Storing power on the future grid

By John Timmer, ars technica


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Recently, we took a look at a report from the US Department of Energy, produced by its Electricity Advisory Committee. That report paints a grim picture of the future of the grid that exists today, but it was accompanied by two additional analyses that focused on the technologies that may significantly alter both the grid and its future.

One of those focused on the potential role that energy storage can play as the grid evolves, and evaluates a number of technologies that are either on or near the market.

Most of the presentation of stored power has focused on its role in smoothing over the variability in renewable power sources like solar and wind. But storage can also solve a variety of problems in the existing grid. The rise in demand that comes during peak hours (and due to interruption of existing supplies) generally requires plants that can ramp up very quickly, which basically means natural gas turbines. Using storage could act as a bridge to allow other types of generating capacity that take longer to ramp up to step in.

Storage can also play a role in frequency regulation, which helps smooth over minor fluctuations and keep the grid's alternating current following an even curve. Beacon Power, which initially pitched its flywheel technology as a storage medium, is now selling it for this sort of frequency smoothing. A reasonably distributed storage capacity could also help work around grid congestion. So, even if you're not interested in renewable power sources, there are plenty reasons to be interested in power storage.

Given that, it's no surprise that grid-level storage actually dates back to 1929 in the US, when the first pumped-water plant opened. These facilities combine a standard hydroelectric facility with a pump that runs when electric supply exceeds demand. The excess power pumps water uphill into a reservoir, where it can be harnessed when power supplies drop. All told, pumped hydro now has the capacity to supply about three percent of a typical day on the US grid. So, grid-level storage isn't a possibility; it's a reality.

Expanding that capacity, however, is a different matter. Appropriate reservoir sites are getting fewer and further between, as is the supply of fresh water. There are some interesting alternatives. The Netherlands is apparently considering a scheme in which a hollow artificial island will be placed in the ocean; water is pumped out when power supplies are high, and let back in via turbines when they drop. Still, the number of potential sites is likely to limit the ultimate capacity here.

Beyond that, the only other technology that's been demonstrated on the market is compressed air storage, which we looked at in detail recently. These plants, however, require a fair bit of planning, and the only other one that's in the works is in Iowa. This is not something that's going to be a major force in the very near future.

But the report argues that battery power already represents an enormous storage resource; it's just not currently on the grid. There are roughly $3 billion lead batteries sold a year, and that market is growing by eight percent annually. Lithium is catching up fast, though; it's already at $1 billion, but growing somewhere above 50 percent a year. Powering rechargeable batteries for things like data center backup power supplies and electric vehicles is estimated to already account for 1.5 percent of the total utility power consumption in the US.

All of that capacity has been put in place without resorting to the more elaborate technologies, such as chemical flow and molten sodium-sulfur batteries, that are being tested for large-scale facilities. These batteries use less-toxic components and don't have a much longer usable lifetime than consumer-grade tech. Facilities relying on them are in the works: because of congestion in the transmission lines between the Texas wind power sources and its population centers, American Electric Power is deploying a five megawatt sodium-sulfur battery facility, and plans on building a terawatt of storage capacity in the next decade.

One of the key themes of the Electricity Advisory Committee's reports is that regulatory and financial interests are really difficult to line up when it comes to electric power. These issues appear to be even more problematic when it comes to storage, at least in part because the regulatory framework doesn't exist at all. Clearly, the report calls for some decisions to be made on the national level about precisely how power storage fits in with the larger issues in the national grid.

Financially, storage is a challenge because it's a bit of a mix of transmission and generation resources. Exactly who pays for using its capacity, and under which circumstances, isn't clear. There are also some serious challenges involved in the economics, as there are a number of mismatched incentives. On the most basic level, not all utilities currently charge their customers different rates for peak and off-peak power. Without a price differential of this sort, the use of storage to lower the peak requirements only exists at the utility level, as they're the ones who activate their most expensive generating equipment during that time. Until that changes, there's no incentives for the actual owners of most of the distributed battery capacity to get involved.

Even if they are on board, figuring out precisely what makes the most economic sense can be challenging. For example, a data center obviously has an incentive to keep its battery capacity fully charged at all time. The utility, in contrast, would love to skim a tiny fraction off that instead of activating an otherwise idle generating plant. In return, they could offer the data center slightly lower rates for their power use at this time. Good luck trying to figure out how to price that.

A lot of people are counting on the impending arrival of plug-in hybrids to be a real game-changer when it comes to distributed power storage. The first generation of these vehicles, like the Chevy Volt are expected to be on the market within the next two years, and numbers should rise gradually from there. But the report suggests that their arrival is probably going to be gradual, with significant numbers only being in place a decade from now.

There are also a number of reasons that they won't necessarily revolutionize the storage game overnight. The report mentions one simple issue: although there are 250 million cars on the road, there are less than 50 million garages for them, so many are unlikely to be available on the grid at any given moment. Charging them will obviously put new strains on the already fragile grid (although utilities are already considering how to compensate for that), and managing their capacity will require a far smarter grid than the one we currently possess. Finally, there's a basic timing issue involved: the cars are going to be needed for a commute home, which typically happens at the tail end of peak usage hours. That means a lot of the battery capacity provided by these vehicles is going to be off-limits when it's needed.

Obviously, the report's authors recommend that the regulatory framework be put in place that will allow storage to start taking a larger role in the grid. It also suggests that the economic issues may need some unusual models for things to make sense. For example, it considers that third-party ownership of a plug-in hybrid's batteries may be needed to have their storage capacity make economic sense, a model that resembles the one being promoted by some electric car initiatives.

But they also recognize that those sorts of things may take years, and utilities will be needing to deploy storage sooner than that (indeed, they already are). So it argues that the Department of Energy is going to need the budgetary resources to fund pilot projects to determine how the different technologies and management systems work in the field. That way, by the time the regulatory issues are sorted out, the utilities will know which of the options it makes sense to deploy.

Related News

Why the shift toward renewable energy is not enough

Shift from Fossil Fuels to Renewables signals an energy transition and decarbonization, as investors favor wind and solar over coal, oil, and gas due to falling ROI, policy shifts, and accelerating clean-tech innovation.

 

Key Points

An economic and policy-driven move redirecting capital from coal, oil, and gas to scalable wind and solar power.

✅ Driven by ROI, risk, and protests curbing fossil fuel projects

✅ Coal declines as wind and solar capacity surges globally

✅ Policy, technology, and markets speed the energy transition

 

This article is an excerpt from "Changing Tides: An Ecologist's Journey to Make Peace with the Anthropocene" by Alejandro Frid. Reproduced with permission from New Society Publishers. The book releases Oct. 15.

The climate and biodiversity crises reflect the stories that we have allowed to infiltrate the collective psyche of industrial civilization. It is high time to let go of these stories. Unclutter ourselves. Regain clarity. Make room for other stories that can help us reshape our ways of being in the world.

For starters, I’d love to let go of what has been our most venerated and ingrained story since the mid-1700s: that burning more fossil fuels is synonymous with prosperity. Letting go of that story shouldn’t be too hard these days. Financial investment over the past decade has been shifting very quickly away from fossil fuels and towards renewable energies, as Europe's oil majors increasingly pivot to electrification. Even Bob Dudley, group chief executive of BP — one of the largest fossil fuel corporations in the world — acknowledged the trend, writing in the "BP Statistical Review of World Energy 2017": "The relentless drive to improve energy efficiency is causing global energy consumption overall to decelerate. And, of course, the energy mix is shifting towards cleaner, lower carbon fuels, driven by environmental needs and technological advances." Dudley went on:

Coal consumption fell sharply for the second consecutive year, with its share within primary energy falling to its lowest level since 2004. Indeed, coal production and consumption in the U.K. completed an entire cycle, falling back to levels last seen almost 200 years ago around the time of the Industrial Revolution, with the U.K. power sector recording its first-ever coal-free day in April of this year. In contrast, renewable energy globally led by wind and solar power grew strongly, helped by continuing technological advances.

According to Dudley’s team, global production of oil and natural gas also slowed down in 2016. Meanwhile, that same year, the combined power provided by wind and solar energy increased by 14.6 percent: the biggest jump on record. All in all, since 2005, the installed capacity for renewable energy has grown exponentially, doubling every 5.5 years, as investment incentives expand to accelerate clean power.

The shift away from fossil fuels and towards renewables has been happening not because investors suddenly became science-literate, ethical beings, but because most investors follow the money, and Trump-era oil policies even reshaped Wall Street’s energy strategies.

It is important to celebrate that King Coal — that grand initiator of the Industrial Revolution and nastiest of fossil fuels — has just begun to lose its power over people and the atmosphere. But it is even more important to understand the underlying causes for these changes. The shift away from fossil fuels and towards renewables has been happening not because the bulk of investors suddenly became science-literate, ethical beings, but because most investors follow the money.

The easy fossil fuels — the kind you used to be able to extract with a large profit margin and relatively low risk of disaster — are essentially gone. Almost all that is left are the dregs: unconventional fossil fuels such as bitumen, or untapped offshore oil reserves in very deep water or otherwise challenging environments, like the Arctic. Sure, the dregs are massive enough to keep tempting investors. There is so much unconventional oil and shale gas left underground that, if we burned it, we would warm the world by 6 degrees or more. But unconventional fossil fuels are very expensive and energy-intensive to extract, refine and market. Additionally, new fossil fuel projects, at least in my part of the world, have become hair triggers for social unrest. For instance, Burnaby Mountain, near my home in British Columbia, where renewable electricity in B.C. is expanding, is the site of a proposed bitumen pipeline expansion where hundreds of people have been arrested since 2015 during multiple acts of civil disobedience against new fossil fuel infrastructure. By triggering legal action and delaying the project, these protests have dented corporate profits. So return on investment for fossil fuels has been dropping.

It is no coincidence that in 2017, Petronas, a huge transnational energy corporation, withdrew their massive proposal to build liquefied natural gas infrastructure on the north coast of British Columbia, as Canada's race to net-zero gathers pace across industry. Petronas backed out not because of climate change or to protect essential rearing habitat for salmon, but to backpedal from a deal that would fail to make them richer.

Shifting investment away from fossil fuels and towards renewable energy, even as fossil-fuel workers signal readiness to support the transition, does not mean we have entirely ditched that tired old story about fossil fuel prosperity.

Neoliberal shifts to favor renewable energies can be completely devoid of concern for climate change. While in office, former Texas Gov. Rick Perry questioned climate science and cheered for the oil industry, yet that did not stop him from directing his state towards an expansion of wind and solar energy, even as President Obama argued that decarbonization is irreversible and anchored in long-term economics. Perry saw money to be made by batting for both teams, and merely did what most neoliberal entrepreneurs would have done.

The right change for the wrong reasons brings no guarantees. Shifting investment away from fossil fuels and towards renewable energy does not mean we have entirely ditched that tired old story about fossil fuel prosperity. Once again, let’s look at Perry. As U.S. secretary of energy under Trump’s presidency, in 2017 he called the global shift from fossil fuels "immoral" and said the United States was "blessed" to provide fossil fuels for the world.

 

Related News

View more

Electricity use actually increased during 2018 Earth Hour, BC Hydro

Earth Hour BC highlights BC Hydro data on electricity use, energy savings, and participation in the Lower Mainland and Vancouver Island amid climate change and hydroelectric power dynamics.

 

Key Points

BC observance tracking BC Hydro electricity use and conservation during Earth Hour, amid hydroelectric power dominance.

✅ BC Hydro reports rising electricity use during Earth Hour 2018

✅ Savings fell from 2% in 2008 to near zero province-wide

✅ Hydroelectric grid yields low GHG emissions in BC

 

For the first time since it began tracking electricity use in the province during Earth Hour, BC Hydro said customers used more power during the 60-minute period when lights are expected to dim, mirroring all-time high electricity demand seen recently.

The World Wildlife Fund launched Earth Hour in Sydney, Australia in 2007. Residents and businesses there turned off lights and non-essential power as a symbol to mark the importance of combating climate change.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

#google#

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted, as record-breaking demand in 2021 and beyond changed consumption patterns.

 

Lights on

For Earth Hour this year, which took place 8:30-9:30 p.m. on March 24, BC Hydro says electricity use in the Lower Mainland increased by 0.5 per cent, even as it activated a winter payment plan to help customers manage bills. On Vancouver Island it increased 0.6 per cent.

In the province's southern Interior and northern Interior, power use remained the same during the event.

On Friday, the utility released a report called: "lights out". Why Earth Hour is dimming in BC. which explores the decline of energy savings related to Earth Hour in the province.

The WWF says the way in which hydro companies track electricity savings during Earth Hour is not an accurate measure of participation, and tracking of emerging loads like crypto mining electricity use remains opaque, and noted that more countries than ever are turning off lights for the event.

For 2018, the WWF shifted the focus of Earth Hour to the loss of wildlife across the globe.

BC Hydro says in its report that the symbolism of Earth Hour is still important to British Columbians, but almost all power generation in B.C. is hydroelectric, though recent drought conditions have required operational adjustments, and only accounts for one per cent of greenhouse gas emissions.

 

Related News

View more

Franklin Energy and Consumers Energy Support Small Businesses During COVID-19 with Virtual Energy Coaching

Consumers Energy Virtual Energy Coaching connects Michigan small businesses with remote efficiency experts to cut utility costs, optimize energy usage, and access rebates and incentives, delivering safe COVID-19-era support and long-term savings through tailored assessments.

 

Key Points

A remote coaching service helping small businesses improve energy efficiency, access rebates, and cut utility costs.

✅ Three-call virtual coaching with usage review and savings plan

✅ Connects to rebates, incentives, and financing options

✅ Eligibility: <=1,200,000 kWh, <=15,000 MCF annually

 

Franklin Energy, a leading provider in energy efficiency and grid optimization solutions, announced today that they will implement Consumers Energy's Small Business Virtual Energy Coaching Service in response to the COVID-19 pandemic and broader industry coordination with federal partners across the power sector.

This Michigan-wide offering to natural gas, electric and combination small business customers provides a complimentary virtual energy-coaching service to help small businesses find ways to reduce electricity bills and benefit from lower utility costs, both now during COVID-19 and into the future, informed by similar Ontario electricity bill support efforts in other regions. To be eligible for the program, small businesses must have electric usage at or below 1,200,000 kWh annually and gas usage at or below 15,000 MCF annually.

"By developing lasting customer relationships and delivering consistent solutions through conversation, the Energy Coaching Program offers the next level of support for small business customers," said Hollie Whitmire, Franklin Energy program manager. "Energy coaching is suitable for all small businesses, but it's ideal for businesses that are new to energy efficiency or for those that have had low engagement with energy efficiency offerings and emerging new utility rate designs in years past."

Through a series of three calls, eligible small businesses can speak with an energy coach to help them connect to the right program offering available through Consumers Energy's energy efficiency programs for businesses, including demand response models like the Ontario Peak Perks program that support load management. From answering questions to reviewing energy usage, conducting assessments, identifying savings opportunities, and more, the energy coach is available to help small businesses put money back into their pocket now, when it matters most.

"Consumers Energy is committed to helping Michigan's small business community prosper, now more than ever, with examples such as Entergy's COVID-19 relief fund underscoring industry support," said Lauren Youngdahl Snyder, Consumers Energy's vice president of customer experience. "We are excited to work with Franklin Energy to develop an innovative solution for our small business customers. The Virtual Energy Coaching Service lets us engage our customers in a safe and effective manner, as seen with utilities waiving fees in Texas during the crisis, and has the potential to last even past the COVID-19 pandemic."

 

Related News

View more

Westinghouse AP1000 Nuclear Plant Breaks A First Refueling Outage Record

AP1000 Refueling Outage Record showcases Westinghouse nuclear power excellence as Sanmen Unit 2 completes its first reactor refueling in 28.14 days, highlighting safety, reliability, outage optimization, and economic efficiency in China.

 

Key Points

It is the 28.14-day initial refueling at Sanmen Unit 2, a global benchmark achieved with Westinghouse AP1000 technology.

✅ 28.14-day first refueling at Sanmen Unit 2 sets global benchmark

✅ AP1000 design simplifies systems, improves safety and reliability

✅ Outage optimization by Westinghouse and CNNC accelerates schedules

 

Westinghouse Electric Company China operations today announced that Sanmen Unit 2, one of the world's first AP1000® nuclear power plants, has set a new refueling outage record in the global nuclear power industry, completing its initial outage in 28.14 days.

"Our innovative AP1000 technology allows for simplified systems and significantly reduces the amount of equipment, while improving the safety, reliability and economic efficiency of this nuclear power plant, reflecting global nuclear milestones reached recently," said Gavin Liu, president of the Westinghouse Asia Operating Plant Services Business. "We are delighted to see the first refueling outage for Sanmen Unit 2 was completed in less than 30 days. This is a great achievement for Sanmen Nuclear Power Company and further demonstrates the outstanding performance of AP1000 design."

All four units of the AP1000 nuclear power plants in China have completed their first refueling outages in the past 18 months, aligning with China's nuclear energy development momentum across the sector.  The duration of each subsequent outage has fallen significantly - from 46.66 days on the first outage to 28.14 days on Sanmen Unit 2.

"During the first AP1000 refueling outage at the Sanmen site in December 2019, a Westinghouse team of experts worked side-by-side with the Sanmen outage team to partner on outage optimization, and immediately set a new standard for a first-of-a-kind outage, while major refurbishments like the Bruce refurbishment moved forward elsewhere," said Miao Yamin, chairman of CNNC Sanmen Nuclear Power Company Limited. "Lessons learned were openly exchanged between our teams on each subsequent outage, which has built to this impressive achievement."

Westinghouse provided urgent technical support on critical issues during the outage, as international programs such as Barakah Unit 1 achieved key milestones, to help ensure that work was carried out on schedule with no impact to critical path.

In addition to the four AP1000 units in China, two units are under construction at the Vogtle expansion near Waynesboro, Georgia, USA.

Separately, in the United States, a new reactor startup underscored renewed momentum in nuclear generation this year.

 

Related News

View more

Iran eyes transmitting electricity to Europe as region’s power hub

Iran Electricity Grid Synchronization enables regional interconnection, cross-border transmission, and Caspian-Europe energy corridors, linking Iraq, Azerbaijan, Russia, and Qatar to West Asia and European markets with reliable, flexible power exchange.

 

Key Points

Iran's initiative to link West Asian and European power grids for trade, transit, reliability, and regional influence.

✅ Synchronizes grids with Iraq, Azerbaijan, Russia, and potential Qatar link

✅ Enables east-to-Europe electricity transit via Caspian energy corridors

✅ Backed by gas-fueled and combined-cycle generation capacity

 

Following a plan for becoming West Asia’s electricity hub, Iran has been taking serious steps for joining its electricity network with neighbors in the past few years.

The Iranian Energy Ministry has been negotiating with the neighboring countries including Iraq for the connection of their power networks with Iran, discussing Iran-Iraq energy cooperation as well as ties with Russia, Afghanistan, Azerbaijan, and Qatar to make them enable to import or transmit their electricity to new destination markets through Iran.

The synchronization of power grids with the neighboring countries, not only enhances Iran’s electricity exchanges with them, but it will also increase the political stance of the country in the region.

So far, Iran’s electricity network has been synchronized with Iraq, where Iran is supplying 40% of Iraq's power today, and back in September, the Energy Minister Reza Ardakanian announced that the electricity networks of Russia and Azerbaijan are the next in line for becoming linked with the Iranian grid in the coming months.

“Within the next few months, the study project of synchronization of the electricity networks of Iran, Azerbaijan, and Russia will be completed and then the executive operations will begin,” the minister said.

Meanwhile, Ardakanian and Qatari Minister of State for Energy Affairs Saad Sherida Al-Kaabi held an online meeting in late September to discuss joining the two countries' electricity networks via sea.

During the online meeting, Al-Kaabi said: "Electricity transfer between the two countries is possible and this proposal should be worked on.”

Now, taking a new step toward becoming the region’s power hub, Iran has suggested becoming a bridge between East and Europe for transmitting electricity.

In a virtual conference dubbed 1st Caspian Europe Forum hosted by Berlin on Thursday, the Iranian energy minister has expressed the country’s readiness for joining its electricity network with Europe.

"We are ready to connect Iran's electricity network, as the largest power generation power in West Asia, with the European countries and to provide the ground for the exchange of electricity with Europe," Ardakanian said addressing the online event.

Iran's energy infrastructure in the oil, gas, and electricity sectors can be used as good platforms for the transfer of energy from east to Europe, he noted.

In the event, which was aimed to study issues related to the development of economic cooperation, especially energy, between the countries of the Caspian Sea region, the official added that Iran, with its huge energy resources and having skilled manpower and advanced facilities in the field of energy, can pave the ground for the prosperity of international transport and energy corridors.

"In order to help promote communication between our landlocked neighbors with international markets, as Uzbekistan aims to export power to Afghanistan across the region, we have created a huge transit infrastructure in our country and have demonstrated in practice our commitment to regional development and peace and stability," Ardakanian said.

He pointed out that having a major percentage of proven oil and gas resources in the world, regional states need to strengthen relations in a bid to regulate production and export policies of these huge resources and potentially play a role in determining the price and supply of these resources worldwide.

“EU countries can join our regional cooperation in the framework of bilateral or multilateral mechanisms such as ECO,” he said.

Given the growing regional and global energy needs and the insufficient investment in the field, with parts of Central Asia facing severe electricity shortages today, as well as Europe's increasing needs, this area can become a sustainable area of cooperation, he noted.

Ardakanian also said that by investing in energy production in Iran, Europe can meet part of its future energy needs on a sustainable basis.

In Iraq, plans for nuclear power plants are being pursued to tackle chronic electricity shortages, reflecting parallel efforts to diversify generation.

Iran currently has electricity exchange with Armenia, Azerbaijan, Iraq, where grid rehabilitation deals have been finalized, Turkmenistan, and Afghanistan.

The country’s total electricity exports vary depending on the hot and cold seasons of the year, since during the hot season which is the peak consumption period, the country’s electricity exports decreases, however electrical communication with neighboring countries continues.

Enjoying abundant gas resources, which is the main fuel for the majority of the country’s power plants, Iran has the capacity to produce about 85,500 megawatts [85.5 gigawatts (GW)] of electricity.

Currently, combined cycle power plants account for the biggest share in the country’s total power generation capacity as Iran is turning thermal plants to combined cycle to save energy, followed by gas power plants.

 

Related News

View more

SaskPower to buy more electricity from Manitoba Hydro

SaskPower-Manitoba Hydro Power Sale outlines up to 215 MW of clean hydroelectric baseload for Saskatchewan, supporting renewable energy targets, lower greenhouse gas emissions, and interprovincial transmission line capacity starting 2022 under a 30-year agreement.

 

Key Points

A long-term deal supplying up to 215 MW of hydroelectric baseload from Manitoba to Saskatchewan to cut emissions.

✅ Up to 215 MW delivered starting 2022 via new intertie

✅ Supports 40% GHG reduction target by 2030

✅ 30-year term; complements wind and solar integration

 

Saskatchewan's Crown-owned electric utility has made an agreement to buy more hydroelectricty from Manitoba.

A term sheet providing for a new long--term power sale has been signed between Manitoba Hydro and SaskPower which will see up to 215 megawatts flow from Manitoba to Saskatchewan, as new turbine investments advance in Manitoba, beginning in 2022.

SaskPower has two existing power purchase agreements with Manitoba Hydro that were made in 2015 and 2016, but the newest one announced Monday is the largest, as financial pressures at Manitoba Hydro continue.

SaskPower President and CEO Mike Marsh says in a news release that the clean, hydroelectric power represents a significant step forward when it comes to reaching the utility's goal of reducing greenhouse gas emissions by 40 per cent by 2030, aligning with progress on renewable electricity by 2030 initiatives.

Marsh says it's also reliable baseload electricity, which SaskPower will need as it adds more intermittent generation options like wind and solar.

SaskPower says a final legal contract for the sale is expected to be concluded by mid-2019 and be in effect by 2022, and the purchase agreement would last up to 30 years.

"Manitoba Hydro has been a valued neighbour and business partner over the years and this is a demonstration of that relationship," Marsh said in the news release.

The financial terms of the agreement are not being released, though SaskPower's latest annual report offers context on its finances.

Both parties say the sale will partially rely on the capacity provided by a new transmission line planned for construction between Tantallon, Sask. and Birtle, Man. that was previously announced in 2015 and is expected to be in service by 2021.

"Revenues from this sale will assist in keeping electricity rates affordable for our Manitoba customers, while helping SaskPower expand and diversify its renewable energy supply," Manitoba Hydro president and CEO Kelvin Shepherd said in the utility's own news release.

In 2015, SaskPower signed a 25 megawatt agreement with Manitoba Hydro that lasts until 2022. A 20-year agreement for 100 megawatts was signed in 2016 and comes into effect in 2020, and SaskPower is also exploring a purchase from Flying Dust First Nation to further diversify supply.

The deals are part of a memorandum of understanding signed in 2013 involving up to 500 megawatts.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.