$300 million approved for Thai energy projects

By Industrial Info Resources


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
In a recent development, Asian Development Bank (ADB) has sanctioned a $300 million loan to Thailand to finance its environmental protection and energy conservation projects.

According to Chaiyuth Sudthitanakorn, the executive director of ADB, the loan has been arranged from the "clean technology fund," which supports green energy projects in the region. ADB, the World Bank and other global financing agencies are managing $6.24 billion as part of a clean technology fund allocated by 18 developed nations, including Germany, the United States, Australia and Japan.

The fund has been created to help emerging economies execute green energy initiatives, including low-carbon energy projects. A "strategic climate fund" also has been set up, which will provide financing for renewable energy and foresting projects.

In November 2009, Thailand submitted a proposal seeking $300 million from the clean technology fund. Thailand plans to use the loan to develop renewable energy projects that will increase the contribution of alternative energy sources to 20% by 2020, and reduce greenhouse gas emissions in Bangkok 15% during the same period. A portion of the loan may be utilized to construct the Bus Rapid Transit System developed by the Bangkok Metropolitan Administration, and renewable energy projects conceived by the Provincial Electricity Authority and Electricity Generating Authority of Thailand (EGAT).

The financing may be extended to research studies for developing energy-efficient vehicles, subway expansions in Bangkok, and construction of energy-efficient houses and apartments. Thailand's Finance Ministry will take responsibility for identifying companies for the loan and grants. The rate of interest will be about 1% per year, with duration of 30 to 40 years.

Sudthitanakorn indicated that, unlike its neighbors, Thailand has not been an active borrower from ADB. Since 1969, Thailand has sought loans worth only $5 billion, while other Asian countries, including China, India, Vietnam and Indonesia have been borrowing heavily from the bank. Recently, China received a $1 billion loan from ADB toward construction of its southern railway network. ADB is working on a proposal with local Thai Banks to co-fund green energy programs in the country.

In a related development, Energy Ministry officials in Thailand have indicated that by 2016, the country will become the production hub for renewable energy equipment. Thailand has rich renewable energy resources and advanced indigenous technology for the development of alternative energy.

In 2010, the country's installed alternative energy generating capacity is expected to increase by 33%, year-over-year, to 3,650 MW. Thailand does not depend on imported technology for alternative energy development.

According to the Department of Alternative Energy Development and Efficiency (Bangkok), Thailand has spent about $1.33 billion to date on solar, bio-fuels and wind power technology development. Thailand, which is among the top renewable energy producers and consumers in Asia, is a leading exporter of ethanol and bio-diesel.

In the next couple of years, Thailand is expected to take a leading position in the production of wind turbines, solar and photovoltaic cells and geothermal power equipment.

Related News

Solar farm the size of 313 football fields to be built at Edmonton airport

Airport City Solar Edmonton will deliver a 120-megawatt, 627-acre photovoltaic, utility-scale renewable energy project at EIA, creating jobs, attracting foreign investment, and supplying clean power to Fortis Alberta and airport distribution systems.

 

Key Points

A 120 MW, 627-acre photovoltaic solar farm at EIA supplying clean power to Fortis Alberta and airport systems.

✅ 120 MW utility-scale project over 627 acres at EIA

✅ Feeds Fortis Alberta and airport distribution networks

✅ Drives jobs, investment, and regional sustainability

 

A European-based company is proposing to build a solar farm bigger than 300 CFL football fields at Edmonton's international airport, aligning with Alberta's red-hot solar growth seen across the province.

Edmonton International Airport and Alpin Sun are working on an agreement that will see the company develop Airport City Solar, a 627-acre, 120-megawatt solar farm that reflects how renewable power developers combine resources for stronger projects on what is now a canola field on the west side of the airport lands.

The solar farm will be the largest at an airport anywhere in the world, EIA said in a news release Tuesday, in a region that also hosts the largest rooftop solar array at a local producer.

"It's a great opportunity to drive economic development as well as be better for the environment," Myron Keehn, vice-president, commercial development and air service at EIA, told CBC News, even as Alberta faces challenges with solar expansion that require careful planning.

"We're really excited that [Alpin Sun] has chosen Edmonton and the airport to do it. It's a great location. We've got lots of land, we're geographically located north, which is great for us, because it allows us to have great hours of sunlight.

"As everyone knows in Edmonton, you can golf early in the morning or golf late at night in the summertime here. And in wintertime it's great, because of the snow, and the reflective [sunlight] off the snow that creates power as well."

Airport official Myron Keehn says the field behind him will become home to the world's largest solar farm at an airport. (Scott Neufeld/CBC)

The project will "create jobs, provide sustainable solar power for our region and show our dedication to sustainability," Tom Ruth, EIA president and CEO, said in the news release, while complementing initiatives by Ermineskin First Nation to expand Indigenous participation in electricity generation.

Construction is expected to begin in early 2022, as new solar facilities in Alberta demonstrate lower costs than natural gas. The solar farm would be operational by the end of that year, the release said. 

Alpin Sun says the project will bring in $169 million in foreign investment to the Edmonton metro region amid federal green electricity contracts that are boosting market certainty. 

Power generated by Airport City Solar will feed into Fortis Alberta and airport distribution systems.

 

Related News

View more

Scottish Wind Delivers Equivalent Of 98% Of Country’s October Electricity Demand

Scotland Wind Energy October saw renewables supply the equivalent of 98 percent of electricity demand, as onshore wind outpaced National Grid needs, cutting emissions and powering households, per WWF Scotland and WeatherEnergy.

 

Key Points

A monthly update showing Scottish onshore wind met the equivalent of 98% of electricity demand in October.

✅ 98% of monthly electricity demand equivalent met by wind

✅ 16 days exceeded total national demand, per data

✅ WWF Scotland and WeatherEnergy cited; lower emissions

 

New figures publicized by WWF Scotland have revealed that wind energy generated the equivalent of 98% of the country’s electricity demand in October, or enough electricity to power millions of Scottish homes across the country.

Scotland has regularly been highlighted as a global wind energy leader, and over the last few years has repeatedly reported record-breaking months for wind generation. Now, it’s all very well and good to say that Scottish wind delivered 98% of the country’s electricity demand, but the specifics are a little different — hence why WWF Scotland always refers to it as wind providing “the equivalent of 98%” of Scotland’s electricity demand. That’s why it’s worth looking at the statistics provided by WWF Scotland, sourced from WeatherEnergy, part of the European EnergizAIR project:

  • National Grid demand for the month – 1,850,512 MWh
  • What % of this could have been provided by wind power across Scotland – 98%
  • Best day – 23rd October 2018, generation was 105,900.94 MWh, powering 8.72m homes, 356% of households. Demand that day was 45,274.5MWh – wind generation was 234% of that.
  • Worst day – 18th October 2018 when generation was 18,377.71MWh powering 1,512,568 homes, 62% of households. Demand that day was 73,628.5MWh – wind generation was 25%
  • How many days generation was over 100% of households – 27
  • How many days generation was over 100% of demand – 16

“What a month October proved to be, with wind powering on average 98 per cent of Scotland’s entire electricity demand for the month, at a time when wind became the UK’s main power source and exceeding our total demand for a staggering 16 out of 31 days,” said Dr Sam Gardner, acting director at WWF Scotland.

“These figures clearly show wind is working, it’s helping reduce our emissions and is the lowest cost form of new power generation. It’s also popular, with a recent survey also showing more and more people support turbines in rural areas. That’s why it’s essential that the UK Government unlocks market access for onshore wind at a time when we need to be scaling up electrification of heat and transport.”

Alex Wilcox Brooke, Weather Energy Project Manager at Severn Wye Energy Agency, added: “Octobers figures are a prime example of how reliable & consistent wind production can be, with production on 16 days outstripping national demand.”

 

Related News

View more

Typical Ontario electricity bill set to increase nearly 2% as fixed pricing ends

Ontario Electricity Rates update: OEB sets time-of-use and tiered pricing for residential customers, with kWh charges for peak, mid-peak, and off-peak periods reflecting COVID-19 impacts on demand, supply costs, and pricing.

 

Key Points

Ontario Electricity Rates are OEB-set time-of-use and tiered prices that set per-kWh costs for residential customers.

✅ Time-of-use: 21.7 peak, 15.0 mid-peak, 10.5 off-peak cents/kWh

✅ Tiered: 12.6 cents/kWh up to 1000 kWh, then 14.6 cents/kWh

✅ Average 700 kWh home pays about $2.24 more per month

 

Energy bills for the typical Ontario home are going up by about two per cent with fixed pricing coming to an end on Nov. 1, the Ontario Energy Board says. 

The province's electricity regulator has released new time-of-use pricing and says the rate for the average residential customer using 700 kWh per month will increase by about $2.24.

The change comes as Ontario stretches into its eight month of the COVID-19 pandemic with new case counts reaching levels higher than ever seen before.

Time-of-use pricing had been scrapped for residential bills for much for the pandemic with a single fixed COVID-19 hydro rate set for all hours of the day. The move, which came into effect June 1, was meant "to support families, small business and farms while Ontario plans for the safe and gradual reopening of the province," the OEB said at the time.

Ontario later set the off-peak price until February 7 around the clock to provide additional relief.

Fixed pricing meant customers' bills reflected how much power they used, rather than when they used it. Customers were charged 12.8 cents/kWh under the COVID-19 recovery rate no matter their time of use.

Beginning November, the province says customers can choose between time-of-use and tiered pricing options. Rates for time-of-use plans will be 21.7 cents/kWh during peak hours, 15 cents/kWh for mid-peak use and 10.5 cents/kWh for off-peak use. 

Customers choosing tiered pricing will pay 12.6 cents/kWh for the first 1000 kWh each month and then 14.6 cents/kWh for any power used beyond that.

The energy board says the increase in pricing reflects "a combination of factors, including those associated with the COVID-19 pandemic, that have affected demand, supply costs and prices in the summer and fall of 2020."

Asked for his reaction to the move Tuesday, Premier Doug Ford said, "I hate it," adding the province inherited an energy "mess" from the previous Liberal government and are "chipping away at it."

 

Related News

View more

Energy Vault Lands $110M From SoftBank’s Vision Fund for Gravity Storage

Energy Vault Gravity Storage uses crane-stacked concrete blocks to deliver long-duration, grid-scale renewable energy; a SoftBank Vision Fund-backed, pumped-hydro analog enabling baseload power and a lithium-ion alternative with proprietary control algorithms.

 

Key Points

Gravity-based cranes stack blocks to store and dispatch power for hours, enabling grid-scale, low-cost storage.

✅ 4 MW/35 MWh modules; ~9-hour duration

✅ Estimated $200-$250/kWh; lower LCOE than lithium-ion

✅ Backed by SoftBank Vision Fund; Cemex and Tata support

 

Energy Vault, the Swiss-U.S. startup that says it can store and discharge electrical energy through a super-sized concrete-and-steel version of a child’s erector set, has landed a $110 million investment from Japan’s SoftBank Vision Fund to take its technology to commercial scale.

Energy Vault, a spinout of Pasadena-based incubator Idealab and co-founded by Idealab CEO and billionaire investor Bill Gross, unstealthed in November with its novel approach to using gravity to store energy.

Simply put, Energy Vault plans to build storage plants — dubbed “Evies” — consisting of a 35-story crane with six arms, surrounded by a tower consisting of thousands of concrete bricks, each weighing about 35 tons.

This plant will “store” energy by using electricity to run the cranes that lift bricks from the ground and stack them atop of the tower, and “discharge” energy by reversing that process. It’s a mechanical twist on the world’s most common energy storage technology, pumped hydro, which “stores” energy by pumping water uphill, and lets it fall to spin turbines when electricity is needed, even as California funds 100-hour long-duration storage pilots to expand flexibility worldwide.

But behind this simplicity lies some heavy-duty software to orchestrate the cranes and blocks, with a "unique stack of proprietary algorithms" to balance energy supply and demand, volatility, grid stability, weather elements and other variables.

CEO and co-founder Robert Piconi said in a November interview with GTM that the standard array would deliver 4 megawatts/35 megawatt-hours of storage, which translates to nearly 9 hours of duration — the equivalent of building the tower to its height, and then reducing it to ground level. It can be built on-site in partnership with crane manufacturers and recycled concrete material, and can run fully automated for decades with little deterioration, he said.

And the cost, which Piconi pegged in the $200 to $250 per kilowatt-hour range, with room to decline further, is roughly 50 percent below the upfront price of the conventional storage market today, and 80 percent below it on levelized cost, he said, a trend utilities see benefits in as they plan resources.

The result, according to Wednesday’s statement, is a technology that could allow “renewables to deliver baseload power for less than the cost of fossil fuels 24 hours a day,” in applications such as community microgrids serving low-income housing.

Wednesday’s announcement builds on a recent investment from Mexico's Cemex Ventures, the corporate venture capital unit of building materials giant Cemex, along with a promise of deployment support from Cemex's strategic network, and also follows project financing for a California green hydrogen microgrid led by the company. Piconi said in November that the company had sufficient investment from two funding rounds to carry it through initial customer deployments, though he declined to disclose figures.

This is the first energy storage investment for Vision Fund, the $100 billion venture fund set up by SoftBank founder Masayoshi Son. While large by startup standards, it’s in keeping with the capital costs that Energy Vault will face in scaling up its technology to meet its commitments, amid mounting demand in regions like Ontario energy storage that face supply crunches. Those include a 35 megawatt-hour order with Tata Power Company, the energy-producing arm of the Indian industrial conglomerate, first unveiled in November, as well as plans to demonstrate its first storage tower in northern Italy in 2019.

For Vision Fund, it’s also an unusual choice for a storage investment, given that the vast majority of venture capital in the industry today is being directed toward lithium-ion batteries, and even Mercedes-Benz energy storage ventures targeting the U.S. market. Lithium-ion batteries are limited in terms of how many hours they can provide cost-effectively, with about 4 hours being seen as the limit today.

The search for long-duration energy storage has driven investment into flow battery technologies such as grid-scale vanadium systems deployed on utility networks, compressed-air energy storage and variations on gravity-based storage, including a previous startup backed by Gross and Idealab, Energy Cache, whose idea of using a ski lift carrying buckets of gravel up a hill to store energy petered out with a 50-kilowatt pilot project.

 

Related News

View more

Electric shock: China power demand drops as coronavirus shutters plants

China Industrial Power Demand 2020 highlights COVID-19 disruption to electricity consumption as factory output stalls; IHS Markit estimates losses equal to Chile's usage, impacting thermal coal, LNG, and Hubei's industrial load.

 

Key Points

An analysis of COVID-19's hit to China's electricity use, cutting industry demand and fuel needs for coal and LNG.

✅ 73 billion kWh loss equals Chile's annual power use

✅ Cuts translate to 30m tonnes coal or 9m tonnes LNG

✅ Hubei peak load 21 percent below plan amid shutdowns

 

China’s industrial power demand in 2020 may decline by as much as 73 billion kilowatt hours (kWh), according to IHS Markit, as the outbreak of the coronavirus has curtailed factory output and prevented some workers from returning to their jobs.

FILE PHOTO: Smoke is seen from a cooling tower of a China Energy ultra-low emission coal-fired power plant during a media tour, in Sanhe, Hebei province, China July 18, 2019. REUTERS/Shivani Singh
The cut represents about 1.5% of industrial power consumption in China. But, as the country is the world’s biggest electricity consumer and analyses of China's electricity appetite routinely underscore its scale, the loss is equal to the power used in the whole of Chile and it illustrates the scope of the disruption caused by the outbreak.

The reduction is the energy equivalent of about 30 million tonnes of thermal coal, at a time when China aims to reduce coal power production, or about 9 million tonnes of liquefied natural gas (LNG), IHS said. The coal figure is more than China’s average monthly imports last year while the LNG figure is a little more than one month of imports, based on customs data.

China has tried to curtail the spread of the coronavirus that has killed more than 1,400 and infected over 60,000 by extending the Lunar New Year holiday for an extra week and encouraging people to work from home, measures that contributed to a global dip in electricity demand as well.

Last year, industrial users consumed 4.85 trillion kWh electricity, accounting for 67% of the country’s total, even as India's electricity demand showed sharp declines in the region.

Xizhou Zhou, the global head of power and Renewables at IHS Markit, said that in a severe case where the epidemic goes on past March, China’s economic growth will be only 4.2% during 2020, down from an initial forecast of 5.8%, while power consumption will climb by only 3.1%, down from 4.1% initially, even as power cuts and blackouts raise concerns.

“The main uncertainty is still how fast the virus will be brought under control,” said Zhou, adding that the impact on the power sector will be relatively modest from a full-year picture in 2020, even though China's electric power woes are already clouding solar markets.

In Hubei province, the epicenter of the virus outbreak, the peak power load at the end of January was 21% less than planned, mirroring how Japan's power demand was hit during the outbreak, data from Wood Mackenzie showed.

Industrial operating rates point to a firm reduction in power consumption in China.

Utilization rates at plastic processors are between 30% and 60% and the low levels are expected to last for another two week, according to ICIS China.

Weaving machines at textile plants are operating at below 10% of capacity, the lowest in five years, ICIS data showed. China is the world’s biggest textile and garment exporter.

 

Related News

View more

California's future with income-based flat-fee utility bills is getting closer

California Income-Based Utility Fees would overhaul electricity bills as CPUC weighs fixed charges tied to income, grid maintenance costs, AB 205 changes, and per-kilowatt-hour rates, shifting from pure usage pricing to hybrid utility rate design.

 

Key Points

Income-based utility fees are fixed monthly charges tied to earnings, alongside per-kWh rates, to help fund grid costs.

✅ CPUC considers fixed charges by income under AB 205

✅ Separates grid costs from per-kWh energy charges

✅ Could shift rooftop solar and EV charging economics

 

Electricity bills in California are likely to change dramatically in 2026, with major changes under discussion statewide.

The California Public Utilities Commission (CPUC) is in the midst of an unprecedented overhaul of the way most of the state’s residents pay for electricity, as it considers revamping electricity rates to meet grid and climate goals.

Utility bills currently rely on a use-more pay-more system, where bills are directly tied to how much electricity a resident consumes, a setup that helps explain why prices are soaring for many households.

California lawmakers are asking regulators to take a different approach, and some are preparing to crack down on utility spending as oversight intensifies. Some of the bill will pay for the kilowatt hours a customer uses and a monthly fixed fee will help pay for expenses to maintain the electric grid: the poles, the substations, the batteries, and the wires that bring power to people’s homes.

The adjustments to the state’s public utility code, section 739.9, came about because of changes written into a sweeping energy bill passed last summer, AB 205, though some lawmakers now aim to overturn income-based charges in subsequent measures.

A stroke of a pen, a legislative vote, and the governor’s signature created a move toward unprecedented income-based fixed charges across the state.

“This was put in at the last minute,” said Ahmad Faruqui, a California economist with a long professional background in utility rates. “Nobody even knew it was happening. It was not debated on the floor of the assembly where it was supposedly passed. Of course, the governor signed it.”

Faruqui wonders who was responsible for legislation that was added to the energy bill during the budget writing process. That process is not transparent.

“It’s a very small clause in a very long bill, which is mostly about other issues,” Faruqui said.

But that small adjustment could have a massive impact on California residents, because it links the size of a monthly flat fee for utility service to a resident’s income. Earn more money and pay a higher flat fee.

That fee must be paid even before customers are charged for how much power they draw.

Regulators interpreted legislative change as a mandate, but Faruqui is not sold.

“They said the commission may consider or should consider,” Faruqui said. “They didn’t mandate it. It’s worth re-reading it.”

In fact, the legislative language says the commission “may” adopt income-based flat fees for utilities. It does not say the commission “should” adopt them.

Nevertheless, the CPUC has already requested and received nine proposals for how a flat fee should be implemented, as regulators face calls for action amid soaring electricity bills.

The suggestions came from consumer groups, environmentalists, the solar industry and utilities.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.