Sending data through LED lights

By St. Petersburg Times


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Flickering ceiling lights are usually a nuisance, but in city offices in St. Cloud, Minn., they will actually be a pathway to the Internet.

The lights will transmit data to specially equipped computers on desks below by flickering faster than the eye can see. Ultimately, the technique could ease wireless congestion by opening up new expressways for short-range communications.

The first few light fixtures built by LVX System, a local startup, will be installed in six municipal buildings in St. Cloud.

The LVX system puts clusters of its light-emitting diodes, or LEDs, in a standard-sized light fixture. The LEDs transmit coded messages — as a series of 1s and 0s in computer speak — to special modems attached to computers.

A light on the modem talks back to the fixture overhead, where there is sensor to receive the return signal and transmit the data over the Internet. Those computers on the desks aren't connected to the Internet, except through these light signals, much as WiFi allows people to connect wirelessly.

The first generation of the LVX system will transmit data at speeds of about 3 megabits per second, roughly as fast as a residential DSL line.

Mohsen Kavehrad, a Penn State electrical engineering professor who has been working with optical network technology for about 10 years, said the approach could be a vital complement to the existing wireless system.

He said the radio spectrum usually used for short-range transmissions, such as WiFi, is getting increasingly crowded, which can lead to slower connections.

"Light can be the way out of this mess," he said.

But there are significant hurdles. For one, smart phones and computers already work on WiFi networks that are much faster than the LVX system.

Technology analyst Craig Mathias of the Farpoint Group said the problems with wireless congestion will ease as WiFi evolves, leaving LVX's light system to niche applications such as indoor advertising displays and energy management.

LVX chief executive officer John Pederson said a second-generation system that will roll out in about a year will permit speeds on par with commercial WiFi networks.

For St. Cloud, the data networking capability is secondary. The main reason it paid a $10,000 installation fee for LVX is to save money on electricity down the line, thanks to the energy-efficient LEDs.

Related News

To Limit Climate Change, Scientists Try To Improve Solar And Wind Power

Wisconsin Solar and Wind Energy advances as rooftop solar, utility-scale farms, and NREL perovskite solar cells improve efficiency; wind turbines gain via wake modeling, yaw control, and grid-scale battery storage to cut carbon emissions.

 

Key Points

It is Wisconsin's growth in rooftop and utility-scale solar plus optimized wind turbines to cut carbon emissions.

✅ Perovskite solar cells promise higher efficiency, need longevity

✅ Wake modeling and yaw control optimize wind farm output

✅ Batteries and bids can offset reliance on natural gas

 

Solar energy in Wisconsin continued to grow in 2019, as more homeowners had rooftop panels installed and big utilities started building multi-panel solar farms.

Wind power is increasing more slowly in the state. However, renewable power developers are again coming forward with proposals for multiple turbines.

Nationally, researchers are working on ways to get even more energy from solar and wind, with the U.S. moving toward 30% electricity from wind and solar in coming years, as states like Wisconsin aim to reduce their carbon emissions over the next few decades.

One reason solar energy is growing in Wisconsin is due to the silicon panels becoming more efficient. But scientists haven't finished trying to improve panel efficiency. The National Renewable Energy Laboratory (NREL) in Golden, Col., is one of the research facilities experimenting with brushing a lab-made solution called perovskite onto a portion of a panel called a solar cell.

In a demonstration video supplied by NREL, senior scientist Maikel van Hest said that, in the lab anyway, the painted cell and its electrical connections called contacts, produce more energy:

"There you go! That's how you paint a perovskite solar cell. And you imagine that ultimately what you could do is you could see a company come in with a truck in front of your house and they would basically paint on the contacts first, dry those, and paint the perovskite over it. That you would have photovoltaic cells on the side of your house, put protective coating on it, and we're done."

Another NREL scientist, David Moore, says the new solar cells could be made faster and help meet what's expected to be a growing global demand for energy. However, Moore says the problem has been lack of stability.

"A solar cell with perovskites will last a couple years. We need to get that to 20-25 years, and that's the big forefront in perovskite research, is getting them to last longer," Moore told members of the Society of Environmental Journalists during a recent tour of NREL.

Another part of improving renewable energy is making wind turbines more productive. At NREL's Insight Center, a large screen showing energy model simulations dominates an otherwise darkened room. Visualization scientist Nicholas Brunhart-Lupo points to a display on the screen that shows how spinning turbines at one edge of a wind farm can cause an airflow called a wake, which curtails the power generation of other turbines.

"So what we find in these simulations is these four turbines back here, since they have this used air, this low-velocity wake being blown to their faces, they're only generating about 20% of the energy they should be generating," he explains.

Brunhart-Lupo says the simulations can help wind farm developers with placement of turbines as well as adjustments to the rotor and blades called the yaw system.

Continued progress with renewables may be vital to any state or national pledges to reduce use of fossil fuels and carbon emissions linked to climate change, including Biden's solar expansion plan as a potential pathway. Some scientists say to limit a rise in global temperature, there must be a big decline in emissions by 2050.

But even utilities that say they support use of more renewables, as why the grid isn't 100% renewable yet makes clear, aren't ready to let go of some energy sources. Jonathan Adelman of Xcel Energy, which serves part of Western Wisconsin, says Xcel is on track to close its last two coal-fired power plants in Minnesota. But he says the company will need more natural gas plants, even though they wouldn't run as often.

"It's not perfect. And it is in conflict with our ultimate goal of being carbon-free," says Adelman. "But if we want to facilitate the transition, we still need resources to help that happen."

Some in the solar industry would like utilities that say they need more natural gas plants to put out competitive bids to see what else might be possible. Solar advocates also note that in some states, energy regulators still favor the utilities.

Meanwhile, solar slowly marches ahead, including here in southeastern Wisconsin, as Germany's solar power boost underscores global momentum.

On the roof of a ranch-style home in River Hills, a work crew from the major solar firm Sunrun recently installed mounting brackets for solar panels.

Sunrun Public Policy Director Amy Heart says she supports research into more efficient renewables. But she says another innovation may have to come in the way regulators think.

"Instead of allowing and thinking about from the perspective of the utility builds the power plant, they replace one plant with another one, they invest in the infrastructure; is really thinking about how can these distributed solutions like rooftop solar, peer-to-peer energy sharing, and especially rooftop solar paired with batteries how can that actually reduce some of what the utility needs?

Large-scale energy storage batteries are already being used in some limited cases. But energy researchers continue to make improvements to them, too, with cheap solar batteries beginning to make widespread adoption more feasible as scientists race to reduce the expected additional harm of climate change.

 

Related News

View more

Germany turns its back on nuclear for good despite Europe's energy crisis

Germany nuclear phase-out underscores a high-stakes energy transition, trading reactors for renewables, LNG imports, and grid resilience to secure supply, cut emissions, and navigate climate policy, public opinion shifts, and post-Ukraine supply shocks.

 

Key Points

Germany's nuclear phase-out retires reactors, shifting to renewables, LNG, and grid upgrades for low-carbon power.

✅ Last three reactors: Neckarwestheim, Isar 2, and Emsland closed

✅ Supply secured via LNG imports, renewables, and grid flexibility

✅ Policy accelerated post-Fukushima; debate renewed after Ukraine war

 

The German government is phasing out nuclear power despite the energy crisis. The country is pulling the plug on its last three reactors, betting it will succeed in its green transition without nuclear power.

On the banks of the Neckar River, not far from Stuttgart in south Germany, the white steam escaping from the nuclear power plant in Baden-Württemberg will soon be a memory.

The same applies further east for the Bavarian Isar 2 complex and the Emsland complex, at the other end of the country, not far from the Dutch border.

While many Western countries depend on nuclear power, Europe's largest economy is turning the page, even if a possible resurgence of nuclear energy is debated until the end.

Germany is implementing the decision to phase out nuclear power taken in 2002 and accelerated by Angela Merkel in 2011, after the Fukushima disaster.

Fukushima showed that "even in a high-tech country like Japan, the risks associated with nuclear energy cannot be controlled 100 per cent", the former chancellor justified at the time.

The announcement convinced public opinion in a country where the powerful anti-nuclear movement was initially fuelled by fears of a Cold War conflict, and then by accidents such as Chernobyl.

The invasion of Ukraine on 24 February 2022 brought everything into question. Deprived of Russian gas, the flow of which was essentially interrupted by Moscow, Germany found itself exposed to the worst possible scenarios, from the risk of its factories being shut down to the risk of being without heating in the middle of winter.

With just a few months to go before the initial deadline for closing the last three reactors on 31 December, the tide of public opinion began to turn, and talk of a U-turn on the nuclear phaseout grew louder. 

"With high energy prices and the burning issue of climate change, there were of course calls to extend the plants," says Jochen Winkler, mayor of Neckarwestheim, where the plant of the same name is in its final days.

Olaf Scholz's government, which the Green Party - the most hostile to nuclear power - is part of, finally decided to extend the operation of the reactors to secure the supply until 15 April.

"There might have been a new discussion if the winter had been more difficult if there had been power cuts and gas shortages nationwide. But we have had a winter without too many problems," thanks to the massive import of liquefied natural gas, notes Mr Winkler.

 

Related News

View more

'Net Zero' Emissions Targets Not Possible Without Multiple New Nuclear Power Stations, Say Industry Leaders

UK Nuclear Power Expansion is vital for low-carbon baseload, energy security, and Net Zero, complementing renewables like wind and solar, reducing gas reliance, and unlocking investment through clear financing rules and proven, dependable reactor technology.

 

Key Points

Accelerating reactor build-out for low-carbon baseload to boost energy security and help deliver the UK Net Zero target.

✅ Cuts gas dependence and stabilizes grids with firm capacity.

✅ Complements wind and solar for reliable, low-carbon supply.

✅ Needs clear financing to unlock investment and lower costs.

 

Leading nuclear industry figures will today call for a major programme of new power stations to hit ambitious emissions reduction targets.

The 19th Nuclear Industry Association annual conference in London will highlight the need for a proven, dependable source of low carbon electricity generation alongside growth in weather-dependent solar and wind power, and particularly the rapid expansion of wind and solar generation across the UK.

Without this, they argue, the country risks embedding a major reliance on carbon-emitting gas fired power stations as Europe loses nuclear capacity at a critical time for energy security for generations to come.

Annual public opinion polling released today to coincide with the conference revealed 75% of the population want the UK Government to take more action to reduce CO2 emissions.

The survey, conducted by YouGov in October 2019, has tracked opinion trends on nuclear for more than a decade. It shows continued and consistent public support for an energy mix including nuclear and renewables, with 72% of respondents agreeing this was needed to ensure a reliable supply of electricity.

Nuclear power was also perceived as the most secure energy source for keeping the lights on, compared to other sources such as oil, gas, coal, wind power, fracking and solar power.

Last month both the Labour and Conservative Parties committed to new nuclear power as part of their election Manifestos and the government's wider green industrial revolution plans for clean growth. At the same time, 27 leading figures in the fields of environment, energy, and industry signed an open letter addressed to parliamentary candidates, which set out the benefits of nuclear and underscored the consequences of not, at least, replacing the UK's current fleet of power stations.

The Nuclear Industry Association said there is no time to be lost in clarifying the ambition and the financing rules for new nuclear power which would bring down costs and unlock a major programme of investment.

Tom Greatrex, Chief Executive of the NIA, said "We have to grow the industry's contribution to a low carbon economy. The independent Committee on Climate Change said earlier this year that we need a variety of technologies including nuclear power/1 for net zero to reach the UK's Net Zero emissions target by 2050".

"This is a proven, dependable, technology with lower lifecycle CO2 emissions than solar power and the same as offshore wind/2. It is also an important economic engine for the UK, supporting uses beyond electricity and creating high quality direct and indirect employment for around 155,000 people."

"Right now nuclear provides 20%/3 of all the UK's electricity but all but one of our existing fleet will close over the next decade, amid the debate over nuclear's decline as power demand will only increase with a shift to electric heating and vehicles."

"The countries and regions which have most successfully decarbonised, like Sweden, France and Ontario in Canada, have done so by relying on nuclear, aligning with Canada's climate goals for affordable, safe power today. You are not serious about tackling climate change if you are not serious about nuclear".

 

Related News

View more

Ontario's electricity 'recovery rate' could lead to higher hydro bills

Ontario Hydro Flat Rate sets a single electricity rate at 12.8 cents per kWh, replacing time-of-use pricing for Ontario ratepayers, affecting hydro bills this summer, alongside COVID-19 Energy Assistance Program support.

 

Key Points

A fixed 12.8 cents per kWh electricity price replacing time-of-use rates across Ontario from June to November.

✅ Single rate applies 24/7, replacing time-of-use pricing

✅ May slightly raise bills versus pre-pandemic usage patterns

✅ COVID-19 aid offers one-time credits for households, small firms

 

A new provincial COVID-19 measure, including a fixed COVID-19 hydro rate designed to give Ontario ratepayers "stability" on their hydro bills this summer, could result in slightly higher hydro costs over the next four months.

Ontario Premier Doug Ford's government announced over the weekend that consumers would be charged a single around-the-clock electricity rate between June and November, before a Nov. 1 rate increase takes effect, replacing the much-derided time-of-use model ratepayers have complained about for years.

Instead of being charged between 10 to 20 cents per kilowatt hour, depending on the time of day electricity is used, including ultra-low TOU rates during off-peak hours, hydro users will be charged a blanket rate of 12.8 cents per kWh.

"The new rate will simply show up on your bill," Premier Doug Ford said at a Monday afternoon news conference.

While the government said the new fixed rate would give customers "greater flexibility" to use their home appliances without having to wait for the cheapest rate -- and has tabled legislation to lower rates as part of its broader plan -- the new policy also effectively erases a pandemic-related hydro discount for millions of consumers.

For example, a pre-pandemic bill of $59.90 with time-of-use rates, will now cost $60.28 with the government's new recovery rate, as fixed pricing ends across the province, before delivery charges, rebates and taxes.

That same bill would have been much cheaper -- $47.57 -- if the government continued applying the lowest tier of time-of-use 24/7 under an off-peak price freeze as it had been doing since March 24.

The government also introduced support for electric bills with two new assistance programs to help customers struggling to pay their bills.

The COVID-19 Energy Assistance Program will provide a one-time payment consumers to help pay off electricity debt incurred during the pandemic -- which will cost the government $9 million.

The government will spend another $8 million to provide similar assistance to small businesses hit hard by the pandemic.

 

Related News

View more

Report call for major changes to operation of Nova Scotia's power grid

Nova Scotia Energy Modernization Act proposes an independent system operator, focused energy regulation, coal phase-out by 2030, renewable integration, transmission upgrades, and competitive market access to boost consumer trust and grid reliability across the province.

 

Key Points

Legislation to create an independent system operator and energy regulator, enabling coal phase-out and renewable integration.

✅ Transfers grid control from Nova Scotia Power to an ISO

✅ Establishes a focused energy regulator for multi-sector oversight

✅ Accelerates coal retirement, renewables build-out, and grid upgrades

 

Nova Scotia is poised for a significant overhaul in how its electricity grid operates, with the electricity market headed for a reshuffle as the province vows changes, following a government announcement that will strip the current electric utility of its grid access control. This move is part of a broader initiative to help the province achieve its ambitious energy objectives, including the cessation of coal usage by 2030.

The announcement came from Tory Rushton, the Minister of Natural Resources, who highlighted the recommendations from the Clean Electricity Task Force's report to make the electricity system more accountable to Nova Scotians according to the authors. The report suggests the creation of two distinct entities: an autonomous system operator for energy system planning and an independent body for energy regulation.

Minister Rushton expressed the government's agreement with these recommendations, while the premier had earlier urged regulators to reject a 14% rate hike to protect customers, stating plans to introduce a new Energy Modernization Act in the next legislative session.

Under the proposed changes, Nova Scotia Power, a privately-owned entity, will retain its operational role but will relinquish control over the electricity grid. This responsibility will shift to an independent system operator, aiming to foster competitive practices essential for phasing out coal—currently a major source of the province’s electricity.

Additionally, the existing Utility and Review Board, which recently approved a 14% rate increase despite political opposition, will undergo rebranding to become the Nova Scotia Regulatory and Appeals Board, reflecting a broader mandate beyond energy. Its electricity-related duties will be transferred to the newly proposed Nova Scotia Energy Board, which will oversee various energy sectors including electricity, natural gas, and retail gasoline.

The task force, led by Alison Scott, a former deputy energy minister, and John MacIsaac, an ex-executive of Nalcor Energy, was established by the province in April 2023 to determine the needs of the electrical system in meeting Nova Scotia's environmental goals.

Minister Rushton praised the report for providing a clear direction towards achieving the province's 2030 environmental targets and beyond. He estimated that establishing the recommended bodies would take 18 months to two years, and noted the government cannot order the utility to cut rates under current law, promising job security for current employees of Nova Scotia Power and the Utility and Review Board throughout the transition.

The report advocates for the new system operator to improve consumer trust by distancing electricity system decisions from Nova Scotia Power's corporate interests. It also critiques the current breadth of the Utility and Review Board's mandate as overly extensive for addressing the energy transition's long-term requirements.

Nova Scotia Power's president, Peter Gregg, welcomed the recommendations, emphasizing their role in the province's shift towards renewable energy, as neighboring jurisdictions like P.E.I. explore community generation to build resilience, he highlighted the importance of a focused energy regulator and a dedicated system operator in advancing essential projects for reliable customer service.

The task force's 12 recommendations also include the requirement for Nova Scotia Power to submit an annual asset management plan for regulatory approval and to produce reports on vegetation and wood pole management. It suggests the government assess Ontario's hydro policies for potential adaptation in Nova Scotia and calls for upgrades to the transmission grid infrastructure, with projected costs detailed by Stantec.

Alison Scott remarked on the comparative expense of coal power against renewable sources like wind, suggesting that investments in the grid to support renewables would be economically beneficial in the long run.

 

Related News

View more

Doug Ford ‘proud’ of decision to tear up hundreds of green energy contracts

Ontario Renewable Energy Cancellations highlight Doug Ford's move to scrap wind turbine contracts, citing electricity rate relief and taxpayer savings, while critics, the NDP, and industry warn of job losses, termination fees, and auditor scrutiny.

 

Key Points

Ontario's termination of renewable contracts, defended as cost and rate relief, faces disputes over savings and jobs.

✅ PCs cite electricity rate relief and taxpayer savings.

✅ Critics warn of job losses and termination fees.

✅ Auditor inquiry sought into contract cancellation costs.

 

Ontario Premier Doug Ford, whose new stance on wind power has drawn attention, said Thursday he is “proud” of his decision to tear up hundreds of renewable energy deals, a move that his government acknowledges could cost taxpayers more than $230 million.

Ford dismissed criticism that his Progressive Conservatives are wasting public money, telling a news conference that the cancellation of 750 contracts signed by the previous Liberal government will save cash, even as Ontario moves to reintroduce renewable energy projects in the coming years.

“I’m so proud of that,” Ford said of his decision. “I’m proud that we actually saved the taxpayers $790 million when we cancelled those terrible, terrible, terrible wind turbines that really for the last 15 years have destroyed our energy file.”

Later Thursday, Ford went further in defending the cancelled contracts, saying “if we had the chance to get rid of all the wind mills we would,” though a court ruling near Cornwall challenged such cancellations.

The NDP first reported the cost of the cancellations Tuesday, saying the $231 million figure was listed as “other transactions”, buried in government documents detailing spending in the 2018-2019 fiscal year.

The Progressive Conservatives have said the final cost of the cancellations, which include the decommissioning of a wind farm already under construction in Prince Edward County, Ont., has yet to be established, amid warnings about wind project cancellation costs from developers.

The government has said it tore up the deals because the province didn’t need the power and it was driving up electricity rates, and the decision will save millions over the life of the contracts. Industry officials have disputed those savings, saying the cancellations will just mean job losses for small business, and ignore wind power’s growing competitiveness in electricity markets.

NDP Leader Andrea Horwath has asked Ontario’s auditor general to investigate the contracts and their termination fees, amid debates over Ontario’s electricity future among leadership contenders. She called Ford’s remarks on Thursday “ridiculous.”

“Every jurisdiction around the world is trying to figure out how to bring more renewables onto their electricity grids,” she said. “This government is taking us backwards and costing us at the very least $231 million in tearing these energy contracts.”

At the federal level, a recent green electricity contract with an Edmonton company underscores that shift.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.