A U.S. company said it wants to start construction this year in China of one of the world's biggest solar power plants after forming a partnership with a major state-owned utility company.
First Solar Inc. announced plans in 2009 for the facility in northern China's Inner Mongolia region. The company said it hoped to break ground in mid-2010 but a pre-feasibility study was not approved until September and regulators delayed approval of higher payment rates for solar-generated power.
China Guangdong Nuclear Solar Energy Development Co. will become the majority partner in the facility's first phase in the city of Ordos, First Solar said. Executives said ownership stakes, financing and other details still were being negotiated.
Plans call for 2 gigawatts, or 2 billion watts, of generating capacity – the equivalent of two coal-fired plants – covering 64 square kilometers 25 square miles to be built in stages through 2020. The first stage is 30 megawatts.
First Solar's president, Bruce Sohn, said the Chinese partner would supply engineering skills and influence in China's energy market. It is a subsidiary of China Guangdong Nuclear Power Co., which operates two nuclear power plants in Guangdong province, near Hong Kong, and is building four more.
"We see China Guangdong Nuclear as being a very strong, viable and important partner," Sohn told reporters.
Sohn said the company wants to start construction by the end of the year.
Beijing is promoting solar and other renewable energy, but business groups complain regulators are trying to support domestic technology suppliers by shutting global rivals out of key projects.
First Solar, based in Tempe, Arizona, said in 2009 it planned to turn the Inner Mongolia plant over to a Chinese operator. Foreign companies sometimes are required to take on local partners to win approval for projects in China, but First Solar executives said the decision to bring in Guangdong Nuclear was not dictated by the government.
"In terms of who we selected, absolutely it was our choice," said T.K. Kallenbach, First Solar's executive vice president. "We were looking for people who were the best match for us, and China Guangdong Nuclear was that match."
First Solar and Guangdong Nuclear are working out costs and other details and preparing a business plan to submit to the government to request favorable power prices to support the project, Kallenbach said.
Sohn said the thin-film power panels for the Inner Mongolia project were likely to be produced by a First Solar factor in Malaysia.
The two companies will share expertise in building the plant, but First Solar is not required to turn over solar panel technology, Kallenbach said. Technology transfer as part of other deals has sometimes prompted complaints by foreign companies that Chinese partners use the know-how to compete against them.
US Summer Grid Blackout Risk: NERC and FERC warn of strained reliability as drought, heat waves, and transmission constraints hit MISO, hydro, and renewables, elevating blackout exposure and highlighting demand response and storage solutions.
Key Points
A forecast of summer power shortfalls across the US grid, driven by heat, drought, transmission limits, and a changing resource mix.
✅ NERC and FERC warn of elevated blackout risk and reliability gaps.
✅ MISO region strained by drought, heat, and limited hydro.
✅ Mitigations: demand response, storage, and stronger transmission.
Just when it didn’t seem things couldn’t get worse — gasoline at $5 to $8 a gallon, supply shortages in everything from baby formula to new cars — comes the devastating news that many of us will endure electricity blackouts this summer, and that the U.S. has more blackouts than other developed nations according to one study.
The alarm was sounded by the nonprofit North American Electric Reliability Corp. and the Federal Energy Regulatory Commission, following a recent power grid report card highlighting vulnerabilities.
The North American electric grid is the largest machine on earth and the most complex, incorporating everything from the wonky pole you see at the roadside with a bird’s nest of wires to some of the most sophisticated engineering ever devised. It runs in real-time, even more so than the air traffic control system: All the airplanes in the sky don’t have to land at the same time, but electricity must be there at the flick of every switch.
Except it may not always be there this summer. Rod Kuckro, a respected energy journalist, says it depends on Mother Nature, with extreme weather impacts increasingly straining the grid, but the prognosis isn’t good.
Speaking on “White House Chronicle,” the weekly news and public affairs program on PBS that I host and produce, Kuckro said: “There is a confluence of factors that could affect energy supply across the majority of the (lower) 48 states. These are continued reduced hydroelectric production in the West, and the continued drought in the Southwest.”
The biggest threat to power supply, according to the NERC and the FERC, is in the vast central region, reaching from Manitoba in Canada, where grids are increasingly exposed to harsh weather in recent years, down to the Gulf of Mexico. It is served by the regional transmission organization, the Midcontinent Independent System Operator.
These operational entities are nonprofit companies that organize and distribute their regions’ bulk power for utilities. In California, it is the California Independent System Operator, working to keep the lights on as the state enters a new energy era; in the Mid-Atlantic, it is PJM; and in the Northeast, it is the New England System Independent Operator. They generate no power, but they control power flows and could initiate brownouts and blackouts.
With record storm activity and high temperatures predicted this summer, blackouts are likely to be deadly. The old, the young and the sick are all vulnerable. If the electric supply fails, with it goes everything from air conditioning to refrigeration to lights and even the ability to pump gas or access money from ATMs.
The United States, along with other modern nations, runs on electricity and when that falls short, it is catastrophic. It is chaos writ large, especially if the failure lasts more than a few hours.
On the same episode of “White House Chronicle,” Daniel Brooks, vice president of integrated grid and energy systems at the Electric Power Research Institute, also referred to a “confluence of factors” contributing to the impending electricity crisis. Brooks said, “We’re going through a significant change in terms of the energy mix and resources, and the way those resources behave under certain weather conditions.”
If power supply is stressed this summer, change in the generating mix will get a lot of political attention. At heart is the switch from fossil fuel generation to renewables. If there are power outages, a political storm will ensue. The Biden administration will be accused of speeding the switch to renewables, although the utilities don’t say that.
The weather is deteriorating, and, as experts note, the grid’s biggest challenge isn’t demand but climate change pressures that compound risks, and the grid is stretched in dealing with new realities as well as coping with old bugaboos, like the extreme difficulty in building transmission lines. Better transmission would relieve a lot of grid stress.
Peter Londa, president of Tantalus Systems, which helps its 260 utility customers digitize and cope with the new realities, explained some of the difficulties facing the utilities not only in the shifting sources of generation but also in the new shape of the electric demand. For example, he said, electric vehicles, particularly the much-awaited Ford F-150 Lightning pickup, could be an asset to homeowners and utilities, as California increasingly turns to batteries to stabilize its grid. During a blackout, their EVs could be used to power their homes for days. They could be a source of storage if thousands of owners signed up with their utilities in a storage program.
The fact is that utilities are facing three major shifts: in the generation to wind and solar, in customer demand, and especially in weather. Mother Nature is on a rampage and we all must adjust to that.
ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.
Key Points
ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.
✅ Tokamak magnetic confinement with high-temp superconducting coils
✅ Deuterium-tritium fuel cycle with on-site tritium breeding
✅ Targets net energy gain and grid-scale, low-carbon electricity
It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.
Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.
But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.
“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.
Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.
Constructing a nuclear fusion reactor ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.
The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.
When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.
Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.
In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.
A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.
One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat
The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.
“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.
The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.
“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.
Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.
Choosing a fuel Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.
Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.
At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.
The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.
“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”
Berlin Flying Electric Ferry drives sustainable urban mobility with zero-emission water transit, advanced electric propulsion, quiet operations, and smart-city integration, easing congestion, improving air quality, and connecting waterways for efficient, climate-aligned public transport.
Key Points
A zero-emission electric ferry for Berlin's waterways, cutting congestion and pollution to advance sustainable mobility.
✅ Zero emissions with advanced electric propulsion systems
✅ Quiet, efficient water transit that eases road congestion
✅ Smart-city integration, improving access and air quality
Berlin has taken a groundbreaking step toward sustainable urban mobility with the introduction of its innovative flying electric ferry. This pioneering vessel, designed to revolutionize water-based transportation, represents a significant leap forward in eco-friendly travel options and reflects the city’s commitment to addressing climate change, complementing its zero-emission bus fleet initiatives while enhancing urban mobility.
A New Era of Urban Transport
The flying electric ferry, part of a broader initiative to modernize transportation in Berlin, showcases cutting-edge technology aimed at reducing carbon emissions and improving efficiency in urban transit, and mirrors progress seen with hybrid-electric ferries in the U.S.
Equipped with advanced electric propulsion systems, the ferry operates quietly and emits zero emissions during its journeys, making it an environmentally friendly alternative to traditional diesel-powered boats.
This innovation is particularly relevant for cities like Berlin, where water transportation can play a crucial role in alleviating congestion on roads and enhancing overall mobility. The ferry is designed to navigate the city’s extensive waterways, providing residents and visitors with a unique and efficient way to traverse the urban landscape.
Features and Design
The ferry’s design emphasizes both functionality and comfort. Its sleek, aerodynamic shape minimizes resistance in the water, allowing for faster travel times while consuming less energy, similar to emerging battery-electric high-speed ferries now under development in the U.S. Additionally, the vessel is equipped with state-of-the-art navigation systems that ensure safety and precision during operations.
Passengers can expect a comfortable onboard experience, complete with spacious seating and amenities designed to enhance their journey. The ferry aims to offer an enjoyable ride while contributing to Berlin’s vision of a sustainable and interconnected transportation network.
Addressing Urban Challenges
Berlin, like many major cities worldwide, faces significant challenges related to transportation, including traffic congestion, pollution, and the need for efficient public transit options. The introduction of the flying electric ferry aligns with the city’s goals to promote greener modes of transportation and reduce reliance on fossil fuels, as seen with B.C.'s electric ferries supported by public investment.
By offering an alternative to conventional commuting methods and complementing battery-electric buses deployments in Toronto that expand zero-emission options, the ferry has the potential to significantly reduce the number of vehicles on the roads. This shift could lead to lower traffic congestion levels, improved air quality, and a more pleasant urban environment for residents and visitors alike.
Economic and Environmental Benefits
The economic implications of the flying electric ferry are equally promising. As an innovative mode of transportation, it can attract tourism and stimulate local businesses near docking areas, especially as ports adopt an all-electric berth model that reduces local emissions. Increased accessibility to various parts of the city may lead to greater foot traffic in commercial districts, benefiting retailers and service providers.
From an environmental standpoint, the ferry contributes to Berlin’s commitment to achieving climate neutrality. The city has set ambitious targets to reduce greenhouse gas emissions, and the implementation of electric vessels is a key component of this strategy. By prioritizing clean energy solutions, Berlin is positioning itself as a leader in sustainable urban transport.
A Vision for the Future
The introduction of the flying electric ferry is not merely a technological advancement; it represents a vision for the future of urban mobility. As cities around the world grapple with the impacts of climate change and the need for sustainable infrastructure, Berlin’s innovative approach could serve as a model for other urban centers looking to enhance their transportation systems, alongside advances in electric planes that could reshape regional travel.
Furthermore, this initiative is part of a broader trend toward electrification in the maritime sector. With advancements in battery technology and renewable energy sources, electric ferries and boats are becoming more viable options for urban transportation. As more cities embrace these solutions, the potential for cleaner, more efficient public transport grows.
Community Engagement and Education
To ensure the success of the flying electric ferry, community engagement and education will be vital. Residents must be informed about the benefits of using this new mode of transport, and outreach efforts can help build excitement and awareness around its launch. By fostering a sense of ownership among the community, the ferry can become an integral part of Berlin’s transportation landscape.
Community Power Tariff UK delivers clean electricity from community energy projects, sourcing renewable energy from local wind and solar farms, with carbon offset gas, transparent provenance, fair pricing, and reinvestment in local generators across Britain.
Key Points
UK energy plan delivering 100% community renewable power with carbon-offset gas, sourced from local wind and solar.
✅ 100% community-generated electricity from UK wind and solar
✅ Fair prices with profits reinvested in local projects
✅ Carbon-offset gas and verified, transparent provenance
UK homes will soon be able to plug into community wind and solar farms from anywhere in the country through the first energy tariff to offer clean electricity exclusively from community projects.
The deal from Co-op Energy comes as green energy suppliers race to prove their sustainability credentials amid rising competition for eco-conscious customers and “greenwashing” in the market.
The energy supplier will charge an extra £5 a month over Co-op’s regular tariff to provide electricity from community energy projects and gas which includes a carbon offset in the price.
Co-op, which is operated by Octopus Energy after it bought the business from the Midcounties Co-operative last year, will source the clean electricity for its new tariff directly from 90 local renewable energy generation projects across the UK, including the Westmill wind and solar farms in Oxfordshire. It plans to use all profits to reinvest in maintaining the community projects and building new ones.
Phil Ponsonby, the chief executive of Midcounties Co-operative, said the tariff is the UK’s only one to be powered by 100% community-generated electricity and would ensure a fair price is paid to community generators too, amid a renewable energy auction boost that supports wider deployment.
Customers on the Community Power tariff will be able to “see exactly where it is being generated at small scale sites across the UK, and, with new rights to sell solar power back to energy firms, they know it is benefiting local communities”, he said.
Co-op, which has about 300,000 customers, has set itself apart from a rising number of energy supply deals which are marked as 100% renewable, but are not as green as they seem, even as many renewable projects are on hold due to grid constraints.
Consumer group Which? has found that many suppliers offer renewable energy tariffs but do not generate renewable electricity themselves or have contracts to buy any renewable electricity directly from generators.
Instead, the “pale green” suppliers exploit a loophole in the energy market by snapping up cheap renewable energy certificates, without necessarily buying energy from renewables projects.
The certificates are issued by the regulator to renewable energy developers for each megawatt generated, but these can be sold separately from the electricity for a fraction of the price.
A survey conducted last year found that one in 10 people believe that a renewables tariff means that the supplier generates at least some of its electricity from its own renewable energy projects.
Ponsonby said the wind and solar schemes that generate electricity for the Community Power tariff “plough the profits they make back into their neighbourhoods or into helping other similar projects get off the ground”.
Greg Jackson, the chief executive of Octopus Energy, said being able to buy locally-sourced clean, green energy is “a massive jump in the right direction” which will help grow the UK’s green electricity capacity nationwide.
“Investing in more local energy infrastructure and getting Britain’s homes run by the sun when it’s shining and wind energy when it’s blowing can end our reliance on dirty fossil fuels sooner than we hoped,” he said.
Vietnam Offshore Wind Regulations expand coastal zones to six nautical miles, remove water depth limits, streamline permits, and boost investment, grid integration, and renewable energy capacity across deeper offshore wind resource areas.
Key Points
Policies extend sites to six nautical miles, scrap depth limits, and speed permits to scale offshore wind.
✅ Extends offshore zones to six nautical miles from shore
✅ Removes water depth limits to access stronger winds
✅ Streamlines permits, aiding grid integration and finance
Vietnam has recently redefined its regulations for offshore wind power projects, marking a significant development in the country's renewable energy ambitions. This strategic shift aims to streamline regulatory processes, enhance project feasibility, and accelerate the deployment of offshore wind energy in Vietnam's coastal regions, amid a trillion-dollar offshore wind market globally.
Regulatory Changes
The Vietnamese government has adjusted offshore wind power regulations by extending the allowable distance from shore for wind farms to six nautical miles (approximately 11 kilometers), a move that aligns with evolving global practices such as Canada's offshore wind plan announced recently by regulators. This expansion from previous limits aims to unlock new areas for development and maximize the utilization of Vietnam's vast offshore wind potential.
Scrapping Depth Restrictions
In addition to extending offshore boundaries, Vietnam has removed restrictions on water depth for offshore wind projects. This revision allows developers to explore deeper waters, where wind resources may be more abundant, thereby diversifying project opportunities and optimizing energy generation capacity.
Strategic Implications
The redefined regulations are expected to stimulate investment in Vietnam's renewable energy sector, attracting domestic and international stakeholders keen on capitalizing on the country's favorable wind resources, with World Bank support for wind underscoring the growing pipeline in developing markets. The move aligns with Vietnam's broader energy diversification goals and commitment to reducing reliance on fossil fuels.
Economic Opportunities
The expansion of offshore wind development zones creates economic opportunities across the value chain, from project planning and construction to operation and maintenance. The influx of investments is anticipated to spur job creation, technology transfer, and infrastructure development in coastal communities, as industry groups like Marine Renewables Canada shift toward offshore wind specialization.
Environmental and Energy Security Benefits
Harnessing offshore wind power contributes to Vietnam's efforts to mitigate greenhouse gas emissions and combat climate change. By integrating renewable energy sources into its energy mix, Vietnam enhances energy security, as seen in the UK offshore wind expansion, reduces dependency on imported fuels, and promotes sustainable economic growth.
Challenges and Considerations
Despite the promising outlook, offshore wind projects face challenges such as technical complexities, environmental impact assessments, and grid integration, as well as exposure to policy risk exemplified by U.S. opposition to offshore wind debates.
Future Outlook
Looking ahead, Vietnam's redefined offshore wind regulations position the country as a key player in the global renewable energy transition, a trend reinforced by progress in offshore wind in Europe elsewhere. Continued policy support, investment facilitation, and technological innovation will be critical in unlocking the full potential of offshore wind power and achieving Vietnam's renewable energy targets.
Conclusion
Vietnam's revision of offshore wind power regulations reflects a proactive approach to advancing renewable energy development and fostering a conducive investment environment. By expanding development zones and eliminating depth restrictions, Vietnam sets the stage for accelerated growth in offshore wind capacity, contributing to both economic prosperity and environmental stewardship. As stakeholders seize opportunities in this evolving landscape, collaboration and innovation will drive Vietnam towards a sustainable energy future powered by offshore wind.
Iran Power Outage Protests surge as electricity blackouts, drought, and a looming heat wave spark unrest in Tehran, Shiraz, and more, with chants against leadership, strikes, and sanctions-driven economic pressures mounting.
Key Points
Protests across Iran over blackouts, drought, and economic strain challenge authorities and demand accountability.
✅ Rolling blackouts blamed on drought, heat wave, and surging demand.
✅ Chants target leadership amid strikes and wage, water shortages.
✅ Legitimacy questioned after low-turnout election and sanctions.
There have been protests in a number of cities in Iran amid rising public anger over widespread electricity blackouts.
Videos on social media appeared to show crowds in Shar-e Rey near Tehran, Shiraz, Amol and elsewhere overnight.
Some people can be heard shouting "Death to the dictator" and "Death to Khamenei" - a reference to Supreme Leader Ayatollah Ali Khamenei.
The government has apologised for the blackouts, which it has blamed on a severe drought and high demand.
Elsewhere, similar outages have had political repercussions, as a widespread power outage in Taiwan prompted a minister's resignation earlier this year.
President Hassan Rouhani explained in televised remarks on Tuesday morning that the drought meant most of the country's hydroelectric power plants were not operating, placing more pressure on thermal power plants, and that electricity consumption had surged as people used air conditioning to cope with the intense summer heat.
"I apologise to our dear people who have faced problems and suffering in the past few days and I urge them to co-operate [by cutting their electricity use]. People complain about power outages and they are right," Mr Rouhani said.
A video that has gone viral in recent days shows a woman complaining about the blackouts and corruption at a government office in the northern city of Gorgan and demanding that her comments be conveyed to "higher-ups like Mr Rouhani". "The only thing you have done is forcing hijab on us," she shouts.
The president has promised that the government will seek to resolve the problems within the next two or three weeks.
However, a power sector spokesman warned on Monday that consumption was exceeding the production capacity of Iran's power plants by 11GW, and said a "looming heat wave" could make the situation worse, as seen in Iraq's summer electricity crunch this year.
Iranians have also been complaining about water shortages and the non-payment of wages by some local authorities, while thousands of people working in Iran's oil industry have been on strike over pay and conditions, as officials discuss further energy cooperation with Iraq to ease supply pressures.
There was already widespread discontent at government corruption and the economic hardship caused by sanctions that were reinstated when the US abandoned a nuclear deal with Iran three years ago, even as Iran supplies about 40% of Iraq's electricity through cross-border sales.
Analysts say that after the historically low turnout in last month's presidential election, when more than half of the eligible voters stayed at home, the government is facing a serious challenge to its legitimacy.
Mr Rouhani will be succeeded next month by Ebrahim Raisi, a hard-line cleric close to Ayatollah Khamenei who won 62% of the vote after several prominent contenders were disqualified, while Iran finalizes power grid deals with Iraq to bolster regional ties.
The 60-year-old former judiciary chief has presented himself as the best person to combat corruption and solve Iran's economic problems, including ambitions to transmit electricity to Europe as a regional power hub.
But many Iranians and human rights activists have pointed to his human rights record, accusing him of playing a role in the executions of thousands of political prisoners in the 1980s and in the deadly crackdowns on mass anti-government protests in 2009 and 2019.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.