Putting some wind beneath our energy wings

By Vancouver Sun


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
When a legend in the U.S. oil industry starts advocating investing in wind power, it's worth taking note.

T. Boone Pickens, the Texas oilman who claims he's drilled more dry holes and found more oil than just about anyone in the industry, is turning the page, to a degree, on the black gold that made him a billionaire.

He is intensely concerned about the U.S.'s dependence on foreign oil, about 70 per cent of which it imports.

His plan to reduce that dependence? Invest in wind power.

He's already invested in the technology in the United States and is spending millions on an advertising campaign to tell his compatriots that wind is the way to go – to the point where he thinks it can represent 20 per cent of the U.S. electricity supply by 2030. He likes it because it is clean, green and renewable.

It produces no greenhouse-gas emissions that contribute to harmful climate change.

Pickens's actions represent one more important validation of wind-generated power.

British Columbia faces the same climate-change challenges as do Pickens and his countrymen. And, like Pickens, the B.C. public has a strong desire to lessen its fossil-fuel use and add more green, renewable sources to our energy mix.

While we are fortunate not to be as oil-dependent as the U.S., we in B.C. use more electricity than we generate, despite an abundance of hydroelectric power. To meet demand, we import as much as 15 per cent of our electricity needs, which are supplied by the often carbon-intensive power from other jurisdictions.

This is in contrast to the B.C. Energy Plan goal of being self-sufficient.

Pickens, who, to date has invested in U.S. land-based wind farm projects, might be interested to know that B.C. is blessed with the very resource he endorses – literally in our own back yard. But there's a difference. B.C. is home to what is planned to be the first offshore wind farm in Canada.

On the northeast coast of Haida Gwaii (Queen Charlotte Islands) is the Hecate Strait where NaiKun Wind Group of Vancouver is proposing a project whose first phase would produce enough electricity to light up 120,000 homes.

It would also displace 26,000 tonnes of greenhouse gases per year on Haida Gwaii currently emitted as a result of high-cost, diesel generation on which this pristine set of islands ironically depends for most of its electricity needs.

NaiKun's project will consist of between 64 and 107 wind turbine towers with an undersea cable to transport the power back to the mainland near Prince Rupert.

Wind energy, as Pickens notes, is 100 per cent renewable and clean. And offshore wind is arguably stronger and more consistent than wind over land. It generates more energy, more efficiently. Plus, it complements hydroelectric power.

In the winter, when BC Hydro's reservoirs are the lowest (while demand for electricity is greatest), wind supply is high. That suits B.C. well. As for Hecate Strait, it is an ideal location for this project, with strong winds, a sandy seabed, shallow waters and proximity to the main provincial energy grid.

If Pickens can explore new approaches to energy, so can British Columbians. If Pickens can declare a goal of having wind power represent 20 per cent of the U.S. energy mix within several decades, B.C. – and Canada – can set the bar high, too.

The Canadian Wind Energy Association has set a rather modest goal of 10,000 MW of installed wind energy in Canada by 2010, enough to supply five per cent of Canada's electricity needs.

Wind power's time has come – offshore wind power in particular. Europeans have embraced wind power and so has the United States. Wind power is a viable, accepted and necessary part of our future energy supply. By using this proven technology, B.C. can be a leader in putting offshore wind at the forefront of our green energy mix.

Related News

Ontario to seek new wind, solar power to help ease coming electricity supply crunch

Ontario Clean Grid Plan outlines emissions-free electricity growth, renewable energy procurement, nuclear expansion at Bruce and Darlington, reduced natural gas, grid reliability, and net-zero alignment to meet IESO demand forecasts and EV manufacturing loads.

 

Key Points

A plan to expand emissions-free power via renewables and nuclear, cut natural gas use, and meet growing demand.

✅ Targets renewables, hydro, and nuclear capacity growth

✅ Aims to reduce reliance on gas for grid reliability

✅ Aligns with IESO demand forecasts and EV manufacturing loads

 

Ontario is working toward filling all of the province’s quickly growing electricity needs with emissions-free sources, including a plan to secure new renewable generation and clean power options, but isn’t quite ready to commit to a moratorium on natural gas.

Energy Minister Todd Smith announced Monday a plan to address growing energy needs for 2030 to 2050 — the Independent Electricity System Operator projects Ontario’s electricity demand could double by mid-century — and next steps involve looking for new wind, solar and hydroelectric power.

“While we may not need to start building today, government and those in the energy sector need to start planning immediately, so we have new clean, zero-emissions projects ready to go when we need them,” Smith said in Windsor, Ont.

The strategy also includes two nuclear projects announced last week — a new large-scale nuclear plant at Bruce Power on the shore of Lake Huron and three new small modular reactors at the site of the Darlington nuclear plant east of Toronto.

Those projects, enough to power six million homes, will help Ontario end its reliance on natural gas to generate electricity, said Smith, but committing to a natural gas moratorium in 2027 and eliminating natural gas by 2050 is contingent on the federal government helping to speed up the new nuclear facilities.

“Today’s report, the Powering Ontario’s Growth plan, commits us to working towards a 100 per cent clean grid,” Smith said in an interview.

“Hopefully the federal government can get on board with our intentions to build this clean generation as quickly as possible … That will put us in a much better position to use our natural gas facilities less in the future, if we can get those new projects online.”

The IESO has said that natural gas is required to ensure supply and stability in the short to medium term, as Ontario works on balancing demand and emissions across the grid, but that it will also increase greenhouse gas emissions from the electricity sector.

The province is expected to face increased demand for electricity from expanded electric vehicle use and manufacturing in the coming years, even as a $400-billion cost estimate for greening the grid is debated.

Keith Brooks, programs director for Environmental Defence, said the provincial plan could have been much more robust, containing firm timelines and commitments.

“This plan does not commit to getting emissions out of the system,” he said.

“It doesn’t commit to net zero, doesn’t set a timeline for a net zero goal or have any projection around emissions from Ontario’s electricity sector going forward. In fact, it’s not really a plan. It doesn’t set out any real goals and it doesn’t it doesn’t project what Ontario’s supply mix might look like.”

The Canadian Climate Institute applauded the plan’s focus on reducing reliance on gas-fired generation and emphasizing non-emitting generation, but also said there are still some question marks.

“The plan is silent on whether the province intends to construct new gas-fired generation facilities,” even as new gas plant expansions are proposed, senior research director Jason Dion wrote in a statement.

“The province should avoid building new gas plants since cost-effective alternatives are available, and such facilities are likely to end up as stranded assets. The province’s timeline for reaching net zero generation is also unclear. Canada and other G7 countries have set a target for 2035, something Ontario will need to address if it wants to remain competitive.”

 

Related News

View more

Multi-billion-dollar hydro generation project proposed for Meaford military base

Meaford Pumped Storage Project aims to balance the grid with hydro-electric generation, a hilltop reservoir, and transmission lines near Georgian Bay, pending environmental assessment, permitting, and federal review of impacts on fish and drinking water.

 

Key Points

TC Energy proposal to pump water uphill off-peak and generate 1,000 MW at peak, pending studies and approvals.

✅ Balances grid by storing off-peak energy and generating at peak.

✅ Requires reservoir, break wall, transmission lines, generating station.

✅ Environmental studies and federal review underway before approvals.

 

Plans for a $3.3 billion hydro-electric project in Meaford are still in the early study stages, but some residents have concerns about what it might mean for the environment, as past Site C stability issues have illustrated for large hydro projects.

A one-year permit was granted for TC Energy Corporation (TC Energy) to begin studies on the proposed location back in May, and cross-border projects like the New England Clean Power Link require federal permits as well to proceed. Local municipalities were informed of the project in June.

TC Energy is proposing to have a pumped storage project at the 4th Canadian Division Training (4CDTC) Meaford property, which is on federal lands.

A letter sent to local municipalities explains that the plan is to balance supply and demand on the electrical grid by pumping water uphill during off-peak hours. It would then release the water back into Georgian Bay during peak periods, generating up to 1,000 megawatts of electricity.

The project is expected to create 800 jobs over four years of construction, in addition to long-term operational positions.


 

According to the company's website, the proposed pump station would require a large reservoir on the military base, a generating station, transmission lines infrastructure, and a break wall 850 metres from shore.

Some residents fear the project will threaten the bay and the fish, echoing Site C dam concerns shared with northerners, and the region's drinking water.

Meaford's mayor says the town has no jurisdiction on federal lands, but that a list of concerns has been forwarded to the company, while Ontario First Nations have urged government action on urgent transmission needs elsewhere.

TC Energy will tackle preliminary engineering and environmental studies to determine the feasibility of the proposed location, which could take up to two years.

Once the assessments are done, they need to be presented to the government for further review and approval, as seen when Ottawa's Site C stance left work paused pending a treaty rights challenge.

TC Energy's website states that the company anticipates construction to begin in 2022 if it gets all the go-ahead, with the plant to begin operations four years later.

Input from residents is being collected until April 2020, similar to when the National Energy Board heard oral traditional evidence on the Manitoba-Minnesota transmission line.

 

Related News

View more

Fixing California's electric grid is like repairing a car while driving

CAISO Clean Energy Transition outlines California's path to 100% carbon-free power by 2045, scaling renewables, battery storage, and offshore wind while safeguarding grid reliability, managing natural gas, and leveraging Western markets like EDAM.

 

Key Points

CAISO Clean Energy Transition is the plan to reach 100% carbon-free power by 2045 while maintaining grid reliability.

✅ Target: add 7 GW/year to reach 120 GW capacity by 2045

✅ Battery storage up 30x; smooths intermittent solar and wind

✅ EDAM and WEIM enhance imports, savings, and reliability

 

Mark Rothleder, Chief Operating Officer and Senior Vice President at the California Independent System Operator (CAISO), which manages roughly 80% of California’s electric grid, has expressed cautious optimism about meeting the state's ambitious clean energy targets while keeping the lights on across the grid. However, he acknowledges that this journey will not be without its challenges.

California aims to transition its power system to 100% carbon-free sources by 2045, ensuring a reliable electricity supply at reasonable costs for consumers. Rothleder, aware of the task's enormity, likens it to a complex car repair performed while the vehicle is in motion.

Recent achievements have demonstrated California's ability to temporarily sustain its grid using clean energy sources. According to Rothleder, the real challenge lies in maintaining this performance round the clock, every day of the year.

Adding thousands of megawatts of renewable energy into California’s existing 50-gigawatt system, which needs to expand to 120 gigawatts to meet the 2045 goal, poses a significant challenge, though recent grid upgrade funding offers some support for needed infrastructure. CAISO estimates that an addition of 7 gigawatts of clean power per year for the next two decades is necessary, all while ensuring uninterrupted power delivery.

While natural gas currently constitutes California's largest single source of power, Rothleder notes the need to gradually decrease reliance on it, even as it remains an operational necessity in the transition phase.

In 2023, CAISO added 5,660 megawatts of new power to the grid, with plans to integrate over 1,100 additional megawatts in the next six to eight months of 2024. Battery storage, crucial for mitigating the intermittent nature of wind and solar power, has seen substantial growth as California turns to batteries for grid support, increasing 30-fold in three years.

Rothleder emphasizes that electricity reliability is paramount, as consumers always expect power availability. He also highlights the potential of offshore wind projects to significantly contribute to California's power mix by 2045.

The offshore wind industry faces financial and supply chain challenges despite these plans. CAISO’s 20-year outlook indicates a significant increase in utility-scale solar, requiring extensive land use and wider deployment of advanced inverters for grid stability.

Addressing affordability is vital, especially as California residents face increasing utility bills. Rothleder suggests a broader energy cost perspective, encompassing utility and transportation expenses.

Despite smooth grid operations in 2023, challenges in previous years, including extreme weather-induced power outages driven by climate change, underscore the need for a robust, adaptable grid. California imports about a quarter of its power from neighbouring states and participates in the Western Energy Imbalance Market, which has yielded significant savings.

CAISO is also working on establishing an extended day-ahead electricity market (EDAM) to enhance the current energy market's success, building on insights from a Western grid integration report that supports expanded coordination.

Rothleder believes that a thoughtfully designed, diverse power system can offer greater reliability and resilience in the long run. A future grid reliant on multiple, smaller power sources such as microgrids could better absorb potential losses, ensuring a more reliable electricity supply for California.

 

Related News

View more

Germany launches second wind-solar tender

Germany's Joint Onshore Wind and Solar Tender invites 200 MW bids in an EEG auction, with PV and onshore wind competing on price per MWh, including grid integration costs and network fees under BNA rules.

 

Key Points

A BNA-run 200 MW EEG auction where PV and onshore wind compete on price per MWh, including grid integration costs.

✅ 200 MW cap; minimum project size 750 kW

✅ Max subsidy 87.50 per MWh; bids include network costs

✅ Solar capped at 10-20 MW; wind requires prior approval

 

Germany's Federal Network Agency (BNA) has launched its second joint onshore wind and solar photovoltaic (PV) tender, with a total capacity of 200 MW.

A maximum guaranteed subsidy payment has been set at 87.50 per MWh for both energy sources, which BNA says will have to compete against each other for the lowest price of electricity. According to auction rules, all projects must have a minimum of 750 kW.

The auction is due to be completed on 2 November.

The network regulator has capped solar projects at 10 MW, though this has been extended to 20 MW in some districts, amid calls to remove barriers to PV at the federal level. Onshore wind projects did not receive any such restrictions, though they require approval from Federal Immission Control three weeks prior to the bid date of 11 Octobe

Bids also require network and system integration costs to be included, and similar solicitations have been heavily subscribed, as an over-subscribed Duke Energy solar solicitation in the US market illustrates.

According to Germanys Renewable Energy Act (EEG), two joint onshore wind and solar auctions must take place each year between 2018 and 2021. After this, the government will review the scheme and decide whether to continue it beyond 2021.

The first tender, conducted in April, saw the entire 200 MW capacity given to solar PV projects, reflecting a broader solar power boost in Germany during the energy crisis. Of the 32 contracts awarded, value varied from 39.60 per MWh to 57.60 per MWh. Among the winning bids were five projects in agricultural and grassland sites in Bavaria, totalling 31 MW, and three in Baden-Wrttemberg at 17 MW.

According to the Agency, the joint tender scheme was initiated in an attempt to determine the financial support requirements for wind and solar in technology-specific auctions, however, solar powers sole win in the April auction meant it was met with criticism, even as clean energy accounts for 50% of Germany's electricity today.

The heads of the Federal Solar Industry Association (BSW-Solar) and German Wind Energy Association (BWE) saying the joint tender scheme is unsuitable for the build-out of the two technologies.

A BWE spokesman previously stressed the companys rejection of competition between wind and solar, saying: It is not clear how this could contribute to an economically meaningful balanced energy mix,

Technologies that are in various stages of development must not enter into direct competition with each other. Otherwise, innovation and development potential will be compromised.

Similarly, BSW-Solar president Carsten Krnig said: We are happy for the many solar winners, but consider the experiment a failure. The auction results prove the excellent price-performance ratio of new solar power plants, as solar-plus-storage is cheaper than conventional power in Germany, but not the suitability of joint tenders.

 

Related News

View more

National Steel Car appealing decision in legal challenge of Ontario electricity fee it calls an unconstitutional tax

Ontario Global Adjustment Appeal spotlights Ontario's electricity fee, regulatory charge vs tax debate, FIT contracts, green energy policy, and constitutional challenge as National Steel Car contests soaring power costs before the Ontario Superior Court.

 

Key Points

Court challenge over Ontario's global adjustment fee, disputing its status as a regulatory charge instead of a tax.

✅ Challenges classification of global adjustment as tax vs regulatory charge.

✅ Focuses on FIT contracts, renewable energy payments, power cost impacts.

✅ Appeals Ontario ruling; implications for ratepayers and policy.

 

A manufacturer of steel rail cars is pursuing an appeal after its lawsuit challenging the constitutionality of a major Ontario electricity fee was struck down earlier this year.

Lawyers for Hamilton, Ont.-based National Steel Car Ltd. filed a notice of appeal in July after Ontario Superior Court Justice Wendy Matheson ruled in June that an electricity fee known as the global adjustment charge was a regulatory charge, and not an unconstitutional tax used to finance policy goals, as National Steel Car alleges.

The company, the decision noted, began its legal crusade last year after seeing its electricity bills had “increased dramatically” since the Ontario government passed green energy legislation nearly a decade ago, and amid concerns that high electricity rates are hurting Ontario manufacturers.

Under that legislation, the judge wrote, “private suppliers of renewable energy were paid to ’feed in’ energy into Ontario’s electricity grid.” The contracts for these so-called “feed-in tariff” contracts, or FIT contracts, were the “primary focus” of the lawsuit.

“The applicant seeks a declaration that part of the amount it has paid for electricity is an unconstitutional tax rather than a valid regulatory charge,” the judge added. “More specifically, it challenges part of the Global Adjustment, which is a component of electricity pricing and incorporates obligations under FIT contracts.”

Chiefly representing the difference between Ontario’s market price for power and the guaranteed price owed to generators, global adjustment now makes up the bulk of the commodity cost of electricity in the province. The fee has risen over the past decade, amid calls to reject steep Nova Scotia rate hikes as well — costing electricity customers $37 billion in global adjustment from 2006 to 2014, according to the province’s auditor general — because of investments in the electricity grid and green-energy contracts, among other reasons.

National Steel Car argued the global adjustment is a tax, and an unconstitutional one at that because it violated a section of the Constitution Act requiring taxes to be authorized by the legislature. The company also said the imposition of the global adjustment broke an Ontario law requiring a referendum to be held for new taxes.

The province, Justice Matheson wrote, had argued “that it is plain and obvious that these applications will fail.” In a decision released in June, the judge granted motions to strike out National Steel Car’s applications.

“The Global Adjustment,” she added, “is not a tax because its purpose, in pith and substance, is not to tax, and it is a regulatory charge and therefore, again, not a tax.”

Now, National Steel Car is arguing that the judge erred in several ways, including in fact, “by finding that the FIT contracts must be paid, when they can be cancelled.”

There has been a change in government at Queen’s Park since National Steel Car first filed its lawsuit last year, and that change has put green energy contracts under fire. The Progressive Conservative government of new Premier Doug Ford has already made a number of decisions on the electricity file, such as moving to cancel and wind down more than 750 renewable energy contracts, as well as repealing the province’s Green Energy Act.

The Tories also struck a commission of inquiry into the province’s finances that warned the global adjustment “may be struck down as unconstitutional,” a warning delivered amid cases where Nova Scotia's regulator approved a 14% rate hike in a high-profile decision.

“There is a risk that a court may find the global adjustment is not a valid regulatory charge if shifting costs over a longer period of time inadvertently results in future ratepayers cross-subsidizing today’s ratepayers,” the commission’s report said.

A spokesperson for Ontario’s Ministry of Energy, Northern Development and Mines said in an email that it would be “inappropriate to comment about the specifics of any case before the courts or currently under arbitration.”

National Steel Car is also prepared to fight its case all the way up to the Supreme Court of Canada, according to its lawyer.

“What is clear from our proceeding with the appeal is National Steel Car has every intention of seeing that lawsuit through to its conclusion if this government isn’t interested or prepared to reasonably settle it,” Jerome Morse said.

 

Related News

View more

Toronto Prepares for a Surge in Electricity Demand as City Continues to Grow

Toronto Electricity Demand Growth underscores IESO projections of rising peak load by 2050, driven by population growth, electrification, new housing density, and tech economy, requiring grid modernization, transmission upgrades, demand response, and local renewable energy.

 

Key Points

It refers to the projected near-doubling of Toronto's peak load by 2050, driven by electrification and urban growth.

✅ IESO projects peak demand nearly doubling by 2050

✅ Drivers: population, densification, EVs, heat pumps

✅ Solutions: efficiency, transmission, storage, demand response

 

Toronto faces a significant challenge in meeting the growing electricity needs of its expanding population and ambitious development plans. According to a new report from Ontario's Independent Electricity System Operator (IESO), Toronto's peak electricity demand is expected to nearly double by 2050. This highlights the need for proactive steps to secure adequate electricity supply amidst the city's ongoing economic and population growth.


Key Factors Driving Demand

Several factors are contributing to the projected increase in electricity demand:

Population Growth: Toronto is one of the fastest-growing cities in North America, and this trend is expected to continue. More residents mean more need for housing, businesses, and other electricity-consuming infrastructure.

  • New Homes and Density: The city's housing strategy calls for 285,000 new homes within the next decade, including significant densification in existing neighbourhoods. High-rise buildings in urban centers are generally more energy-intensive than low-rise residential developments.
  • Economic Development: Toronto's robust economy, a hub for tech and innovation, attracts new businesses, including energy-intensive AI data centers that fuel further demand for electricity.
  • Electrification: The push to reduce carbon emissions is driving the electrification of transportation and home heating, further increasing pressure on Toronto's electricity grid.


Planning for the Future

Ontario and the City of Toronto recognize the urgency to secure stable and reliable electricity supplies to support continued growth and prosperity without sacrificing affordability, drawing lessons from British Columbia's clean energy shift to inform local approaches. Officials are collaborating to develop a long-term plan that focuses on:

  • Energy Efficiency: Efforts aim to reduce wasteful electricity usage through upgrades to existing buildings, promoting energy-efficient appliances, and implementing smart grid technologies. These will play a crucial role in curbing overall demand.
  • New Infrastructure: Significant investments in building new electricity generation, transmission lines, and substations, as well as regional macrogrids to enhance reliability, will be necessary to meet the projected demands of Toronto's future.
  • Demand Management: Programs incentivizing energy conservation during peak hours will help to avoid strain on the grid and reduce the need to build expensive power plants only used at peak demand times.


Challenges Ahead

The path ahead isn't without its hurdles.  Building new power infrastructure in a dense urban environment like Toronto can be time-consuming, expensive, and sometimes disruptive, especially as grids face harsh weather risks that complicate construction and operations. Residents and businesses might worry about potential rate increases required to fund these necessary investments.


Opportunity for Innovation

The IESO and the city view the situation as an opportunity to embrace innovative solutions. Exploring renewable energy sources within and near the city, developing local energy storage systems, and promoting distributed energy generation such as rooftop solar, where power is created near the point of use, are all vital strategies for meeting needs in a sustainable way.

Toronto's electricity future depends heavily on proactive planning and investment in modernizing its power infrastructure.  The decisions made now will determine whether the city can support economic growth, address climate goals and a net-zero grid by 2050 ambition, and ensure that lights stay on for all Torontonians as the city continues to expand.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.