Smart meters and security: locking up the grid

By TechNewsWorld


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Despite reports earlier this year about spies penetrating the computers that help control America's electrical grid, utility companies appear to be slow in clamping down on security, and that perception has led to a tongue-lashing from a House of Representatives committee.

U.S. Rep. Yvette Clarke (D, N.Y.) as accused the utilities of exploiting a loophole that allows them to avoid complying with Federal cybersecurity requirements.

Also, a security researcher's revelations of flaws in the smart meters utilities are installing throughout the country added fuel to the fire.

Is the grid really as insecure as it seems?

In April and June, news stories surfaced about foreign spies apparently hacking into the U.S. electrical grid. Reports that the North American Electric Reliability Corp. (NERC), an industry regulatory group, was negotiating with a defense contractor to search for breaches by cyberspies began making the rounds.

However, that may have been the tail end of a problem that is believed to be systemic to the modernization of the nation's electricity infrastructure.

In March, application and smart grid security services provider IOActive announced it had verified significant security issues within multiple smart grid platforms.

Smart grids use digital technology to both deliver electricity and monitor equipment throughout the grid in order to make power delivery more efficient. They are being deployed by many utilities throughout the U.S.

"Research conducted throughout the industry has independently concluded these technologies are susceptible to common security vulnerabilities such as protocol tampering, buffer overflows, persistent and non-persistent rootkits and code propagation," IOActive said.

These problems with smart grids emerged because the technology uses the Internet and, thus, depends on Internet protocol (IP). "The risks of IP networks were widely known in 1999, and there was even testimony to Congress that led to guidance by the administration in 2001," Reed Henry, senior vice president of marketing at security and compliance management company ArcSight, told TechNewsWorld.

With a majority of control systems connected to networks, it's imperative that utilities use centralized log management systems that can figure out when and where to respond to cybersecurity threats, he added.

Proven industry best practices, including independent third-party assessments, should be adopted in smart grid technologies implemented in America's critical infrastructure, IOActive president and CEO Joshua Pennell told the Committee of Homeland Security and the Department of Homeland Security.

He also recommended that the smart grid industry follow a proven, formal security development life cycle like that laid out by Microsoft's Trustworthy Computing Initiative.

News of the security flaws fired up the House Homeland Security Committee's Subcommittee on Emerging Threats, Cybersecurity and Science and Technology, which had spent three years studying the security of the electric utility industry.

Subcommittee Chairperson Clarke said the U.S. electric utility industry had failed to appropriately protect itself despite years of warnings, and that utilities are apparently avoiding self-regulatory efforts by not designating their facilities or equipment as critical assets that need special protection.

Utility industry representatives countered that they have been working hard to improve cybersecurity and complained that the government doesn't share enough up-to-date information.

NERC, the utility industry body that governs utilities, declined comment on these issues.

Then came news that IOActive senior security consultant Mike Davis planned to give a presentation on the security flaws of smart meters at the Black Hat conference in Las Vegas in late July.

He planned to speak about a worm developed by an IOActive team he led. This worm replicates itself throughout smart meters once it's introduced into one meter.

The IOActive worm is a rootkit that apparently lets hackers assume full system control of all exposed AMI capabilities, including remote power on and off, usage reporting, and communication configurations.

Introducing the worm into a smart meter is not hard to do, Davis told TechNewsWorld. Just pluck a smart meter off the outside wall of a residence or building — they're often connected to the structure by a simple zip tie — then reverse engineer the software, load your own firmware onto the meter and re-connect it to the structure.

"Once you infect a meter, it can infect others," Davis said. A simulation engine he wrote showed that a neighborhood grid with 22,000 houses equipped with smart meters can get infected within 24 hours.

"Every new meter that's infected will update two others wirelessly using their peer-to-peer networking feature," Davis said. "Hackers have already been using AMI grids to send and receive data in Europe."

AMIs, or Advanced Metering Infrastructures, are the grids built around smart meters.

If smart meters are so insecure, why are utilities planning to install them? Because they help route power more efficiently, thus cutting costs.

An initial order of 9,000 smart meters by the Los Angeles Department of Water and Power (LADWP) for its commercial and industrial customers in 2004 cut electricity consumption by at least five percent, according to Jackson, Miss.-based wireless smart meter provider SmartSynch, which won the contract. The LADWP, which is the largest municipal utility in the U.S., ordered another 6,000 smart meters in 2007.

Smart meters are big business, and that business is growing. In July 2006, California's energy regulators approved a program to replace ordinary electric meters in 9 million Northern California households served by PG&E with smart meters.

Davis' revelations stirred up the industry.

"Everybody's mad at me," he said. "But some utilities are rolling AMIs out at the rate of 8,000 a day, and we're trying to catch the problem before it becomes bigger."

Still, the problem may not be out of hand yet. The utility grid may have security flaws, but every system we rely upon has its vulnerabilities, ArcSight's Henry pointed out. The real question is not whether there are vulnerabilities, but whether the utilities are able to detect threats and attacks and respond to them, he said.

"Based on their business model and past experience, we expect the utilities to be actively monitoring for attacks and responding very quickly," Henry said.

NERC is revising its standards to widen the assets that must be monitored, and Henry expects this new standard to be ratified by September.

Even the question of whether or not utilities are really exploiting a regulatory loophole has yet to be decided.

NERC's guidelines let utilities determine for themselves whether or not they need to declare their equipment and facilities as critical assets.

While the utilities' interpretation of the regulations might differ from Clarke's, Henry said, that doesn't mean either side is wrong. "The standards are new, so interpretations are bound to be different for at least the next several months," he explained.

In light of the dangers of IP, are the related free, Web-based services offered by Google and Microsoft safe?

Earlier this year, Google launched PowerMeter, an application that shows consumers their utility consumption in a secure Google widget on their personal iGoogle home page. This was rolled out in limited beta to utility partners in the U.S., Canada and India, and Google will expand the rollout later this year.

In June, Microsoft rolled out a beta of Hohm, an online application that provides consumers with personalized energy-saving recommendations. Hohm uses advanced analytics licensed from the Lawrence Berkeley National Laboratory and the U.S. Department of Energy.

While Hohm uses information supplied by consumers in a form on its Web site, PowerMeter seeks to tap information from utilities' meters. Both companies told TechNewsWorld that their technologies are secure.

"Security was a fundamental design requirement in Hohm," said Troy Batterberry, product unit manager for Microsoft Hohm. "The Hohm data feeds employ industry standard and proven mechanisms such as HTTPS, certificate-based authentication, XML formats and Web Services to securely exchange data."

Communication between utilities and Google is secure under prevailing industry standards, Google PowerMeter Product Manager Srikanth Rajagopalan said. "It is the utility that initiates all uploads of information to Google PowerMeter, so integrating PowerMeter doesn't involve exposing information to a new Internet service."

PowerMeter and Hohm do not inherently weaken the electricity grid's security, ArcSight's Henry said. "Hackers will always find ways to penetrate systems, so the issues are actually around whether industry and government can agree on a standard of security," he explained.

Stories about security weaknesses always garner headlines, and ArcSight's Henry believes that's a large factor behind the fanfare about cybersecurity in the electric utilities industry.

That fanfare isn't just there for the sake of boosting an individual security researcher's professional stature, though; it also puts the spotlight on a weakness that could be exploited in the future if left unattended, even if it's not necessarily being exploited now.

"Mike Davies is clearly trying to ensure that utilities are aware of some vulnerabilities he has found so they will address them," Henry said. "This is not the same as saying utilities are planning to install insecure meters."

Related News

Ontario Provides Stable Electricity Pricing for Industrial and Commercial Companies

Ontario ICI Electricity Pricing Freeze helps Industrial Conservation Initiative (ICI) participants by stabilizing Global Adjustment charges, suspending peak hours curtailment, and reducing COVID-19-related electricity cost volatility to support large employers returning operations to full capacity.

 

Key Points

A two-year policy stabilizing GA costs and pausing peak-hour cuts to aid industrial and commercial recovery.

✅ GA cost share frozen for two years

✅ No peak-hour curtailment obligations

✅ Supports industrial and commercial restart

 

The Ontario government is helping large industrial and commercial companies return to full levels of operation without the fear of electricity costs spiking by providing more stable electricity pricing for two years. Effective immediately, companies that participate in the Industrial Conservation Initiative (ICI) will not be required to reduce their electricity usage during peak hours or shift some load to ultra-low overnight pricing where applicable, as their proportion of Global Adjustment (GA) charges for these companies will be frozen.

"Ontario's industrial and commercial electricity consumers continue to experience unprecedented economic challenges during COVID-19, with electricity relief for households and small businesses introduced to help," said Greg Rickford, Minister of Energy, Northern Development and Mines. "Today's announcement will allow large industrial employers to focus on getting their operations up and running and employees back to work, instead of adjusting operations in response to peak electricity demand hours."

Due to COVID-19, electricity consumption in Ontario has been below average as fall in demand as people stayed home across the province, and the province is forecast to have a reliable supply of electricity, supported by the system operator's staffing contingency plans during the pandemic, to accommodate increased usage. Peak hours generally occur during the summer when the weather is hot and electricity demand from cooling systems is high.

"Today's action will reduce the burden of anticipating and responding to peak hours for more than 1,300 ICI participants with 2,000 primarily industrial facilities in Ontario," said Bill Walker, Associate Minister of Energy. "Now these large employers can focus on getting their operations back up and running at full tilt and explore new energy-efficiency programs to manage costs."

The government previously announced it was providing temporary relief for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP) by deferring a portion of GA charges for April, May and June 2020 and by extending off-peak rates for many customers, as well as a disconnect moratorium extension for residential electricity users.

 

Related News

View more

Alberta's electricity rebate program extended until December

Alberta Electricity Rebate Extension provides $50 monthly credits, utility bill relief, and an natural gas rebate, supporting homes, farms, and small businesses with energy costs through December 2022, capped at 250 MWh per year.

 

Key Points

A provincial program extending $50 credits and energy relief, with a natural gas rebate for eligible consumers in 2022.

✅ Up to $300 in bill credits; auto-applied to eligible accounts

✅ Applies to whole bill; limit 250 MWh/year consumption

✅ Natural gas rebate triggers above $6.50/GJ Oct-Mar 2023

 

Alberta's electricity rebate program has been extended by three months amid an electricity price spike in Alberta, and will now be in effect until the end of December, the government said.

The program was originally to provide more than 1.9 million homes, farms and small businesses with $50 monthly credits on their electricity bills, complementing a consumer price cap on power bills, for July, August and September. It will now also cover the final three months of 2022.

Those eligible for the rebate could receive up to $300 in credits until the end of December, a relief for Alberta ratepayers facing deferral costs.

The program, designed to provide relief to Albertans hit hard by high utility bills and soaring energy prices, will cost the Alberta government $600 million.

Albertans who have consumed electricity within the past calendar year, up to a maximum of 250 megawatt hours per year, are eligible for the rebates, which will be automatically applied to consumer bills, as seen in Ontario electricity bill support initiatives.

The rebates will apply to the entire bill, similar to a lump-sum credit in Newfoundland and Labrador, not just the energy portion, the government said. The rebates will be automatic and no application will be needed.

Starting October, the government will enact a natural gas rebate program until March 2023 that will kick in when prices exceed $6.50 per gigajoule, and Alberta's consumer price cap on electricity will remain in place.

 

Related News

View more

Japan's power demand hit by coronavirus outbreak: industry head

Japan Power Demand Slowdown highlights reduced electricity consumption as industrial activity stalls amid the coronavirus pandemic, pressuring utilities, the grid, and manufacturing, with economic impacts monitored by Chubu Electric and the federation of electric utilities.

 

Key Points

A drop in Japan's electricity use as industrial activity slows during the coronavirus pandemic, pressuring utilities.

✅ Industrial slowdown cuts electricity consumption

✅ Utilities monitor grid stability and demand trends

✅ Pandemic-linked economic risks weigh on power sector

 

Japan's power demand has been hit by a slowdown in industrial activity due to the coronavirus outbreak, reflecting broader shifts in electricity demand worldwide, Japanese utilities federation's head said on Friday, without giving specific figures.

Electricity load profiles during lockdowns revealed changes in daily routines, as shown by lockdown electricity data across multiple regions.

Analysts have identified key shifts in U.S. electricity consumption patterns that mirror industrial slowdowns.

"We are closely watching development of the pandemic, underscoring the need for electricity during such crises, as further reduction in corporate and economic activities would lead to serious impacts," Satoru Katsuno, the chairman of Japan's federation of electric utilities and president of Chubu Electric Power Co Inc, told a news conference.

In parallel, the power industry has intensified coordination with federal partners to sustain grid reliability and protect critical workers.

Some governments, including Brazil, considered emergency loans for the power sector to stabilize utilities amid revenue pressures.

Consumer advocates warned that pandemic-related electricity shut-offs and bill burdens could exacerbate energy insecurity for vulnerable households.

 

Related News

View more

Egypt's renewable energy to reach 6.6 GW by year-end

Egypt Renewable Energy Expansion targets solar and wind power projects to diversify the energy mix, adding 6.6 GW by 2020 and reaching 8,200 MW, with UK cooperation, grid upgrades, and investment in the electricity sector.

 

Key Points

A plan to boost solar and wind by 6.6 GW by 2020, reaching 8,200 MW and diversifying Egypt's energy mix.

✅ Adds 6.6 GW by 2020; targets 8,200 MW total capacity

✅ Focus on solar, wind, grid upgrades, and investment

✅ UK-Egypt cooperation in electricity sector projects

 

Egypt is planning to expand into renewable energy projects in a bid to increase its contribution to the energy mix, in step with global records being set in renewables, and amid Saudi Arabia’s 60 GW drive in the region, the country’s minister of electricity and renewable energy Mohamed Shaker said.

Renewable power is expected to add 6.6 gigawatts (GW) by the end of 2020, a scale comparable to Saudi wind expansion underway, with plans to reach 8,200 megawatts (MW) after the completion of the renewable energy projects currently under consideration, reflecting gains seen since IRENA’s 2016 record year for renewables, Shaker added in a statement on Tuesday, even as regional challenges persist.

This came during the minister’s video-conference meeting with the British ambassador to Egypt Geoffrey Adams to explore the potential means for cooperation between the two countries in the electricity sector, including lessons from the UK project backlog now affecting investments and from Ireland’s green-electricity goals being pursued.

 

Related News

View more

As New Zealand gets serious about climate change, can electricity replace fossil fuels in time?

New Zealand Energy Transition will electrify transport and industry with renewables, grid-scale solar, wind farms, geothermal, batteries, demand response, pumped hydro, and transmission upgrades to manage dry-year risk and winter peak loads.

 

Key Points

A shift to renewables and smart demand to decarbonise transport and industry while ensuring reliable, affordable power.

✅ Electrifies transport and industrial heat with renewables

✅ Uses demand response, batteries, and pumped hydro for resilience

✅ Targets 99%+ renewable supply, managing dry-year and peak loads

 

As fossil fuels are phased out over the coming decades, the Climate Change Commission (CCC) suggests electricity will take up much of the slack, aligning with the vision of a sustainable electric planet powering our vehicle fleet and replacing coal and gas in industrial processes.

But can the electricity system really provide for this increased load where and when it is needed? The answer is “yes”, with some caveats.

Our research examines climate change impacts on the New Zealand energy system. It shows we’ll need to pay close attention to demand as well as supply. And we’ll have to factor in the impacts of climate change when we plan for growth in the energy sector.

 

Demand for electricity to grow
While electricity use has not increased in NZ in the past decade, many agencies project steeply rising demand in coming years. This is partly due to both increasing population and gross domestic product, but mostly due to the anticipated electrification of transport and industry, which could result in a doubling of demand by mid-century.

It’s hard to get a sense of the scale of the new generation required, but if wind was the sole technology employed to meet demand by 2050, between 10 and 60 new wind farms would be needed nationwide.

Of course, we won’t only build wind farms, as renewables are coming on strong and grid-scale solar, rooftop solar, new geothermal, some new small hydro plant and possibly tidal and wave power will all have a part to play.

 

Managing the demand
As well as providing more electricity supply, demand management and batteries will also be important. Our modelling shows peak demand (which usually occurs when everyone turns on their heaters and ovens at 6pm in winter) could be up to 40% higher by 2050 than it is now.

But meeting this daily period of high demand could see expensive plant sitting idle for much of the time (with the last 25% of generation capacity only used about 10% of the time).

This is particularly a problem in a renewable electricity system when the hydro lakes are dry, as hydro is one of the few renewable electricity sources that can be stored during the day (as water behind the dam) and used over the evening peak (by generating with that stored water).

Demand response will therefore be needed. For example, this might involve an industrial plant turning off when there is too much load on the electricity grid.

 

But by 2050, a significant number of households will also need smart appliances and meters that automatically use cheaper electricity at non-peak times. For example, washing machines and electric car chargers could run automatically at 2am, rather than 6pm when demand is high.

Our modelling shows a well set up demand response system could mitigate dry-year risk (when hydro lakes are low on water) in coming decades, where currently gas and coal generation is often used.

Instead of (or as well as) having demand response and battery systems to combat dry-year risk, a pumped storage system could be built. This is where water is pumped uphill when hydro lake inflows are plentiful, and used to generate electricity during dry periods.

The NZ Battery project is currently considering the potential for this in New Zealand, and debates such as whether we would use Site C's electricity offer relevant lessons.

 

Almost (but not quite) 100% renewable
Dry-year risk would be greatly reduced and there would be “greater greenhouse gas emissions savings” if the Interim Climate Change Committee’s (ICCC) 2019 recommendation to aim for 99% renewable electricity was adopted, rather than aiming for 100%.

A small amount of gas-peaking plant would therefore be retained. The ICCC said going from 99% to 100% renewable electricity by overbuilding would only avoid a very small amount of carbon emissions, at a very high cost.

Our modelling supports this view. The CCC’s draft advice on the issue also makes the point that, although 100% renewable electricity is the “desired end point”, timing is important to enable a smooth transition.

Despite these views, Energy Minister Megan Woods has said the government will be keeping the target of a 100% renewable electricity sector by 2030.

 

Impacts of climate change
In future, the electricity system will have to respond to changing climate patterns as well, becoming resilient to climate risks over time.

The National Institute of Water and Atmospheric Research predicts winds will increase in the South Island and decrease in the far north in coming decades.

Inflows to the biggest hydro lakes will get wetter (more rain in their headwaters), and their seasonality will change due to changes in the amount of snow in these catchments.

Our modelling shows the electricity system can adapt to those changing conditions. One good news story (unless you’re a skier) is that warmer temperatures will mean less snow storage at lower elevations, and therefore higher lake inflows in the big hydro catchments in winter, leading to a better match between times of high electricity demand and higher inflows.

 

The price is right
The modelling also shows the cost of generating electricity is not likely to increase, because the price of building new sources of renewable energy continues to fall globally.

Because the cost of building new renewables is now cheaper than non-renewables (such as coal-fired plants), investing in carbon-free electricity is increasingly compelling, and renewables are more likely to be built to meet new demand in the near term.

While New Zealand’s electricity system can enable the rapid decarbonisation of (at least) our transport and industrial heat sectors, international efforts like cleaning up Canada's electricity underline the need for certainty so the electricity industry can start building to meet demand everywhere.

Bipartisan cooperation at government level will be important to encourage significant investment in generation and transmission projects with long lead times and life expectancies, as analyses of climate policy and grid implications underscore in comparable markets.

Infrastructure and markets are needed to support demand response uptake, as well as certainty around the Tiwai exit in 2024 and whether pumped storage is likely to be built.

Our electricity system can support the rapid decarbonisation needed if New Zealand is to do its fair share globally to tackle climate change.

But sound planning, firm decisions and a supportive and relatively stable regulatory framework are all required before shovels can hit the ground.

 

Related News

View more

A resilient Germany is weathering the energy crunch

German Energy Price Brakes harness price signals in a market-based policy, cutting gas consumption, preserving industrial output, and supporting CO2 reduction, showcasing Germany's resilience and adaptation while protecting households and businesses across Europe.

 

Key Points

Fixed-amount subsidies preserving price signals to curb gas use, shield consumers, and sustain industrial output.

✅ Maintains incentives via market-based price signals

✅ Cuts gas consumption without distorting EU markets

✅ Protects households and industry while curbing CO2

 

German industry and society are once again proving much more resilient and adaptable than certain people feared. Horror scenarios of a dangerous energy rationing or a massive slump in our economy have often been bandied about. But we are nowhere near that. With a challenging year just behind us, this is good news — not only for Germany, but also for Europe, where France-Germany energy cooperation has strengthened solidarity.

Companies and households reacted swiftly to the sharp increases in energy prices, in line with momentum in the global energy transition seen across markets. They installed more efficient heating or production facilities, switched to alternatives and imported intermediate products. The results are encouraging: German households and businesses have reduced gas consumption significantly, despite recent cold weather. From the start of the war in Ukraine to mid-December industrial gas consumption in Germany was (temperature-adjusted) around 20 per cent lower than the average level for the preceding three years. Even if some firms have cut back production, especially in energy-intensive sectors, industrial output as a whole has only fallen by about 1 per cent since the start of 2022. Added to this, in a survey released by the Ifo institute in November, over a third of German companies saw the potential to reduce gas consumption further without endangering output.

Instead of imposing excessive laws and regulations, we have relied on price signals and the prudence of market participants to create the right incentives and reduce gas consumption, as falling costs like record-low solar power prices continue to reinforce those signals across sectors.

We will follow this approach in coming months, when energy savings will remain important, even as the EU electricity outlook anticipates sharply higher demand by 2050. Our latest relief measures will not distort price signals. To this end, the Bundestag approved gas and electricity price brakes in its final session in 2022. They are designed to function without any intervention in markets or prices. This system will pay out a fixed amount relative to previous years’ consumption and the current difference to a reference price — regardless of current consumption.

Energy price brakes are the main component of Germany’s “protective shield”, which makes up to €200bn available for measures in 2022 to 2024. Seen in relation to the German economy’s size, its past heavy reliance on Russian energy imports and the fact that the measures will expire in 2024, these are balanced and expedient mechanisms. In contrast to instruments used in other countries, our new arrangements will not affect the price formation process driven by supply and demand, or on incentives to save gas. Companies and households will continue to save the full market price when they reduce consumption by a unit of gas or electricity. In this way, the price brakes also avoid the creation of additional demand for gas at the expense of consumers in other European countries, even as Europe’s Big Oil turning electric signals broader structural shifts in energy markets. No one need fear that competition will be distorted or that gas will be bought up. Indeed, a recent IMF working paper on cushioning the impact of high energy prices on households explicitly praises the German energy price brakes.

Current developments confirm the effectiveness of a market-based approach — and show that we should also rely on price signals when it comes to reducing CO₂ emissions, as suggested by IEA CO2 trends in recent years. Last year, households and companies had only a few weeks to adapt, yet we have already seen a strong response. The effect of CO₂ prices can be even stronger, as adaptation is possible over a much longer time and they additionally affect expectations and long-term decisions. Regulatory interventions and subsidy schemes, even if well targeted, cannot compete with market co-ordination and incentives that support individual decision-making and promote innovation.

Europe and Germany can weather this crisis without a collapse in industrial production. We also have an opportunity to deal efficiently with the move to climate neutrality, aligned with Germany’s hydrogen strategy for imported low-carbon fuels. In both cases, we should have confidence in price signals as well as in the power of people and business to innovate and adapt.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified