Large Smart Grid investment to reduce power theft cost

By Northeast Group, LLC


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Smart grid infrastructure investment by 45 emerging market countries – including Brazil, Russia, India, China and South Africa – over the next decade will reach $274.9bn, outpacing developed countries. This investment will be aimed at reducing electricity theft, improving reliability and incorporating renewable energy into electricity grids, according to a study released recently by Northeast Group, LLC.

The annual study Emerging Markets Smart Grid: Outlook 2014 found that investments will include smart metering and advancements for transmission and distribution grids. Already, the 45 countries have deployed a total of 9.5m smart meters with two-way communications and this number is set to reach 523m by 2023.

In 2014 alone, the 45 countries are projected to deploy 5.6m smart meters. Electricity theft costs these countries $47bn annually. Investment in distribution network technology, or distribution automation, will cumulatively reach $118.8bn by 2023.

"Our third volume of this annual study pinpoints where smart grid investments will occur in emerging markets," said Ben Gardner, president of Northeast Group. "Large countries such as India and Turkey have provisional smart meter deployment targets and new financing sources are developing. In 2013, the World Bank announced a $180m smart metering project in Uzbekistan, the EBRD earmarked $251m for smart grid investment in Poland and Brazil is completing a national financing program that could release over $1bn in smart grid funding. Overall, Latin America, CEE and MENA represent large near-term opportunities, with India set to grow in the longer term."

The 190-page study includes a smart grid regulatory country index, scoring all 45 countries. Singapore, Estonia and Poland lead the index, with Slovenia and China rounding out the top five. The study includes regional forecasts from 2013-2023. These forecasts cover AMI smart metering, distribution automation, home energy management and information technology. Profiles of each country are included as well as details on key vendors and market shares.

Related News

7 steps to make electricity systems more resilient to climate risks

Electricity System Climate Resilience underpins grid reliability amid heatwaves and drought, integrating solar, wind, hydropower, nuclear, storage, and demand response with efficient transmission, flexibility, and planning to secure power for homes, industry, and services.

 

Key Points

Power systems capacity to endure extreme weather and integrate clean energy, maintaining reliability and flexibility.

✅ Grid hardening, transmission upgrades, and digital forecasting.

✅ Flexible low-carbon supply: hydropower, nuclear, storage.

✅ Demand response, efficient cooling, and regional integration.

 

Summer is just half done in the northern hemisphere and yet we are already seeing electricity systems around the world struggling to cope with the severe strain of heatwaves and low rainfall.

These challenges highlight the urgent need for strong and well-planned policies and investments to improve the security of our electricity systems, which supply power to homes, offices, factories, hospitals, schools and other fundamental parts of our economies and societies. This means making our electricity systems more resilient to the effects of global warming – and more efficient and flexible as they incorporate rising levels of solar and wind power, as solar is now the cheapest electricity in history according to the IEA, which will be critical for reaching net-zero emissions in time to prevent even worse impacts from climate change.

A range of different countries, including the US, Canada and Iraq, have been hard hit by extreme weather recently in the form of unusually high temperatures. In North America, the heat soared to record levels in the Pacific Northwest. An electricity watchdog says that five US regions face elevated risks to the security of their electricity supplies this summer, underscoring US grid climate risks that could worsen, and that California’s risk level is even higher.

Heatwaves put pressure on electricity systems in multiple ways. They increase demand as people turn up air conditioning, driving higher US electricity bills for many households, and as some appliances work harder to maintain cool temperatures. At the same time, higher temperatures can also squeeze electricity supplies by reducing the efficiency and capacity of traditional thermal power plants, such as coal, natural gas and nuclear. Extreme heat can reduce the availability of water for cooling plants or transporting fuel, forcing operators to reduce their output. In some cases, it can result in power plants having to shut down, increasing the risk of outages. If the heat wave is spread over a wide geographic area, it also reduces the scope for one region to draw on spare capacity from its neighbours, since they have to devote their available resources to meeting local demand.

A recent heatwave in Texas forced the grid operator to call for customers to raise their thermostats’ temperatures to conserve energy. Power generating companies suffered outages at much higher rates than expected, providing an unwelcome reminder of February’s brutal cold snap when outages – primarily from natural gas power plants – left up to 5 million customers across the US without power over a period of four days.

At the same time, lower than average rainfall and prolonged dry weather conditions are raising concerns about hydropower’s electricity output in various parts of the world, including Brazil, China, India and North America. The risks that climate change brings in the form of droughts adds to the challenges faced by hydropower, the world’s largest source of clean electricity, highlighting the importance of developing hydropower resources sustainably and ensuring projects are climate resilient.

The recent spate of heatwaves and unusually long dry spells are fresh warnings of what lies ahead as our climate continues to heat up: an increase in the scale and frequency of extreme weather events, which will cause greater impacts and strains on our energy infrastructure.

Heatwaves will increase the challenge of meeting electricity demand while also decarbonizing the electricity supply. Today, the amount of energy used for cooling spaces – such as homes, shops, offices and factories – is responsible for around 1 billion tonnes of global CO2 emissions. In particular, energy for cooling can have a major impact on peak periods of electricity demand, intensifying the stress on the system. Since the energy demand used for air conditioners worldwide could triple by 2050, these strains are set to grow unless governments introduce stronger policy measures to improve the energy efficiency of air conditioning units.

Electricity security is crucial for smooth energy transitions
Many countries around the world have announced ambitious targets for reaching net-zero emissions by the middle of this century and are seeking to step up their clean energy transitions. The IEA’s recent Global Roadmap to Net Zero by 2050 makes it clear that achieving this formidable goal will require much more electricity, much cleaner electricity and for that electricity to be used in far more parts of our economies than it is today. This means electricity reaching much deeper into sectors such as transport (e.g. EVs), buildings (e.g. heat-pumps) and industry (e.g. electric-arc steel furnaces), and in countries like New Zealand's electrification plans it is accelerating broader efforts. As clean electricity’s role in the economy expands and that of fossil fuels declines, secure supplies of electricity become ever-more important. This is why the climate resilience of the electricity sector must be a top priority in governments’ policy agendas.

Changing climate patterns and more frequent extreme weather events can hit all types of power generation sources. Hydropower resources typically suffer in hot and dry conditions, but so do nuclear and fossil fuel power plants. These sources currently help ensure electricity systems have the flexibility and capacity to integrate rising shares of solar and wind power, whose output can vary depending on the weather and the time of day or year.

As governments and utilities pursue the decarbonization of electricity systems, mainly through growing levels of solar and wind, and carbon-free electricity options, they need to ensure they have sufficiently robust and diverse sources of flexibility to ensure secure supplies, including in the event of extreme weather events. This means that the possible decommissioning of existing power generation assets requires careful assessments that take into account the importance of climate resilience.

Ensuring electricity security requires long-term planning and stronger policy action and investment
The IEA is committed to helping governments make well-informed decisions as they seek to build a clean and secure energy future. With this in mind, here are seven areas for action for ensuring electricity systems are as resilient as possible to climate risks:

1. Invest in electricity grids to make them more resilient to extreme weather. Spending today is far below the levels needed to double the investment for cleaner, more electrified energy systems, particularly in emerging and developing economies. Economic recovery plans from the COVID-19 crisis offer clear opportunities for economies that have the resources to invest in enhancing grid infrastructure, but much greater international efforts are required to mobilize and channel the necessary spending in emerging and developing economies.

2. Improve the efficiency of cooling equipment. Cost-effective technology already exists in most markets to double or triple the efficiency of cooling equipment. Investing in higher efficiency could halve future energy demand and reduce investment and operating costs by $3 trillion between now and 2050. In advance of COP26, the Super-Efficient Equipment and Appliance Deployment (SEAD) initiative is encouraging countries to sign up to double the energy efficiency of equipment sold in their countries by 2030.

3. Enable the growth of flexible low-carbon power sources to support more solar and wind. These electricity generation sources include hydropower and nuclear, for countries who see a role for one or both of them in their energy transitions. Guaranteeing hydropower resilience in a warming climate will require sophisticated methods and tools – such as the ones implemented in Brazil – to calculate the necessary level of reserves and optimize management of reservoirs and hydropower output even in exceptional conditions. Batteries and other forms of storage, combined with solar or wind, can also provide important amounts of flexibility by storing power and releasing it when needed.

4. Increase other sources of electricity system flexibility. Demand-response and digital technologies can play an important role. The IEA estimates that only a small fraction of the huge potential for demand response in the buildings sector is actually tapped at the moment. New policies, which associate digitalization and financial behavioural incentives, could unlock more flexibility. Regional integration of electricity systems across national borders can also increase access to flexible resources.

5. Expedite the development and deployment of new technologies for managing extreme weather threats. The capabilities of electricity utilities in forecasting and situation awareness should be enhanced with the support of the latest information and communication technologies.

6. Make climate resilience a central part of policy-making and system planning. The interconnected nature of recent extreme weather events reminds us that we need to account for many contingencies when planning resilient power systems. Climate resilience should be integral to policy-making by governments and power system planning by utilities and relevant industries, and debates over Canadian climate policy underscore how grid implications must be considered. According to the recent IEA report on climate resilience, only nine out of 38 IEA member and association countries include concrete actions on climate adaptation and resilience for every segment of electricity systems.

7. Strengthen international cooperation on electricity security. Electricity underpins vital services and basic needs, such as health systems, water supplies and other energy industries. Maintaining a secure electricity supply is thus of critical importance. The costs of doing nothing in the face of growing climate threats are becoming abundantly clear. The IEA is working with all countries in the IEA family, as well as others around the world, by providing unrivalled data, analysis and policy advice on electricity security issues. It is also bringing governments together at various levels to share experiences and best practices, and identify how to hasten the shift to cleaner and more resilient energy systems.


 

 

Related News

View more

The Haves and Have-Nots of Electricity in California

California Public Safety Power Shutoffs highlight wildfire prevention as PG&E outages disrupt schools, businesses, and rural communities, driving generator use, economic hardship, and emergency preparedness across Northern California during high-wind events.

 

Key Points

Utility outages to reduce wildfire risk during extreme winds, impacting homes and businesses in high-risk California.

✅ PG&E cuts power during high winds to prevent wildfires

✅ Costs rise for generators, fuel, batteries, and spoiled food

✅ Rural, low-income communities face greater economic losses

 

The intentional blackout by California’s largest utility this week put Forest Jones out of work and his son out of school. On Friday morning Mr. Jones, a handyman and single father, sat in his apartment above a tattoo parlor waiting for the power to come back on and for school to reopen.

“I’ll probably lose $400 or $500 dollars because of this,” said Mr. Jones, who lives in the town of Paradise, which was razed by fire last year and is slowly rebuilding. “Things have been really tough up here.”

Millions of people were affected by the blackout, which spanned the outskirts of Silicon Valley to the forests of Humboldt County near the Oregon border. But the outage, which the power company said was necessary to reduce wildfire risk across the region, also drew a line between those who were merely inconvenienced and those who faced a major financial hardship.

To have the lights on, the television running and kitchen appliances humming is often taken for granted in America, even as U.S. grid during coronavirus questions persisted. During California’s blackout it became an economic privilege.

The economic impacts of the shut-off were especially acute in rural, northern towns like Paradise, where incomes are a fraction of those in the San Francisco Bay Area.

Both wealthy and poorer areas were affected by the blackout but interviews across the state suggested that being forced off the grid disproportionately hurt the less affluent. One family in Humboldt County said they had spent $150 on batteries and water alone during the shutdown.

“To be prepared costs money,” Sue Warhaftig, a massage therapist who lives in Mill Valley, a wealthy suburb across the Golden Gate Bridge from San Francisco. Ms. Warhaftig spent around two days without electricity but said she had been spared from significant sacrifices during the blackout.

She invested in a generator to keep the refrigerator running and to provide some light. She cooked in the family’s Volkswagen camper van in her driveway. At night she watched Netflix on her phone, which she was able to charge with the generator. Her husband, a businessman, is in London on a work trip. Her two sons, both grown, live in Southern California and Seattle.

“We were inconvenienced but life wasn’t interrupted,” Ms. Warhaftig said. “But so many people’s lives were.

Pacific Gas & Electric restored power to large sections of Northern California on Friday, including Paradise, where the electricity came back on in the afternoon. But hundreds of thousands of people in other areas remained in the dark. The carcasses of burned cars still littered the landscape around Paradise, where 86 people died in the Camp Fire last year, some of them while trying to escape.

Officials at power company said that by Saturday they hoped to have restored power to 98 percent of the customers who were affected.

The same dangerous winds that spurred the shut-off in Northern California have put firefighters to work in the south. The authorities in Los Angeles County ordered the evacuation of nearly 100,000 people on Friday as the Saddleridge Fire burned nearly 5,000 acres and destroyed 25 structures. The Sandalwood Fire, which ignited Thursday in Riverside County, had spread to more than 800 acres and destroyed 74 structures by Friday afternoon.

While this week’s outage was the first time many customers in Northern California experienced a deliberate power shut-off, residents in and around Paradise have had their power cut four times in recent months, residents say.

Many use a generator, but running one has become increasingly expensive with gasoline now at more than $4 a gallon in California.

On Friday, Dennis and Viola Timmer drove up the hill to their home in Magalia, a town adjacent to Paradise, loaded with $102 dollars of gasoline for their generators. It was their second gasoline run since the power went out Tuesday night.

The couple, retired and on a fixed income after Mr. Timmer’s time in the Navy and in construction, said the power outage had severely limited their ability to do essential tasks like cooking, or to leave the house.

“You know what it feels like? You’re in jail,” said Ms. Timmer, 72. “You can’t go anywhere with the generators running.”

Since the generators are not powerful enough to run heat or air conditioning, the couple slept in their den with an electric space heater.

“It’s really difficult because you don’t have a normal life,” Ms. Timmer said. “You’re trying to survive.”

To be sure, the shutdown has affected many people regardless of economic status, and similar disruptions abroad, like a London power outage that disrupted routines, show how widespread such challenges can be. The areas without power were as diverse as the wealthy suburbs of Silicon Valley, the old Gold Rush towns of the Sierra Nevada, the East Bay of San Francisco and the seaside city of Arcata.

Ms. Cahn’s cellphone ran out of power during the blackout and even when she managed to recharge it in her car cell service was spotty, as it was in many areas hit by the blackout.

Accustomed to staying warm at night with an electric blanket, Ms. Cahn slept under a stack of four blankets.

“I’m doing what I have to do which is not doing very much,” she said.

Further south in Marin City, Chanay Jackson stood surrounded by fumes from generators still powering parts of the city.

She said that food stamps were issued on the first of the month and that many residents who had to throw away food were out of luck.

“They’re not going to issue more food stamps just because the power went out,” Ms. Jackson said. “So they’re just screwed until next month.”

Strong winds have many times in the past caused power lines to come in contact with vegetation, igniting fires that are then propelled by the gusts, and hurricanes elsewhere have crippled infrastructure with Louisiana grid rebuild after Laura according to state officials. This was the case with the Camp Fire.

Since higher elevations had more extreme winds many of the neighborhoods where power was turned off this week were in hills and canyons, including in the Sierra Nevada.

The shut-off, which by one estimate affected a total of 2.5 million people, has come under strong criticism by residents and politicians, and warnings from Cal ISO about rolling blackouts as the power grid strained. The company’s website crashed just as customers sought information about the outage. Gov. Gavin Newsom called it unacceptable. But his comments were nuanced, criticizing the way the shut-off was handled, not the rationale for it. Mr. Newsom and others said the ravages of the Camp Fire demanded preventive action to prevent a reoccurrence.

Yet the calculus of trying to avoid deadly fires by shutting off power will continue to be debated as California enters its peak wildfire season, even as electricity reliability during COVID-19 was generally maintained for most consumers.

In the city of Grass Valley, Matthew Gottschalk said he and his wife realized that a generator was essential when they calculated that they had around $500 worth of food in their fridge.

“I don’t know what we would have done,” said Mr. Gottschalk, whose power went out Tuesday night.

His neighbors are filling coolers with ice. Everyone is hoping the power will come back on soon.

“Ice is going to run out and gas is going to run out,” he said.

 

Related News

View more

Multi-billion-dollar hydro generation project proposed for Meaford military base

Meaford Pumped Storage Project aims to balance the grid with hydro-electric generation, a hilltop reservoir, and transmission lines near Georgian Bay, pending environmental assessment, permitting, and federal review of impacts on fish and drinking water.

 

Key Points

TC Energy proposal to pump water uphill off-peak and generate 1,000 MW at peak, pending studies and approvals.

✅ Balances grid by storing off-peak energy and generating at peak.

✅ Requires reservoir, break wall, transmission lines, generating station.

✅ Environmental studies and federal review underway before approvals.

 

Plans for a $3.3 billion hydro-electric project in Meaford are still in the early study stages, but some residents have concerns about what it might mean for the environment, as past Site C stability issues have illustrated for large hydro projects.

A one-year permit was granted for TC Energy Corporation (TC Energy) to begin studies on the proposed location back in May, and cross-border projects like the New England Clean Power Link require federal permits as well to proceed. Local municipalities were informed of the project in June.

TC Energy is proposing to have a pumped storage project at the 4th Canadian Division Training (4CDTC) Meaford property, which is on federal lands.

A letter sent to local municipalities explains that the plan is to balance supply and demand on the electrical grid by pumping water uphill during off-peak hours. It would then release the water back into Georgian Bay during peak periods, generating up to 1,000 megawatts of electricity.

The project is expected to create 800 jobs over four years of construction, in addition to long-term operational positions.


 

According to the company's website, the proposed pump station would require a large reservoir on the military base, a generating station, transmission lines infrastructure, and a break wall 850 metres from shore.

Some residents fear the project will threaten the bay and the fish, echoing Site C dam concerns shared with northerners, and the region's drinking water.

Meaford's mayor says the town has no jurisdiction on federal lands, but that a list of concerns has been forwarded to the company, while Ontario First Nations have urged government action on urgent transmission needs elsewhere.

TC Energy will tackle preliminary engineering and environmental studies to determine the feasibility of the proposed location, which could take up to two years.

Once the assessments are done, they need to be presented to the government for further review and approval, as seen when Ottawa's Site C stance left work paused pending a treaty rights challenge.

TC Energy's website states that the company anticipates construction to begin in 2022 if it gets all the go-ahead, with the plant to begin operations four years later.

Input from residents is being collected until April 2020, similar to when the National Energy Board heard oral traditional evidence on the Manitoba-Minnesota transmission line.

 

Related News

View more

Electricity Shut-Offs in a Pandemic: How COVID-19 Leads to Energy Insecurity, Burdensome Bills

COVID-19 Energy Burden drives higher electricity bills as income falls, intensifying energy poverty, utility shut-offs, and affordability risks for low-income households; policy moratoriums, bill relief, and efficiency upgrades are vital responses.

 

Key Points

The COVID-19 energy burden is the rising share of income spent on energy as bills increase and earnings decline.

✅ Rising home demand and lost wages increase energy cost share.

✅ Mandated shut-off moratoriums and reconnections protect health.

✅ Fund assistance, efficiency, and solar for LMI households.

 

I have asthma. It’s a private piece of medical information that I don’t normally share with people, but it makes the potential risks associated with exposure to the coronavirus all the more dangerous for me. But I’m not alone. 107 million people in the U.S. have pre-existing medical conditions like asthma and heart disease; the same pre-existing conditions that elevate their risk of facing a life-threatening situation were we to contract COVID-19. There are, however, tens of millions more house-bound Americans with a condition that is likely to be exacerbated by COVID-19: The energy burden.

The energy burden is a different kind of pre-existing condition:
In the last four weeks, 22 million people filed for unemployment. Millions of people will not have steady income (or the healthcare tied to it) to pay rent and utility bills for the foreseeable future which means that thousands, possibly millions of home-bound Americans will struggle to pay for energy.

Your energy burden is the amount of your monthly income that goes to paying for energy, like your monthly electric bill. So, when household energy use increases or income decreases, your energy burden rises. The energy burden is not a symptom of the pandemic and the economic downturn; it is more like a pre-existing condition for many Americans.

Before the coronavirus outbreak, I shared a few maps that showed how expensive electricity is for some. The energy burden in most pronounced in places already struggling economically, like in Appalachia, where residents in some counties must put more than 30 percent of their income toward their electric bills, and in the Midwest where states such as Michigan have some families spending more than 1/5 of their income on energy bills. The tragic facts are that US families living below the poverty line are far more likely to also be suffering from their energy burden.

But like other pre-existing conditions, the impacts of the coronavirus pandemic are exacerbating the underlying problems afflicting communities across the country.

Critical responses to minimize the spread of COVID-19 are social distancing, washing hands frequently, covering our faces with masks and staying at home. More time at home for most will drive up energy bills, and not by a little. Estimates on how much electricity demand during COVID-19 will increase vary but I’ve seen estimates as high as a 20% increase on average. For some families that’s a bag of groceries or a refill on prescription medication.

What happens when the power gets turned off?
Under normal conditions, if you cannot pay your electric bill your electricity can get turned off. This can have devastating consequences. Most states have protections for health and medical reasons and some states have protections during extreme heat or cold weather. But enforcement of those protections can vary by utility service area and place unnecessary burdens on the customer.

UCS
Only Florida has no protections of any kind against utility shut-offs when health or medical reasons would merit protection against it. However, when it comes to protection against extreme heat, only a few states have mandatory protections based on temperature thresholds.

The NAACP has also pointed out that utilities have unceremoniously disconnected the power of millions of people, disproportionally African-American and Latinx households.

April tends to be a mild month for most of the country, but the South already had its first heat wave at the end of March. If this pandemic lasts into the summer, utility disconnects could become deadly, and efforts to prevent summer power outages will be even more critical to public health. In the summer, during extreme summer heat families can’t turn off the A/C and go to the movies if we are following public health measures and sheltering in place. Lots of families that don’t have or can’t afford to run A/C would otherwise gather at local community pools, beaches, or in cooling centers, but with parks, pools and community groups closed to prevent the virus’s spread, what will happen to these families in July or August?

But we won’t have to wait till the summer to see how families will be hard hit by falling behind on bills and losing power. Here are a few ways electricity disconnection policies cause people harm during the pandemic:

Loss of electricity during the COVID-19 pandemic means families will lose their ability to refrigerate essential food supplies.
Child abuse guidance discusses how unsanitary household conditions are a contributing factor to child protective services involvement. Unsanitary household conditions can include, for example, rotting food (which might happen if electricity is cut off).

HUD’s handbook on federally subsidized housing includes a chapter on termination, which says that lease agreements can be terminated for repeated minor infractions including failing to pay utilities.
Airway machines used to treat respiratory ailments—pre-existing conditions in this pandemic—will not work. Our elderly neighbors in particular might rely on medicine that requires refrigeration or medical equipment that requires electricity. They too have fallen victim to utility shut-offs even during the pandemic.

Empowering solutions are available today

Decisionmakers seeking solutions can look to implement utility shut off moratoriums as a good start. Good news is that many utilities have voluntarily taken action to that effect, and New Jersey and New York have suspended shut-offs, one of the best trackers on who is taking what action has been assembled by Energy Policy Institute.

But voluntary actions do not always provide comprehensive protection, and they certainly have not been universally adopted across the country. Some utilities are waiving fees as relief measures, and some moratoriums only apply to customers directly affected by COVID-19, which will place additional onerous red tape on households that are stricken and perhaps unable to access testing. Others might only be an extension of standard medical shut off protections. Moratoriums put in place by voluntary action can also be revoked or lifted by voluntary action, which does not provide any sense of certainty to people struggling to make ends meet.

This is why the US needs mandatory moratoriums on all utility disconnections. These normally would be rendered at the state level, either by a regulatory commission, legislative act, or even an emergency executive order. But the inconsistent leadership among states in response to the COVID-19 crisis suggests that Congressional action is needed to ensure that all vulnerable utility customers are protected. That’s exactly what a coalition of organizations, including UCS, is calling for in future federal aid legislation. UCS has called for a national moratorium on utility shut-offs.

And let’s be clear, preventing new shut-offs isn’t enough. Cutting power off at residence during a pandemic is not good public policy. People who are without electricity should have it restored so residents can safely shelter in place and help flatten the curve. So far, only Colorado and Wisconsin’s leadership has taken this option.

Addressing the root causes of energy poverty
Preventing shut-offs is a good first step, but the increased bill charges will nevertheless place greater economic pressure on an incalculable number of families. Addressing the root of the problem (energy affordability) must be prioritized when we begin to recover from the health and economic ramifications of the COVID-19 pandemic.

One way policymakers can do that is to forgive outstanding balances on utility bills, perhaps with an eligibility cap based on income. Additional funds could be made available to those who are still struggling to pay their bills via capping bills, waiving late payment fees, automating payment plans or other protective measures that rightfully place consumers (particularly vulnerable consumers) at the center of any energy-related COVID-19 response. Low-and-moderate-income energy efficiency and solar programs should be funded as much as practically possible.

New infrastructure, particularly new construction that is slated for public housing, subsidized housing, or housing specifically marketed for low- and moderate-income families, should include smart thermostats, better insulation, and energy-efficient appliances.

Implementing these solutions may seem daunting, let us not forget that one of the best ways to ease people’s energy burden is to keep a utility’s overall energy costs low. That means state utility commissions must be vigilant in utility rate cases and fuel recovery cost dockets to protect people facing unfathomable economic pressures. Unscrupulous utilities have been known to hide unnecessary costs in our energy bills. Commissions and their staff are overwhelmed at this time, but they should be applying extra scrutiny during proceedings when utilities are recovering costs associated with delivering energy.

What might a utility try to get past the commission?
Well, residential demand is up, so for many people, bills will increase. However, wholesale electricity rates are low right now, in some cases at all-time lows. Why? Because industrial and commercial demand reductions (from social distancing at home) have more than offset residential demand increases. Overall US electricity demand is flat or declining, and supply/demand economics predicts that when demand decreases, prices decrease.

At the same time, natural gas prices have set record lows each month of this year and that’s a trend that is expected to hold true for a while.

Low demand plus low gas prices mean wholesale market prices are incredibly low. Utilities should be taking advantage of low market prices to ensure that they deliver electricity to customers at as low a cost as possible. Utilities must also NOT over-run coal plants uneconomically or lean on aging capacity despite disruptions in coal and nuclear that can invite brownouts because that will not only needlessly cost customers more, but it will also increase air pollution which will exacerbate respiratory issues and susceptibility to COVID-19, according to a recent study published by Harvard.

 

Related News

View more

What can we expect from clean hydrogen in Canada

Canadian Clean Hydrogen is surging, driven by net-zero goals, tax credits, and exports. Fuel cells, electrolysis, and low-emissions power and transport signal growth, though current production is largely fossil-based and needs decarbonization.

 

Key Points

Canadian Clean Hydrogen is the shift to make and use low-emissions hydrogen for energy and industry to reach net-zero.

✅ $17B tax credits through 2035 to scale electrolyzers and hubs

✅ Export MOUs with Germany and the Netherlands target 2025 shipments

✅ IEA: 99% of hydrogen from fossil fuels; deep decarbonization needed

 

As the world races to find effective climate solutions, and toward an electric planet vision, hydrogen is earning buzz as a potentially low-emitting alternative fuel source. 

The promise of hydrogen as a clean fuel source is nothing new — as far back as the 1970s hydrogen was being promised as a "potential pollution-free fuel for our cars."

While hydrogen hasn't yet taken off as the fuel of the future  — a 2023 report from McKinsey & Company and the Hydrogen Council estimates that there is a grand total of eight hydrogen vehicle fuelling stations in Canada — many still hope that will change.

The hope is hydrogen will play a significant role in combating climate change, serving as a low-emissions substitute for fossil fuels in power generation, home heating and transportation, where cleaning up electricity remains critical, and today, interest in a Canadian clean hydrogen industry may be starting to bubble over.

"People are super excited about hydrogen because of the opportunity to use it as a clean chemical fuel. So, as a displacement for natural gas, diesel, gasoline, jet fuel," said Andrew Gillis, CEO of Canadian hydrogen company Aurora Hydrogen. 

Plans for low or zero-emissions hydrogen projects are beginning to take shape across the country. But, at the moment, hydrogen is far from a low-emissions fuel, which is why some experts suggest expectations for the resource should be tempered. 

The IEA report indicates that in 2021, global hydrogen production emitted 900 million tonnes of carbon dioxide — roughly 180 million more than the aviation industry — as roughly 99 per cent of hydrogen production came from fossil fuel sources. 

"There is a concern that the role of hydrogen in the process of decarbonization is being very greatly overstated," said Mark Winfield, professor of environmental and urban change at York University. 


A growing excitement 

In 2020, the government released a hydrogen strategy, aiming to "cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global, industrial leader of clean renewable fuels." 

The latest budget includes over $17 billion in tax credits between now and 2035 to help fund clean hydrogen projects.

Today, the most common application for hydrogen in Canada is as a material in industrial activities such as oil refining and ammonia, methanol and steel production, according to Natural Resources Canada. 

But, the buzz around hydrogen isn't exactly over its industrial applications, said Aurora Hydrogen's Gillis.

"All these sorts of things where we currently have emitting gaseous or liquid chemical fuels, hydrogen's an opportunity to replace those and access the energy without creating emissions at the point of us," Gillis said. 

When used in a fuel cell, hydrogen can produce electricity for transportation, heating and power generation without producing common harmful emissions like nitrogen oxide, hydrocarbons and particulate matter — BloombergNEF estimates that hydrogen could meet 24 per cent of global energy demand by 2050.


A growing industry

Canada's hydrogen strategy aims to have 30 per cent of end-use energy be from clean hydrogen by 2050. According to the strategy, Canada produces an estimated three million tonnes of hydrogen per year from natural gas today, but the strategy doesn't indicate how much hydrogen is produced from low-emissions sources.

In recent years, the Canadian clean hydrogen industry has earned international interest, especially as Germany's hydrogen strategy anticipates significant imports.

In 2021, Canada signed a memorandum of understanding with the Netherlands to help develop "export-import corridors for clean hydrogen" between the two countries. Canada also recently inked a deal with Germany to start exporting the resource there by 2025.

But while a low-emissions hydrogen plant went online in Becancour, Que., in 2021, the rest of Canada's clean-hydrogen industry seems to be in the early stages.

 

Related News

View more

B.C. Hydro doing good job managing billions in capital assets, says auditor

BC Hydro Asset Management Audit confirms disciplined oversight of dams, generators, power lines, substations, and transformers, with robust lifecycle planning, reliability metrics, and capital investment sustaining aging infrastructure and near full-capacity performance.

 

Key Points

Audit confirming BC Hydro's asset governance and lifecycle planning, ensuring safe, reliable grid infrastructure.

✅ $25B in assets; many facilities operating near full capacity.

✅ 80% of assets are dams, generators, lines, poles, substations, transformers.

✅ $2.5B invested in renewal, repair, and replacement in fiscal 2018.

 

A report by B.C.’s auditor-general says B.C. Hydro is doing a good job managing the province’s dams, generating stations and power lines, including storm response during severe weather events.

Carol Bellringer says in the audit that B.C. Hydro’s assets are valued at more than $25 billion and even though some generating facilities are more than 85 years old they continue to operate near full-capacity and can accommodate holiday demand peaks when needed.

The report says about 80 per cent of Hydro’s assets are dams, generators, power lines, poles, substations and transformers that are used to provide electrical service to B.C., where residential electricity use shifted during the pandemic.

The audit says Hydro invested almost $2.5 billion to renew, repair or replace the assets it manages during the last fiscal year, ending March 31, 2018, and, in a broader context, bill relief has been offered to only part of the province.

Bellringer’s audit doesn’t examine the $10.7 billion Site C dam project, which is currently under construction in northeast B.C. and not slated for completion until 2024.

She says the audit examined whether B.C. Hydro has the information, practices, processes and systems needed to support good asset management, at a time when other utilities are dealing with pandemic impacts on operations.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.