

In a new approach, inspired by biology and published today (Oct. 3, 2018) in the journal Joule, a University of Wisconsin-Madison team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

In a traditional fuel cell, the electrons and protons from hydrogen are transported from one electrode to another, where they combine with oxygen to produce water. This process converts chemical energy into electricity. To generate a meaningful amount of charge in a short enough amount of time, a catalyst is needed to accelerate the reactions.

Right now, the best catalyst on the market is platinum -- but it comes with a high price tag, and while advances like low-cost heat-to-electric materials show promise, they address different conversion pathways. This makes fuel cells expensive and is one reason why there are only a few thousand vehicles running on hydrogen fuel currently on U.S. roads.

Shannon Stahl, the UW-Madison professor of chemistry who led the study in collaboration with Thatcher Root, a professor of chemical and biological engineering, says less expensive metals can be used as catalysts in current fuel cells, but only if used in large quantities. "The problem is, when you attach too much of a catalyst to an electrode, the material becomes less effective," he says, "leading to a loss of energy efficiency."

The team's solution was to pack a lower-cost metal, cobalt, into a reactor nearby, where the larger quantity of material doesn't interfere with its performance. The team then devised a strategy to shuttle electrons and protons back and forth from this reactor to the fuel cell.

The right vehicle for this transport proved to be an organic compound, called a quinone, that can carry two electrons and protons at a time. In the team's design, a quinone picks up these particles at the fuel cell electrode, transports them to the nearby reactor filled with an inexpensive cobalt catalyst, and then returns to the fuel cell to pick up more "passengers."

Many quinones degrade into a tar-like substance after only a few round trips. Stahl's lab, however, designed an ultra-stable quinone derivative. By modifying its structure, the team drastically slowed down the deterioration of the quinone. In fact, the compounds they assembled last up to 5,000 hours -- a more than 100-fold increase in lifetime compared to previous quinone structures.

"While it isn't the final solution, our concept introduces a new approach to address the problems in this field," says Stahl. He notes that the energy output of his new design produces about 20 percent of what is possible in hydrogen fuel cells currently on the market. On the other hand, the system is about 100 times more effective than biofuel cells that use related organic shuttles.

The next step for Stahl and his team is to bump up the performance of the quinone mediators, allowing them to shuttle electrons more effectively and produce more power. This advance would allow their design to match the performance of conventional fuel cells, but with a lower price tag.

"The ultimate goal for this project is to give industry carbon-free options for creating electricity, including thermoelectric materials that harvest waste heat," says Colin Anson, a postdoctoral researcher in the Stahl lab and publication co-author. "The objective is to find out what industry needs and create a fuel cell that fills that hole."

This step in the development of a cheaper alternative could eventually be a boon for companies like Amazon and Home Depot that already use hydrogen fuel cells to drive forklifts in their warehouses.

"In spite of major obstacles, the hydrogen economy, with efforts such as storing electricity in pipelines in Europe, seems to be growing," adds Stahl, "one step at a time."

Financial support for this project was provided by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and by the Wisconsin Alumni Research Foundation (WARF) through the WARF Accelerator Program.

 

Related News

View more

A tenth of all electricity is lost in the grid - superconducting cables can help

High-Temperature Superconducting Cables enable lossless, high-voltage, underground transmission for grid modernization, linking renewable energy to cities with liquid nitrogen cooling, boosting efficiency, cutting emissions, reducing land use, and improving resilience against disasters and extreme weather.

 

Key Points

Liquid-nitrogen-cooled power cables delivering electricity with near-zero losses, lower voltage, and greater resilience.

✅ Near-lossless transmission links renewables to cities efficiently

✅ Operate at lower voltage, reducing substation size and cost

✅ Underground, compact, and resilient to extreme weather events

 

For most of us, transmitting power is an invisible part of modern life. You flick the switch and the light goes on.

But the way we transport electricity is vital. For us to quit fossil fuels, we will need a better grid, with macrogrid planning connecting renewable energy in the regions with cities.

Electricity grids are big, complex systems. Building new high-voltage transmission lines often spurs backlash from communities, as seen in Hydro-Que9bec power line opposition over aesthetics and land use, worried about the visual impact of the towers. And our 20th century grid loses around 10% of the power generated as heat.

One solution? Use superconducting cables for key sections of the grid. A single 17-centimeter cable can carry the entire output of several nuclear plants. Cities and regions around the world have done this to cut emissions, increase efficiency, protect key infrastructure against disasters and run powerlines underground. As Australia prepares to modernize its grid, it should follow suit with smarter electricity infrastructure initiatives seen elsewhere. It's a once-in-a-generation opportunity.


What's wrong with our tried-and-true technology?
Plenty.

The main advantage of high voltage transmission lines is they're relatively cheap.

But cheap to build comes with hidden costs later. A survey of 140 countries found the electricity currently wasted in transmission accounts for a staggering half-billion tons of carbon dioxide—each year.

These unnecessary emissions are higher than the exhaust from all the world's trucks, or from all the methane burned off at oil rigs.

Inefficient power transmission also means countries have to build extra power plants to compensate for losses on the grid.

Labor has pledged A$20 billion to make the grid ready for clean energy, and international moves such as US-Canada cross-border approvals show the scale of ambition needed. This includes an extra 10,000 kilometers of transmission lines. But what type of lines? At present, the plans are for the conventional high voltage overhead cables you see dotting the countryside.

System planning by Australia's energy market operator shows many grid-modernizing projects will use last century's technologies, the conventional high voltage overhead cables, even as Europe's HVDC expansion gathers pace across its network. If these plans proceed without considering superconductors, it will be a huge missed opportunity.


How could superconducting cables help?
Superconduction is where electrons can flow without resistance or loss. Built into power cables, it holds out the promise of lossless electricity transfer, over both long and short distances. That's important, given Australia's remarkable wind and solar resources are often located far from energy users in the cities.

High voltage superconducting cables would allow us to deliver power with minimal losses from heat or electrical resistance and with footprints at least 100 times smaller than a conventional copper cable for the same power output.

And they are far more resilient to disasters and extreme weather, as they are located underground.

Even more important, a typical superconducting cable can deliver the same or greater power at a much lower voltage than a conventional transmission cable. That means the space needed for transformers and grid connections falls from the size of a large gym to only a double garage.

Bringing these technologies into our power grid offers social, environmental, commercial and efficiency dividends.

Unfortunately, while superconductors are commonplace in Australia's medical community (where they are routinely used in MRI machines and diagnostic instruments) they have not yet found their home in our power sector.

One reason is that superconductors must be cooled to work. But rapid progress in cryogenics means you no longer have to lower their temperature almost to absolute zero (-273℃). Modern "high temperature" superconductors only need to be cooled to -200℃, which can be done with liquid nitrogen—a cheap, readily available substance.

Overseas, however, they are proving themselves daily. Perhaps the most well-known example to date is in Germany's city of Essen. In 2014, engineers installed a 10 kilovolt (kV) superconducting cable in the dense city center. Even though it was only one kilometer long, it avoided the higher cost of building a third substation in an area where there was very limited space for infrastructure. Essen's cable is unobtrusive in a meter-wide easement and only 70cm below ground.

Superconducting cables can be laid underground with a minimal footprint and cost-effectively. They need vastly less land.

A conventional high voltage overhead cable requires an easement of about 130 meters wide, with pylons up to 80 meters high to allow for safety. By contrast, an underground superconducting cable would take up an easement of six meters wide, and up to 2 meters deep.

This has another benefit: overcoming community skepticism. At present, many locals are concerned about the vulnerability of high voltage overhead cables in bushfire-prone and environmentally sensitive regions, as well as the visual impact of the large towers and lines. Communities and farmers in some regions are vocally against plans for new 85-meter high towers and power lines running through or near their land.

Climate extremes, unprecedented windstorms, excessive rainfall and lightning strikes can disrupt power supply networks, as the Victorian town of Moorabool discovered in 2021.

What about cost? This is hard to pin down, as it depends on the scale, nature and complexity of the task. But consider this—the Essen cable cost around $20m in 2014. Replacing the six 500kV towers destroyed by windstorms near Moorabool in January 2020 cost $26 million.

While superconducting cables will cost more up front, you save by avoiding large easements, requiring fewer substations (as the power is at a lower voltage), and streamlining approvals.


Where would superconductors have most effect?
Queensland. The sunshine state is planning four new high-voltage transmission projects, to be built by the mid-2030s. The goal is to link clean energy production in the north of the state with the population centers of the south, similar to sending Canadian hydropower to New York to meet demand.

Right now, there are major congestion issues between southern and central Queensland, and subsea links like Scotland-England renewable corridors highlight how to move power at scale. Strategically locating superconducting cables here would be the best location, serving to future-proof infrastructure, reduce emissions and avoid power loss.

 

Related News

View more

Criminals posing as Toronto Hydro are sending out fraudulent messages

Toronto Hydro Scam Warning urges customers to spot phishing emails, fraudulent texts, fake bills, and door-to-door threats demanding bitcoin or prepaid cards, with disconnection threats; report scams to the Canadian Anti-Fraud Centre.

 

Key Points

Advisory on phishing, fake bills, and payment scams posing as Toronto Hydro, with steps to avoid fraud and report.

✅ Hang up suspicious calls; never pay via bitcoin or prepaid cards.

✅ Do not click links in emails or texts; compare bills and account numbers.

✅ Report fraud to the Canadian Anti-Fraud Centre: 1-888-495-8501.

 

Toronto Hydro has sent out a notice that criminals posing as Toronto Hydro are sending out fraudulent texts, letters and emails, similar to a recent BC Hydro scam reported in British Columbia.

The warning comes in a tweet, along with suggestions on how to protect yourself from fraud, especially as policy debates like an NDP public hydro plan can generate confusing messages.

According to Toronto Hydro, fraudsters are contacting people by phone, text, email, fake electricity bills, and even travelling door-to-door.

They threaten to disconnect the power unless an immediate payment is made, even though legitimate utilities must follow proper disconnection notices processes. The website states that in some cases, criminals request payment via pre-paid credit card or bitcoin.

It’s written on the website that Toronto Hydro does not accept these methods of payment, and they do not threaten to immediately disconnect power, a reminder that stories about power theft abroad are not a model for local billing.

If you suspect you are being targeted, you should immediately hang up any suspicious phone calls. Don’t click on any links in emails or texts asking you to accept electronic transfers, as scammers may impersonate well-known utilities during high-profile news such as Hydro One profit changes to appear credible.

Avoid sharing any personal information over the phone or in-person, and do not make any payments related to Smart Meter Deposits, as this fee does not exist and rate-setting is overseen by the Ontario Energy Board in Ontario.

And remember to always compare bills to previous ones, including the amount and account number, since major accounting decisions like a BC Hydro deferral report can fuel confusing narratives.

To report fraudulent activity, please contact:
Canadian Anti-Fraud Centre at 1-888-495-8501; quote file number 844396

 

Related News

View more

U.S. Ends Support for Ukraine’s Energy Grid Restoration

US Termination of Ukraine Energy Grid Support signals a policy shift: USAID halts aid for grid restoration amid Russia attacks, impacting energy security, infrastructure resilience, winter readiness, and negotiations leverage with Moscow and allies.

 

Key Points

A US policy reversal ending USAID support for Ukraine's grid, impacting energy security, resilience, and leverage.

✅ USAID halt reduces funds for grid restoration and winter prep

✅ Policy shift may weaken Kyiv's leverage in talks with Russia

✅ Ukraine seeks EU, IFIs, private capital for energy resilience

 

The U.S. government has recently decided to terminate its support for Ukraine's energy grid restoration, a critical initiative managed by the U.S. Agency for International Development (USAID). This decision, reported by NBC News, comes at a time when Ukraine is grappling with significant challenges to its energy infrastructure due to ongoing Russian attacks. The termination of support was reportedly finalized before Ukrainian President Volodymyr Zelensky's scheduled visit to Washington, marking a significant shift in U.S. policy and raising concerns about the broader implications for Ukraine's energy resilience and its negotiations with Russia.

The Critical Role of U.S. Support

Since Russia's invasion of Ukraine, the country’s energy infrastructure has been one of the primary targets of military strikes. Russia has launched numerous attacks on Ukraine's power generation facilities, substations, and power lines, causing power outages across multiple regions. These attacks have led to significant material losses, with damage reaching billions of dollars. As part of its commitment to Ukraine, the U.S. government, through USAID, had been instrumental in funding restoration efforts aimed at rebuilding and reinforcing Ukraine’s energy grid.

USAID's support was crucial in helping Ukraine withstand the damage inflicted by Russian missile strikes. This aid was not just about restoring basic services but also about fortifying the energy grid to ensure that Ukraine could continue functioning amidst the war and keep the lights on this winter as temperatures drop. The U.S. contribution to Ukraine's energy sector, alongside international support, helped reduce the immediate vulnerabilities faced by Ukraine's civilians and industries.

The Abrupt Change in U.S. Policy

The decision to cut support for energy grid restoration is seen as a sharp reversal in U.S. policy, particularly as the Biden administration has previously shown strong backing for Ukraine in the aftermath of the invasion. This shift in policy was reportedly made by the U.S. State Department, which directed USAID to halt its involvement in the energy sector.

According to NBC News, USAID officials expressed concern about the timing of this decision. One official noted that terminating support for Ukraine’s energy grid restoration would severely undermine the U.S. government's ability to negotiate on issues like ceasefires and peace talks with Russia. The official argued that such a move would signal to Russia that the U.S. is backing away from its long-term investments in Ukraine, potentially weakening Ukraine's position in the ongoing war.

The abrupt end to this support is also seen as a blow to the morale of Ukraine’s government and people. Ukraine had been heavily reliant on the U.S. for resources to repair its critical infrastructure, and the decision to cut this support without warning has created uncertainty about the future of such recovery efforts.

Ukraine’s Response and Search for Alternatives

In response to the termination of U.S. support, Ukrainian officials have been seeking alternative sources of funding to continue the restoration of their energy grid. Deputy Prime Minister Olha Stefanishyna reported that Ukraine has already reached preliminary agreements with other international partners to secure financial support for energy resilience, cyber defense, and recovery programs including new energy solutions for winter blackouts.

These efforts come at a time when Ukraine is working to rebuild its war-torn economy and safeguard critical sectors like energy and infrastructure. The termination of U.S. support for energy restoration projects underscores the growing pressure on Ukraine to diversify its sources of aid and not become overly dependent on any one nation. Ukrainian leaders are in ongoing talks with European governments, international financial institutions, and private investors to ensure that essential programs do not stall due to the lack of funding from the U.S., as energy cooperation grows and Ukraine helps Spain amid blackouts in solidarity.

Implications for Ukraine’s Energy Security

Ukraine's energy security remains a critical issue in the context of the ongoing conflict with Russia. The war has made the country’s energy infrastructure vulnerable to repeated attacks, and the restoration of this infrastructure is essential for ensuring that Ukraine can keep the lights on and recover in the long term. The U.S. has been one of the largest contributors to Ukraine's energy security efforts, and its withdrawal could force Ukraine to look for other partners who may not have the same level of financial or technological resources.

This development also raises questions about the future of U.S. involvement in Ukraine's recovery efforts more broadly. As the war continues and winter looms over the battlefront for frontline communities, the need for reliable and sustained support from international partners will only increase. If the U.S. significantly scales back its aid, Ukraine may face even greater challenges in maintaining its energy infrastructure and achieving long-term recovery.

Moving Forward

The termination of U.S. support for Ukraine’s energy grid restoration serves as a reminder of the complexities involved in international aid and geopolitics during wartime. As Ukraine faces the ongoing realities of the war, it must adapt to a shifting international landscape where traditional allies may not always be reliable sources of support. Ukraine’s leadership will need to be strategic in its search for alternative sources of aid, while also focusing on strengthening its energy grid, managing electricity reserves to stabilize supply, and reducing its vulnerabilities to Russian attacks.

While the end of U.S. support for Ukraine's energy restoration is a significant setback, it also underscores the urgent need for Ukraine to diversify its international partnerships. The future of Ukraine’s energy resilience may depend on how effectively it can navigate these changing dynamics while maintaining the support of the international community in the fight against Russian aggression.

 

Related News

View more

Is Ontario's Power Cost-Effective?

Ontario Nuclear Power Costs highlight LCOE, capex, refurbishment outlays, and waste management, compared with renewables, grid reliability, and emissions targets, informing Australia and Peter Dutton on feasibility, timelines, and electricity prices.

 

Key Points

They include high capex and LCOE from refurbishments and waste, offset by reliable, low-emission baseload.

✅ Refurbishment and maintenance drive lifecycle and LCOE variability.

✅ High capex and long timelines affect consumer electricity prices.

✅ Low emissions, but waste and safety compliance add costs.

 

Australian opposition leader Peter Dutton recently lauded Canada’s use of nuclear power as a model for Australia’s energy future. His praise comes as part of a broader push to incorporate nuclear energy into Australia’s energy strategy, which he argues could help address the country's energy needs and climate goals. However, the question arises: Is Ontario’s experience with nuclear power as cost-effective as Dutton suggests?

Dutton’s endorsement of Canada’s nuclear power strategy highlights a belief that nuclear energy could provide a stable, low-emission alternative to fossil fuels. He has pointed to Ontario’s substantial reliance on nuclear power, and the province’s exploration of new large-scale nuclear projects, as an example of how such an energy mix might benefit Australia. The province’s energy grid, which integrates a significant amount of nuclear power, is often cited as evidence that nuclear energy can be a viable component of a diversified energy portfolio.

The appeal of nuclear power lies in its ability to generate large amounts of electricity with minimal greenhouse gas emissions. This characteristic aligns with Australia’s climate goals, which emphasize reducing carbon emissions to combat climate change. Dutton’s advocacy for nuclear energy is based on the premise that it can offer a reliable and low-emission option compared to the fluctuating availability of renewable sources like wind and solar.

However, while Dutton’s enthusiasm for the Canadian model reflects its perceived successes, including recent concerns about Ontario’s grid getting dirtier amid supply changes, a closer look at Ontario’s nuclear energy costs raises questions about the financial feasibility of adopting a similar strategy in Australia. Despite the benefits of low emissions, the economic aspects of nuclear power remain complex and multifaceted.

In Ontario, the cost of nuclear power has been a topic of considerable debate. While the province benefits from a stable supply of electricity due to its nuclear plants, studies warn of a growing electricity supply gap in coming years. Ontario’s experience reveals that nuclear power involves significant capital expenditures, including the costs of building reactors, maintaining infrastructure, and ensuring safety standards. These expenses can be substantial and often translate into higher electricity prices for consumers.

The cost of maintaining existing nuclear reactors in Ontario has been a particular concern. Many of these reactors are aging and require costly upgrades and maintenance to continue operating safely and efficiently. These expenses can add to the overall cost of nuclear power, impacting the affordability of electricity for consumers.

Moreover, the development of new nuclear projects, as seen with Bruce C project exploration in Ontario, involves lengthy and expensive construction processes. Building new reactors can take over a decade and requires significant investment. The high initial costs associated with these projects can be a barrier to their economic viability, especially when compared to the rapidly decreasing costs of renewable energy technologies.

In contrast, the cost of renewable energy has been falling steadily, even as debates over nuclear power’s trajectory in Europe continue, making it a more attractive option for many jurisdictions. Solar and wind power, while variable and dependent on weather conditions, have seen dramatic reductions in installation and operational costs. These lower costs can make renewables more competitive compared to nuclear energy, particularly when considering the long-term financial implications.

Dutton’s praise for Ontario’s nuclear power model also overlooks some of the environmental and logistical challenges associated with nuclear energy. While nuclear power generates low emissions during operation, it produces radioactive waste that requires long-term storage solutions. The management of nuclear waste poses significant environmental and safety concerns, as well as additional costs for safe storage and disposal.

Additionally, the potential risks associated with nuclear power, including the possibility of accidents, contribute to the complexity of its adoption. The safety and environmental regulations surrounding nuclear energy are stringent and require continuous oversight, adding to the overall cost of maintaining nuclear facilities.

As Australia contemplates integrating nuclear power into its energy mix, it is crucial to weigh these financial and environmental considerations. While the Canadian model provides valuable insights, the unique context of Australia’s energy landscape, including its existing infrastructure, energy needs, and the costs of scrapping coal-fired electricity in comparable jurisdictions, must be taken into account.

In summary, while Peter Dutton’s endorsement of Canada’s nuclear power model reflects a belief in its potential benefits for Australia’s energy strategy, the cost-effectiveness of Ontario’s nuclear power experience is more nuanced than it may appear. The high capital and maintenance costs associated with nuclear energy, combined with the challenges of managing radioactive waste and ensuring safety, present significant considerations. As Australia evaluates its energy future, a comprehensive analysis of both the benefits and drawbacks of nuclear power will be essential to making informed decisions about its role in the country’s energy strategy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.