Chinese power generation up 14 per cent

By Industrial Info Resources


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
From January through November 2010, China's national generation output of power plants generating more than 6 megawatts MW reached 3.77 trillion kilowatt-hours kWh, an increase of 14 year over year.

Of this, the output of hydropower reached 614.8 billion kWh, an increase of 17.5 year over year. Thermal power reached 3.02 trillion kWh, an increase of 13 year over year. Nuclear power output reached 66.9 billion kWh, an increase of 4.8 year over year, while wind power reached 43.2 billion kWh, according to the China Electricity Council.

From January to November 2010, the overall social power consumption of China reached 3.83 trillion kWh, an increase of 15.78 year over year. The power consumption in November reached 346 billion kWh. From January through November 2010, the power consumption in the first industries agriculture, forestry, livestock, production and fisheries reached 91.5 billion kWh, an increase of 5.17 that of the second industries construction, manufacturing and energy production reached 2.86 trillion kWh, an increase of 17.22 that of the third industries services, hotels, insurance reached 357.5 billion kWh, an increase of 15.16. Household electricity consumption reached 469.9 billion kWh, up 12.77 year over year.

From January through November 2010, the national overall power consumption of industry reached 2.81 trillion kWh, an increase of 17 year over year.

As of the end of November 2010, the total installed capacity of power plants sized 6 MW or above in China reached 902.57 gigawatts GW, an increase of 10.8 year over year. Of which, installed capacity of hydropower, thermal power, nuclear power and wind power reached 179.05 GW, 686.13 GW, 10.82 GW and 26.09 GW, an increase of 12.8, 8.6, 19.2 and 81.3 year over year, respectively.

From January to November 2010, the average accumulated utilization hours of power generation equipment in China reached 4,275 hours, an increase of 132 hours year over year. Of which, the average utilization hours of hydropower equipment reached 3,211 hours, an increase of 45 hours year over year and the average utilization hour of thermal power equipment reached 4,590 hours, an increase of 207 hours from the same period last year.

Related News

DOE Announces $34 Million to Improve America?s Power Grid

DOE GOPHURRS Grid Undergrounding accelerates ARPA-E innovations to modernize the power grid, boosting reliability, resilience, and security via underground power lines, AI-driven surveying, robotic tunneling, and safer cable splicing for clean energy transmission and distribution.

 

Key Points

A DOE-ARPA-E program funding undergrounding tech to modernize the grid and improve reliability and security.

✅ $34M for 12 ARPA-E projects across 11 states

✅ Underground power lines to boost reliability and resilience

✅ Robotics, AI, and safer splicing to cut costs and risks

 

The U.S. Department of Energy (DOE) has earmarked $34 million for 12 innovative projects across 11 states to bolster and modernize the nation’s power grid, complementing efforts like a Washington state infrastructure grant announced to strengthen resilience.

Under the Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security (GOPHURRS) program, this funding is focused on developing efficient and secure undergrounding technologies. The initiative is aligned with President Biden’s vision to strengthen America's energy infrastructure and advance smarter electricity infrastructure priorities, thereby creating jobs, enhancing energy and national security, and advancing towards a 100% clean electricity grid by 2035.

U.S. Secretary of Energy Jennifer M. Granholm emphasized the criticality of modernizing the power grid to facilitate a future powered by clean energy, including efforts to integrate more solar into the grid nationwide, thus reducing energy costs and bolstering national security. This development, she noted, is pivotal in bringing the grid into the 21st Century.

The U.S. electric power distribution system, comprising over 5.5 million line miles and over 180 million power poles, is increasingly vulnerable to weather-related damage, contributing to a majority of annual power outages. Extreme weather events, intensified by climate change impacts across the nation, exacerbate the frequency and severity of these outages. Undergrounding power lines is an effective measure to enhance system reliability for transmission and distribution grids.

Managed by DOE’s Advanced Research Projects Agency-Energy (ARPA-E), the newly announced projects include contributions from small and large businesses, national labs, and universities. These initiatives are geared towards developing technologies that will lower costs, expedite undergrounding operations, and enhance safety. Notable projects involve innovations like Arizona State University’s water-jet construction tool for deploying electrical cables underground, GE Vernova Advanced Research’s robotic worm tunnelling construction tool, and Melni Technologies’ redesigned medium-voltage power cable splice kits.

Other significant projects include Oceanit’s subsurface sensor system for avoiding utility damage during undergrounding and Pacific Northwest National Laboratory’s AI system for processing geophysical survey data. Prysmian Cables and Systems USA’s project focuses on a hands-free power cable splicing machine to improve network reliability and workforce safety, complementing state efforts like California's $500 million grid investment to upgrade infrastructure.

Complete descriptions of these projects can be found on the ARPA-E website, while a recent grid report card highlights challenges these efforts aim to address.

ARPA-E’s mission is to advance clean energy technologies with high potential and impact, playing a strategic role in America’s energy security, including military preparedness for grid cyberattacks as a priority. This commitment ensures the U.S. remains a global leader in developing and deploying advanced clean energy technologies.

 

Related News

View more

Why Is Central Asia Suffering From Severe Electricity Shortages?

Central Asia power shortages strain grids across Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan, driven by drought-hit hydropower, aging coal and gas plants, rising demand, cryptomining loads, and winter peak consumption risks.

 

Key Points

Regionwide blackouts from drought, aging plants and grids, rising demand, and winter peaks stressing Central Asia.

✅ Drought slashes hydropower in Kyrgyzstan, Tajikistan, Uzbekistan

✅ Aging coal and gas TPPs and weak grids cause frequent outages

✅ Cryptomining loads and winter heating spike demand and stress supply

 

Central Asians from western Kazakhstan to southern Tajikistan are suffering from power and energy shortages that have caused hardship and emergency situations affecting the lives of millions of people.

On October 14, several units at three power plants in northeastern Kazakhstan were shut down in an emergency that resulted in a loss of more than 1,000 megawatts (MW) of electricity.

It serves as an example of the kind of power failures that plague the region 30 years after the Central Asian countries gained independence and despite hundreds of millions of dollars being invested in energy infrastructure and power grids, and echo risks seen in other advanced markets such as Japan's near-blackouts during recent cold snaps.

Some of the reasons for these problems are clear, but with all the money these countries have allocated to their energy sectors and financial help they have received from international financial institutions, it is curious the situation is already so desperate with winter officially still weeks away.


The Current Problems
Three power plants were affected in the October 14 shutdowns of units: Ekibastuz-1, Ekibastuz-2, and the Aksu power plant.

Ekibastuz-1 is the largest power plant in Kazakhstan, capable of generating some 4,000 MW, roughly 13 percent of Kazakhstan’s total power output.

The Kazakhstan Electricity Grid Operating Company (KEGOC) explained the problems resulted partially from malfunctions and repair work, but also from overuse of the system that the government would later say was due to cryptominers, a large number of whom have moved to Kazakhstan recently from China after Beijing banned the mining needed by Bitcoin and other cryptocurrencies, amid its own China's power cuts across several provinces in 2021.

But between November 8 and 9, rolling blackouts were reported in the East Kazakhstan, North Kazakhstan, and Kyzylorda provinces, as well as the area around Almaty, Kazakhstan’s biggest city, and Shymkent, its third largest city.

People in Uzbekistan say they, too, are facing blackouts that the Energy Ministry described as “short-term outages,” even as authorities have looked to export electricity to Afghanistan to support regional demand, though it has been clear for several weeks that the country will have problems with natural gas supplies this winter.


Power lines in Uzbekistan
Kyrgyz President Sadyr Japarov continues to say there won't be any power rationing in Kyrgyzstan this winter, but at the end of September the National Energy Holding Company ordered “restrictions on the lighting of secondary streets, advertisements, and facades of shops, cafes, and other nonresidential customers.”

Many parts of Tajikistan are already experiencing intermittent supplies of electricity.

Even in Turkmenistan, a country with the fourth-largest reserves of natural gas in the world, there were reports of problems with electricity and heating in the capital, Ashgabat.


What Is Going On?
The causes of some of these problems are easy to see.

The population of the region has grown significantly, with the population of Central Asia when the Soviet Union collapsed in late 1991 being some 50 million and today about 75 million.

Kyrgyzstan and Tajikistan are mountainous countries that have long been touted for their hydropower potential and some 90 percent of Kyrgyzstan’s domestically produced electricity and 98 percent of Tajikistan’s come from hydropower.

But a severe drought that struck Central Asia this year has resulted in less hydropower and, in general, less energy for the region, similar to constraints seen in Europe's reduced hydro and nuclear output this year.

Tajik authorities have not reported how low the water in the country’s key reservoirs is, but Kyrgyzstan has reported the water level in the reservoir at its Toktogul hydropower plant (HPP) is 11.8 billion cubic meters (bcm), the lowest level in years and far less than the 14.7 bcm of water it had in November 2020.

The Toktogul HPP, with an installed capacity of 1,200 MW, provides some 40 percent of the country's domestically produced electricity, but operating the HPP this winter to generate desperately needed energy brings the risk of leaving water levels at the reservoir critically low next spring and summer when the water is also needed for agricultural purposes.

This year’s drought is something Kyrgyzstan and Tajikistan will have to take into consideration as they plan how to provide power for their growing populations in the future. Hydropower is a desirable option but may be less reliable with the onset of climate change, prompting interest in alternatives such as Ukraine's wind power to diversify generation.

Uzbekistan is also feeling the effects of this year’s drought, and, like the South Caucasus where Georgia's electricity imports have increased, supply shortfalls are testing grids.

According to the International Energy Agency, HPPs account for some 12 percent of Uzbekistan’s generating capacity.

Uzbekistan’s Energy Ministry attributed low water levels at HPPs that have caused a 23 percent decrease in hydropower generation this year.


A reservoir in Kyrgyzstan
Kazakhstan and Uzbekistan are the most populous Central Asian countries, and both depend on thermal power plants (TPP) for generating most of their electricity.

Most of the TPPs in Kazakhstan are coal-fired, while most of the TPPs in Uzbekistan are gas-fired.

Kazakhstan has 68 power plants, 80 percent of which are coal-fired TPPs, and most are in the northern part of the country where the largest deposits of coal are located. Kazakhstan has the world's 10th largest reserves of coal.

About 88 percent of Uzbekistan’s electricity comes from TTPs, most of which use natural gas.

Uzbekistan’s proven reserves are some 800 billion cubic meters, but gas production in Uzbekistan has been decreasing.

In December 2020, Uzbek President Shavkat Mirziyoev ordered a halt to the country’s gas exports and instructed that gas to be redirected for domestic use. Mirziyoev has already given similar instructions for this coming winter.


How Did It Come To This?
The biggest problem with the energy infrastructure in Central Asia is that it is generally very old. Nearly all of its power plants date back to the Soviet era -- and some well back into the Soviet period.

The use of power plants and transmission lines that some describe as “obsolete” and a few call “decrepit” has unfortunately been a necessity in Central Asia, even as regional players pursue new interconnections like Iran's plan to transmit electricity to Europe as a power hub.

Reporting on Kazakhstan in September 2016, the Asian Development Bank (ADB) said, “70 percent of the power generation infrastructure is in need of rehabilitation.”

The Ekibastuz-1 TPP is relatively new by the power-plant standards of Central Asia. The first unit of the eight units of the TPP was commissioned in 1980.

The first unit at the AKSU TPP was commissioned in 1968, and the first unit of the gas- and fuel-fired TPP in southern Kazakhstan’s Zhambyl Province was commissioned in 1967.

 

Related News

View more

Alberta Leads the Way in Agrivoltaics

Agrivoltaics in Alberta integrates solar energy with agriculture, boosting crop yields and water conservation. The Strathmore Solar project showcases dual land use, sheep grazing for vegetation control, and PPAs that expand renewable energy capacity.

 

Key Points

A dual-use model where solar arrays and farming co-exist, boosting yields, saving water, and diversifying revenue.

✅ Strathmore Solar: 41 MW on 320 acres with managed sheep grazing

✅ 25-year TELUS PPA secures power and renewable energy credits

✅ Panel shade cuts irrigation needs and protects crops from extremes

 

Alberta is emerging as a leader in agrivoltaics—the innovative practice of integrating solar energy production with agricultural activities, aligning with the province's red-hot solar growth in recent years. This approach not only generates renewable energy but also enhances crop yields, conserves water, and supports sustainable farming practices. A notable example of this synergy is the Strathmore Solar project, a 41-megawatt solar farm located on 320 acres of leased industrial land owned by the Town of Strathmore. Operational since March 2022, it exemplifies how solar energy and agriculture can coexist and thrive together.

The Strathmore Solar Initiative

Strathmore Solar is a collaborative venture between Capital Power and the Town of Strathmore, with a 25-year power purchase agreement in place with TELUS Corporation for all the energy and renewable energy credits generated by the facility. The project not only contributes significantly to Alberta's renewable energy capacity, as seen with new solar facilities contracted at lower cost across the province, but also serves as a model for agrivoltaic integration. In a unique partnership, 400 to 600 sheep from Whispering Cedars Ranch are brought in to graze the land beneath the solar panels. This arrangement helps manage vegetation, reduce fire hazards, and maintain the facility's upkeep, all while providing shade for the grazing animals. This mutually beneficial setup maximizes land use efficiency and supports local farming operations, illustrating how renewable power developers can strengthen outcomes with integrated designs today. 

Benefits of Agrivoltaics in Alberta

The integration of solar panels with agricultural practices offers several advantages for a province that is a powerhouse for both green energy and fossil fuels already across sectors:

  • Enhanced Crop Yields: Studies have shown that crops grown under solar panels can experience increased yields due to reduced water evaporation and protection from extreme weather conditions.

  • Water Conservation: The shade provided by solar panels helps retain soil moisture, leading to a decrease in irrigation needs.

  • Diversified Income Streams: Farmers can generate additional revenue by selling renewable energy produced by the solar panels back to the grid.

  • Sustainable Land Use: Agrivoltaics allows for dual land use, enabling the production of both food and energy without the need for additional land.

These benefits are evident in various agrivoltaic projects across Alberta, where farmers are successfully combining crop cultivation with solar energy production amid a renewable energy surge that is creating thousands of jobs.

Challenges and Considerations

While agrivoltaics presents numerous benefits, there are challenges to consider as Alberta navigates challenges with solar expansion today across Alberta:

  • Initial Investment: The setup costs for agrivoltaic systems can be high, requiring significant capital investment.

  • System Maintenance: Regular maintenance is essential to ensure the efficiency of both the solar panels and the agricultural operations.

  • Climate Adaptability: Not all crops may thrive under the conditions created by solar panels, necessitating careful selection of suitable crops.

Addressing these challenges requires careful planning, research, and collaboration between farmers, researchers, and energy providers.

Future Prospects

The success of projects like Strathmore Solar and other agrivoltaic initiatives in Alberta indicates a promising future for this dual-use approach. As technology advances and research continues, agrivoltaics could play a pivotal role in enhancing food security, promoting sustainable farming practices, and contributing to Alberta's renewable energy goals. Ongoing projects and partnerships aim to refine agrivoltaic systems, making them more efficient and accessible to farmers across the province.

The integration of solar energy production with agriculture in Alberta is not just a trend but a transformative approach to sustainable farming. The Strathmore Solar project serves as a testament to the potential of agrivoltaics, demonstrating how innovation can lead to mutually beneficial outcomes for both the agricultural and energy sectors.

 

 

Related News

View more

Elizabeth May wants a fully renewable electricity grid by 2030. Is that possible?

Green Party Mission Possible 2030 outlines a rapid transition to renewable energy, electric vehicles, carbon pricing, and grid modernization, phasing out oil and gas while creating green jobs, public transit upgrades, and building retrofits.

 

Key Points

A Canadian climate roadmap to decarbonize by 2030 via renewables, EVs, carbon pricing, and grid upgrades.

✅ Ban on new gas cars by 2030; accelerate EV adoption and charging.

✅ 100 percent renewable-powered grid with interprovincial links.

✅ Just transition: retraining, green jobs, and building retrofits.

 

Green Party Leader Elizabeth May has a vision for Canada in 2030. In 11 years, all new cars will be electric. A national ban will prohibit anyone from buying a gas-powered vehicle. No matter where you live, charging stations will make driving long distances easy and affordable. Alberta’s oil industry will be on the way out, replaced by jobs in sectors such as urban farming, renewable energy and retrofitting buildings for energy efficiency. The electric grid will be powered by 100 per cent renewable energy as Canada’s race to net-zero accelerates.

It’s all part of the Greens’ “Mission Possible” – a detailed plan released Monday with a level of ambition made clear by its very name. May insists it’s the only way to confront the climate crisis head-on before it’s too late.

“We have to set our targets on what needs to be done. You can’t negotiate with physics,” May told CTV’s Power Play on Monday.

But is that 2030 vision realistic?

CTVNews.ca spoke with experts in economics, political policy, renewable energy and climate science to explore how feasible May’s plan is, how much it would cost and what transitioning to an environmentally-centred economy would look like for everyday Canadians.

 

MOVING TO A GREEN ECONOMY

Recent polling from Nanos Research shows that the environment and climate change is the top issue among voters this election.

If the Greens win a majority on Oct. 21 – an outcome that May herself acknowledged isn’t likely – it would signal a major restructuring of the Canadian economy.

According to the party’s platform, jobs in the fuels sectors, such as oil and gas production in Alberta, would eventually disappear. The Greens say those job losses would be replaced by opportunities in a variety of fields including renewable energy, farming, public transportation, manufacturing, construction and information technology.

The party would also introduce a guaranteed livable income and greater support for technical and educational training to help workers transition to new jobs.

But Jean-Thomas Bernard, an economist who specializes in energy markets, said plenty of people in today’s energy sector, such as oil and gas workers, wouldn’t have the skills to make that transition.

“Quite a few of these jobs have low technical requirements. Driving a truck is driving a truck. So quite few of these people will not have the capacity to be recycled into well-paid jobs in the renewable sector,” he said.

“Maybe this would be for the young generation, but not people who are 40, 45, 50.”

Ryan Katz-Rosene is an associate professor at the University of Ottawa who researches environmental policy. He says May’s overall pitch is technically possible but would require a huge amount of enthusiasm on behalf of the public. 

“The plan in itself is not physically impossible. It is theoretically achievable. But it would require a major, major change in the urgency and the level of action, the level of investment, the level of popular urgency, the level of political commitment,” he said.

“But it’s not completely fantastical in it being theoretically impossible.”

 

PHASING OUT BITUMEN PRODUCTION

Katz-Rosene said that, under the Greens’ plan, Canadians would need to pay for a bold carbon pricing plan that helps shift the country away from fossil fuels and has significant implications for electricity grids, he said. It would also mean dramatically upscaling the capacity of Canada’s existing electrical grid to account for millions of new electric cars, reflecting the need for more electricity to hit net-zero as demand grows.

 “Given Canada’s slow attempt to climate action and pretty lacklustre results in these years, to be frank, this plan is very, very difficult to achieve. We’re talking 11 years from now. But things change, people change, and sometimes that change can occur very quickly. Just look at the type of climate mobilization we’re seen among young people in the last year, or the last five years.”

Bernard, the economist, is less optimistic. He cited international agreements such as the Kyoto Protocol from 1997 and the more recent Paris Climate Agreement and said that little has come of those plans.

A climate solution with teeth, he suggests, would need to be global – something that no federal government can completely control.

“I find a lot this talk to be overly optimistic. I don’t know why we keep having this talk that is overly optimistic,” he said, adding that he believes humankind is already beyond the point of being able to stop irreversible climate change. 

“I think we are moving toward a mess, but the effort to control that is still not there.”

As for transitioning away from Canada’s oil industry, Bernard said May’s plan simply wouldn’t work.

“Trying to block some oil production here and there means more oil will be produced elsewhere,” he said. “Canada could become a clean country, but worldwide it would not be much.”

Mike Hudema, a climate organizer with Greenpeace Canada, thinks the Green Party’s promises for 2030 are big – and that’s kind of the point.

“They are definitely ambitious, but ambition is exactly what these times call for.  Unfortunately our government has delayed acting on this problem for so long that we have a very short timeline which we have to turn the ship,” he said.

“So this is the type of ambition that the science is calling for. So yes, I believe that if we here in Canada were to put our minds to addressing this problem, then we have the ability to reach it in that 2030 timeframe.”

In a statement to CTVNews.ca, a Green Party spokesperson said the 2030 timeline is intended to meet the 45 per cent reduction in emissions by 2030 as laid out by the Intergovernmental Panel on Climate Change.

“If we miss the 2030 target, we risk triggering runaway global warming,” the spokesperson said.

 

GREENING THE GRID BY 2030

Greening Canada’s existing electric grid – a goal May has pegged to 2030 – is quite feasible, Katz-Rosene said, and cleaning up Canada’s electricity is critical to meeting climate pledges. Already, 82 per cent of the country’s electric grid is run off of renewable resources, which makes Canada a world leader in the field, he said.

Hudema agrees.

“It is feasible. Canada does have a grid already that has a lot of renewables in it. So yes we can definitely make it over the hump and complete the transition. But we do need investments in our electric grid infrastructure to ensure a certain capability. That comes with tremendous job growth. That’s the exciting part that people keep missing,” Hudema said.

But Bernard said switching the grid to 100 per cent renewables would be quite difficult. He suggested that the Greens’ 2030 vision would require Ontario and Quebec’s hydro production to help power the Prairies.

“To think we could boost (hydro production) much more in order to meet Saskatchewan and Alberta’s needs? Oh boy. To do this before 2030? I think that’s not reasonable, not feasible.”

In a statement to CTV News, the Greens said their strategy includes building new connections between eastern Manitoba and western Ontario to transmit clean energy. They would also upgrade existing connections between New Brunswick and Nova Scotia and between B.C. and Alberta to boost reliability.

A number of “micro-grids” in local communities capable of storing clean energy would help reduce the dependency on nationwide distribution systems, the party said.

Even so, the Greens acknowledged that, by 2030, some towns and cities will still be using some fossil fuels, and that even by 2050 – the goal for achieving overall carbon neutrality – some “legacy users” of fossil fuels will remain.

However, according to party projections, the emissions of these “legacy users” would be at most 8 per cent of today’s levels and those emissions would be “more than completely offset” by re-forestation and new technologies, such as CO2 capture and storage.

 

ELECTRIC VEHICLE REVOLUTION

The Green Party’s platform promises to revolutionize the Canadian auto sector. By 2030, all new cars made in Canada would be electric and federal EV sales regulations would prohibit the sale of cars powered by gasoline.

Danny Harvey, a geography professor with the University of Toronto who specializes in renewable energy, said he thinks May’s plan for making a 100 per cent renewable-powered electric grid is feasible.

On cars, however, he thinks the emphasis on electric vehicles is “misplaced.”

“At this point in time we should be requiring automobiles to transition, by 2030, to making cars that can go three times further on a litre of gasoline than at present. This would require selling only advanced hybrid-electric vehicles (HEVs), which would run entirely on gasoline (like current HEVs),” he said.

“After that, and when the grid is fully ready, we could make the transition to fully electric or plugin hybrid electric vehicles, possibly using H2 for long-distance driving.”

At the moment, zero-emissions vehicles account for just over 2 per cent of annual vehicle sales in Canada. Katz-Rosene said that “isn’t a whole lot,” but the industry is on an exponential growth curve that doesn’t show any signs of slowing.

The trouble with May’s 2030 goal on electric vehicles, he said, has to do with Canadians’ taste in vehicles. In short: Canadians like trucks.

“The biggest obstacle I see is that I don’t even think it’s possible to get a light-duty truck, a Ford F150, in an electric model in Canada. And that’s the most popular type of vehicle,” he said.

However, if a zero emissions truck were on the market – something that automakers are already working on – then that could potentially shake things up, especially if the government introduces incentives for electric vehicles and higher taxes on gasoline, he said.

 

WHAT ABOUT THE COST?

CTVNews.ca reached out to the Green Party to ask how it would pay to revamp the electrical grid. The party did not give a precise figure but said that the plan “has been estimated to cost somewhat less” than the Trans Mountain Pipeline expansion.

The Greens have vowed to scrap the expansion and put that money toward the project.

Upgrading the electric grid to 100 per cent sustainable energy would also be a cost-effective, long-term solution, the Greens believe, though critics say Ottawa is making electricity more expensive for Albertans amid the transition.

“Current projects for renewable energy in Canada and worldwide are consistently at lower capital and operating costs than any type of fossil, hydro or nuclear energy project,” the party spokesperson said.

The party’s platform includes other potential sources of money, including closing tax loopholes for the wealthy, cracking down on offshore tax dodging and a new corporate tax on e-commerce companies, such as Facebook, Amazon and Netflix. The Greens have also vowed to eliminate all fossil fuel subsidies.

As for the economic realities, Katz-Rosene acknowledged that May’s plan may appeal to “radical” voters who view economic growth as anathema to addressing climate change.

But while May’s plan would be disruptive, it isn’t anti-capitalist, he said.

“It’s restrained capitalism. But it by no means an anti-capitalist platform, and none of the parties have an anti-capitalist platform by any stretch of the imagination,” Katz-Rosene said.

From an economist’s perspective, Bernard said the plan is still “very costly” and that taxes can only go so far.

“In the end, no corporation operates at a loss. At some stage, these taxes have to go to the users,” he said.

But conversations around money must also consider the cost of inaction on climate change, Hudema said.

“Costing (Elizabeth May) is always a concern and how we’re going to afford these things is something we definitely need to keep top of mind. But within that conversation we need to look at what is the cost of not doing what is in line with what the science is saying. I would say that cost is much more substantial.”

“The forecast, if we don’t act – it’s astronomical.”

 

Related News

View more

This Floating Hotel Will Generate Electricity By Rotating All Day

Floating Rotating Eco Hotel harnesses renewable energy via VAWTAU, recycles rainwater for greywater, and follows zero-waste principles. This mobile, off-grid, Qatar-based resort generates electricity by slow 360-degree rotation while offering luxury amenities.

 

Key Points

A mobile, off-grid hotel that rotates to generate power, uses VAWTAU, recycles greywater, and targets zero-waste.

✅ Rotates 360 deg in 24 hours to produce electricity

✅ VAWTAU system: vertical-axis turbine and sun umbrella

✅ Rain capture and greywater recycling minimize waste

 

A new eco-friendly, floating hotel plans to generate its own electricity by rotating while guests relax on board, echoing developments like the solar Marriott hotel in sustainable hospitality.

Led by Hayri Atak Architectural Design Studio (HAADS), the structure will be completely mobile, meaning it can float from place to place, never sitting in a permanent position. Building began in March 2020 and the architects aim for it to be up and running by 2025.

It will be based in Qatar, but has the potential to be located in different areas due to its mobility, and it sits within a region advancing projects such as solar hydrogen production that signal a broader clean-energy shift.

The design includes minimum energy loss and a zero waste principle at its core, aligning with progress in wave energy research that aims to power a clean future. As it will rotate around all day long, this will generate electrical energy to power the whole hotel.

But guests won’t feel too dizzy, as it takes 24 hours for the hotel to spin 360 degrees.

The floating hotel will stay within areas with continuous currents, to ensure that it is always rotating, drawing on ideas from ocean and river power systems that exploit natural flows. This type of green energy production is called ‘vawtau’ (vertical axis wind turbine and umbrella) which works like a wind turbine on the vertical axis, while alternative approaches like kite-based wind energy target stronger, high-altitude currents as well, and functions as a sun umbrella on the coastal band.

Beyond marine-current concepts such as underwater kites, the structure will also make use of rainwater to create power. A cover on the top of the hotel will collect rain to be used for greywater recycling. This is when wastewater is plumbed straight back into toilets, washing machines or outside taps to maximise efficiency.

The whole surface area is around 35,000 m², comparable in scale to emerging floating solar plants that demonstrate modular, water-based infrastructure, and there are a total of 152 rooms. It will have three different entrances so that there is access to the land at any time of the day, thanks to the 140-degree pier that surrounds it.

There will also be indoor and outdoor swimming pools, a sauna, spa, gym, mini golf course and other activity areas.

 

Related News

View more

Hydro-Québec will refund a total of $535 million to customers who were account holders in 2018 or 2019

Hydro-Québec Bill 34 Refund issues $535M customer credits tied to electricity rates, consumption-based rebates, and variance accounts, averaging $60 per account and 2.49% of 2018-2019 usage, via bill credits or mailed cheques.

 

Key Points

A $535M credit refunding 2.49% of 2018-2019 usage to Hydro-Québec customers via bill credits or cheques.

✅ Applies to 2018-2019 consumption; average refund about $60.

✅ Current customers get bill credits; former customers receive cheques.

✅ Refund equals 2.49% of usage from variance accounts under prior rates.

 

Following the adoption of Bill 34 in December 2019, a total amount of $535 million will be refunded to customers who were Hydro-Québec account holders in 2018 or 2019. This amount was accumulated in variance accounts required under the previous rate system between January 1, 2018, and December 31, 2019.

If you are still a Hydro-Québec customer, a credit will be applied to your bill in the coming weeks, and improving billing layout clarity is a focus in some provinces as well. The amount will be indicated on your bill.

An average refund amount of $60. The refund amount is calculated based on the quantity of electricity that each customer consumed in 2018 and 2019. The refund will correspond to 2,49% of each customer's consumption between January 1, 2018, and December 31, 2019, for an average of approximately $60, while Ontario hydro rates are set to increase on Nov. 1.

The following chart provides an overview of the refund amount based on the type of home. Naturally, the number of occupants, electricity use habits and features of the home, such as insulation and energy efficiency, may have a significant impact on the amount of the refund, and in other provinces, oversight debates continue following a BC Hydro fund surplus revelation.

What if you were an account holder in 2018 or 2019 but you are no longer a Hydro-Québec customer?
People who were account holders in 2018 or 2019, but who are no longer Hydro-Québec customers will receive their credit by cheque, a lump sum credit approach seen elsewhere.

To receive their cheque, these people must get in touch to update their address in one of the following ways:  

If they have a Hydro-Québec Customer Space and remember their access code, they can update their profile.

Anyone without a Customer Space or who doesn't remember their access code can fill out the Request for a credit form at the following address: www.hydroquebec.com/credit in which they can indicate the address where they wish to receive their cheque, where applicable.

Those who cannot send us their address online can call 514 385-7252 or 1 888 385-7252 to give it to a customer services representative, as utilities like Hydro One have moved to reconnect customers in some cases. Note that the process will take longer on the phone, especially if the call volume is high.

UPDATE: Hydro-Québec will be returning an additional $35 million to customers under the adoption of Bill 34, amid overcharging allegations reported elsewhere.

Energy Minister Jonatan Julien announced on Tuesday that the public utility will be refunding a total of $535 million to customers between January and April.

The legislation, which was passed in December, allows the Quebec government to take control of the rates charged for electricity in the province, including decisions on whether to seek a rate hike next year under the new framework.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified