First gasification facility in Canada looks at Alberta

By Whitecourt Star


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Whitecourt might soon be home to a proposed biomass energy project that will be the first of its kind in Canada.

Chickadee Creek Energy Inc., an Edmonton-based company specializing in biomass-energy technologies, and Millar Western are proposing the construction of a 24-megawatt biomass-energy facility using Taylor Gasification technology.

Biomass is organic matter that can be converted to fuel. In this case, the biomass is slash, which is unused wood residues like treetops and branches that accumulate when wood is harvested. Slash cannot be left on-site since it represents a fire hazard, so it is collected and burned. Instead of burning the slash, Taylor Gasification technology will use the wood waste to generate nearly twice the energy per ton of biomass, as compared to conventional boiler technology, with half the greenhouse gas emissions.

Project director Jack Joys said the project is an example of distributive energy.

“It’s produced here and it can be consumed here,” he said. “You don’t have to have wires all over the place.”

Millar Western environmental leader Jeff Shipton said the project is coming at a time of increasing focus on lowering greenhouse gas emissions.

“With this kind of technology we’re getting a lot lower CO2 emissions per megawatts, lower than a conventional boiler technology and a lot lower than coal-fired power plants,” he said. “So what you get is a cleaner burning fuel per megawatt.”

Shipton said when biomass is burned, unused potential energy is released into the air. “It is just piled and burned and released into the atmosphere with no benefit, but all that biomass has an inherent worth in it,” he said. “We want to recover that.”

The gasification technology produces a synthesis gas that, in turn, is able to directly fire a gas turbine to generate electricity. The plant would potentially use 272 tons per day of wood waste from Millar WesternÂ’s harvesting and manufacturing operations. Millar Western wood waste would be diverted to the on-site facility, rather than shipping it to Whitecourt Power eliminating about 8,000 truckloads each year.

Approximately five million tons of slash is created annually in Alberta amounting to a potential 700 megawatts of electricity or enough to power half of Edmonton for one year.

“It’s a lot of power,” said Joys. “This area and north is the most congested line in all of Alberta from a transmission standpoint. So, if you can produce more of these plants in the north than you don’t have to rush to build expensive transmission lines.”

Joys said there are many benefits to having this type of facility in Whitecourt, including construction and operating jobs, expansion of forestry jobs and maintenance.

The construction phase of the project will provide as many as 175 jobs during peak times in Whitecourt. Once the facility is fully operational, 17 full-time operators and additional collection and maintenance contractors would be needed.

In order for the project to move forward, Millar Western is seeking to amend its environmental permit under the Environmental Protection and Enhancement Act.

Joys said that once funding for the approximately $100-million project is put in place, in addition to public approval and permit amendments, construction on the site could begin as early as this September.

Pending this start date, the facility would be operational by early 2011.

In terms of the environment, Shipton said the technology is a major step forward for the industry.

“It’s just taking the technology that’s out there and applying it to the biomass situation that we have here,” he said, adding that a variety of different materials can potentially be used including garbage. “It’s a greener technology.”

Joys said the project is a good example of diversification for the forest industry.

“I see it going everywhere there is forestry, but it’s not limited to that,” he said.

“We can handle municipal solid waste, so things like cardboard and paper products and things like that. There are lots of opportunity for fuel in this.”

Related News

California's Next Electricity Headache Is a Looming Shortage

California Electricity Reserve Mandate requires 3.3 GW of new capacity to bolster grid reliability amid solar power volatility, peak demand, and wildfire-driven blackouts, as CPUC directs PG&E, Edison, and Sempra to procure resource adequacy.

 

Key Points

A CPUC order for utilities to add 3.3 GW of reserves, safeguarding grid reliability during variable renewables and peaks

✅ 3.3 GW procurement to meet resource adequacy targets

✅ Focus on grid reliability during peak evening demand

✅ Prioritizes renewables, storage; limits new fossil builds

 

As if California doesn’t have enough problems with its electric service, now state regulators warn the state may be short on power supplies by 2021 if utilities don’t start lining up new resources now.

In the hopes of heading off a shortfall as America goes electric, the California Public Utilities Commission has ordered the state’s electricity providers to secure 3.3 additional gigawatts of reserve supplies. That’s enough to power roughly 2.5 million homes. Half of it must be in place by 2021 and the rest by August 2023.

The move comes as California is already struggling to accommodate increasingly large amounts of solar power that regularly send electricity prices plunging below zero and force other generators offline so the region’s grid doesn’t overload. The state is also still reeling from a series of deliberate mass blackouts that utilities imposed last month to keep their power lines from sparking wildfires amid strong winds. And its largest power company, PG&E Corp., went bankrupt in January.

Now as natural gas-fired power plants retire under the state’s climate policies, officials are warning the state could run short on electricity on hot evenings, when solar production fades and commuters get home and crank up their air conditioners. “We have fewer resources that can be quickly turned on that can meet those peaks,” utilities commission member Liane Randolph said Thursday before the panel approved the order to beef up reserves.

The 3.3 gigawatts that utilities must line up is in addition to a state rule requiring them to sign contracts for 15% more electricity than they expect to need. Some critics question the need for added supplies, particularly after the state went on a plant-building boom in the 2000s.

But California’s grid managers say the risk of a shortfall is real and could be as high as 4.7 gigawatts, especially during heat waves that test the grid again. Mark Rothleder, with the California Independent System Operator, said the 15% cushion is a holdover from the days before big solar and wind farms made the grid more volatile. Now it may need to be increased, he said.

“We’re not in that world anymore,” said Rothleder, the operator’s vice president of state regulatory affairs. “The complexity of the system and the resources we have now are much different.”

The state’s three major utilities, PG&E, Edison International and Sempra Energy, will be largely responsible for securing new supplies. The commission banned fossil fuels from being used at any new power generators built to meet the requirement — though it left the door open for expansions at existing ones.

Some analysts argue California is exporting its energy policies to Western states, making electricity more costly and less reliable.

PG&E said in an emailed statement that it was pleased the commission didn’t adopt an earlier proposal to require 4 gigawatts of additional resources. Edison similarly said it was “supportive.” Sempra didn’t immediately respond with comment.

 

Extending Deadlines

The pending plant closures are being hastened by a 2020 deadline requiring California’s coastal generators to stop using aging seawater-cooling systems. Some gas-fired power plants have said they’ll simply close instead of installing costly new cooling systems. So the commission on Thursday also asked California water regulators to extend the deadline for five plants.

The Sierra Club, meanwhile, called on regulators to turn away from fossil fuels altogether, saying their decision Thursday “sets California back on its progress toward a clean energy future.”

The move to push back the deadline also faces opposition from neighboring towns. Redondo Beach Mayor Bill Brand, whose city is home to one of the plants in line for an extension, told the commission it wasn’t necessary, since California utilities already have plenty of electricity reserves.

“It’s just piling on to that reserve margin,” Brand said.

 

Related News

View more

PC Leader Doug Ford vows to fire Hydro One CEO, board if elected

Doug Ford's Hydro One firing vow targets CEO pay, the utility's board, and privatization, amid Ontario politics over electricity rates, governance, and control, raising questions about legal tools, contracts, and impacts on customers and taxpayers.

 

Key Points

Ford vows to oust Hydro One's CEO and board to curb pay and signal rate restraint, subject to legal and governance limits.

✅ Province lacks direct control post-privatization

✅ Possible board removals to influence executive pay

✅ Impact on rates, contracts, and shareholders unclear

 

Ontario PC Leader Doug Ford is vowing to fire the head of Hydro One, and its entire board if he's elected premier in June.

Ford made the announcement, calling President and CEO Mayo Schmidt, Premier "Kathleen Wynne's $6-Million dollar man," referring to his yearly salary and bonuses, which now add up to $6.2 million.

"This board and this CEO are laughing themselves to the bank," Ford said.

However, it's unclear how Ford would do that since the province does not control the company anymore.

"We don't have the ability to go out and say we are firing the CEO at Hydro One," PC energy critic Todd Smith said while speaking to reporters after Ford's remarks.

#google#

However, he said "we do have tools at our disposal in the tool box. The unfortunate thing is that Kathleen Wynne and the Liberals have just let those tools sit there for the last couple of years and [have] not taken action on things like this."

Smith declined to provide details about what those tools are, but suggested Ford would have the right to fire Hydro's board.

He said that would send a message "that we're not going to accept these salaries."

Smith says the Ontario gov still has the right to fire Hydro One board. What about their contracts? Pay them out? Smith says they don't know the details of people's contacts

We will not engage in politics,' Hydro One says

A Hydro One spokesperson said the amount customers pay to compensate the CEO's salary is the same as before privatization — two cents on each monthly bill.

"We will not engage in politics, however our customers deserve the facts," said the email statement to CBC Toronto.

"Nearly 80 per cent of the total executive compensation package is paid for by shareholders."

Ontario NDP MPP Peter Tabuns says Ford is pro-privatization, and that won't help those struggling with high hydro bills. (Michelle Siu/The Canadian Press)

Peter Tabuns, the NDP's energy critic, said his government would aim to retake public control of Hydro One to cap CEO pay and control the CEO's "outrageous salary."

But while he shares Ford's goal of cutting Schmidt's pay, Tabuns blasted what he believes would be the PC leader's approach.

"Doug Ford has no idea how to reign [sic] in the soaring hydro bills that Ontario families are facing — in fact, if his threats of further privatization include hydro, he'll drive bills and executive salaries ever higher," he said in an email statement.

The only plan we've heard from Doug Ford so far is firing people and laying off people.- Glenn Thibeault, Energy Minister

​Tabuns says his party would aim to cut hydro bills by 30 per cent.

Meanwhile, Liberal Energy Minister Glenn Thibeault said Ford's plan will do nothing to address the actual issue of keeping hydro rates low, comparing his statement Thursday to the rhetoric and actions of U.S. President Donald Trump.

"The only plan we've heard from Doug Ford so far is firing people and laying off people," Thibeault said.

"What I'm seeing a very strong prevalence to is the person running the White House. He's been doing a lot of firing as well and that's not been working out so well for them."

Wynne government has taken steps to cut hydro bills, including legislation to lower electricity rates in Ontario.

Hydro prices have shot up in recent years prompting criticism from across Ontario. Wynne made the controversial move of privatizing part of the utility beginning in 2015.

By Oct. 2017, the Ontario Liberal government's "Fair Hydro Plan" had brought down the average household electricity bill by a 25% rate cut from the peak it hit in the summer of 2016. The Wynne government has also committed to keep rate increases below inflation for the next four years, but admits bills will rise significantly in the decade that follows as a recovery rate could drive costs higher.

Ford blasted the government's moves during a Toronto news conference, echoing calls to scrap the Fair Hydro Plan and review other options.

"The party's over with the tax payer's money, we're going to start respecting the tax payers," Ford said, repeatedly saying the money spent on Hydro One salaries is "morally indefensible."

 

Related News

View more

How Ukraine Unplugged from Russia and Joined Europe's Power Grid with Unprecedented Speed

Ukraine-ENTSO-E Grid Synchronization links Ukraine and Moldova to the European grid via secure interconnection, matching frequency for stability, resilience, and energy security, enabling cross-border support, islanding recovery, and coordinated load balancing during wartime disruptions.

 

Key Points

Rapid alignment of Ukraine and Moldova into the European grid to enable secure interconnection and system stability.

✅ Matches 50 Hz frequency across interconnected systems

✅ Enables cross-border support and electricity trading

✅ Improves resilience, stability, and energy security

 

On February 24 Ukraine’s electric grid operator disconnected the country’s power system from the larger Russian-operated network to which it had always been linked. The long-planned disconnection was meant to be a 72-hour trial proving that Ukraine could operate on its own and to protect electricity supply before winter as contingencies were tested. The test was a requirement for eventually linking with the European grid, which Ukraine had been working toward since 2017. But four hours after the exercise started, Russia invaded.

Ukraine’s connection to Europe—which was not supposed to occur until 2023—became urgent, and engineers aimed to safely achieve it in just a matter of weeks. On March 16 they reached the key milestone of synchronizing the two systems. It was “a year’s work in two weeks,” according to a statement by Kadri Simson, the European Union commissioner for energy. That is unusual in this field. “For [power grid operators] to move this quickly and with such agility is unprecedented,” says Paul Deane, an energy policy researcher at the University College Cork in Ireland. “No power system has ever synchronized this quickly before.”

Ukraine initiated the process of joining Europe’s grid in 2005 and began working toward that goal in earnest in 2017, as did Moldova. It was part of an ongoing effort to align with Europe, as seen in the Baltic states’ disconnection from the Russian grid, and decrease reliance on Russia, which had repeatedly threatened Ukraine’s sovereignty. “Ukraine simply wanted to decouple from Russian dominance in every sense of the word, and the grid is part of that,” says Suriya Jayanti, an Eastern European policy expert and former U.S. diplomat who served as energy chief at the U.S. embassy in Kyiv from 2018 to 2020.

After the late February trial period, Ukrenergo, the Ukrainian grid operator, had intended to temporarily rejoin the system that powers Russia and Belarus. But the Russian invasion made that untenable. “That left Ukraine in isolation mode, which would be incredibly dangerous from a power supply perspective,” Jayanti says. “It means that there’s nowhere for Ukraine to import electricity from. It’s an orphan.” That was a particularly precarious situation given Russian attacks on key energy infrastructure such as the Zaporizhzhia nuclear power plant and ongoing strikes on Ukraine’s power grid that posed continuing risks. (According to Jayanti, Ukraine’s grid was ultimately able to run alone for as long as it did because power demand dropped by about a third as Ukrainians fled the country.)

Three days after the invasion, Ukrenergo sent a letter to the European Network of Transmission System Operators for Electricity (ENTSO-E) requesting authorization to connect to the European grid early. Moldelectrica, the Moldovan operator, made the same request the following day. While European operators wanted to support Ukraine, they had to protect their own grids, amid renewed focus on protecting the U.S. power grid from Russian hacking, so the emergency connection process had to be done carefully. “Utilities and system operators are notoriously risk-averse because the job is to keep the lights on, to keep everyone safe,” says Laura Mehigan, an energy researcher at University College Cork.

An electric grid is a network of power-generating sources and transmission infrastructure that produces electricity and carries it from places such as power plants, wind farms and solar arrays to houses, hospitals and public transit systems. “You can’t just experiment with a power system and hope that it works,” Deane says. Getting power where it is it needed when it is needed is an intricate process, and there is little room for error, as incidents involving Russian hackers targeting U.S. utilities have highlighted for operators worldwide.

Crucial to this mission is grid interconnection. Linked systems can share electricity across vast areas, often using HVDC technology, so that a surplus of energy generated in one location can meet demand in another. “More interconnection means we can move power around more quickly, more efficiently, more cost effectively and take advantage of low-carbon or zero-carbon power sources,” says James Glynn, a senior research scholar at the Center on Global Energy Policy at Columbia University. But connecting these massive networks with many moving parts is no small order.

One of the primary challenges of interconnecting grids is synchronizing them, which is what Ukrenergo, Moldelectrica and ENTSO-E accomplished last week. Synchronization is essential for sharing electricity. The task involves aligning the frequencies of every energy-generation facility in the connecting systems. Frequency is like the heartbeat of the electric grid. Across Europe, energy-generating turbines spin 50 times per second in near-perfect unison, and when disputes disrupt that balance, slow clocks across Europe can result, reminding operators of the stakes. For Ukraine and Moldova to join in, their systems had to be adjusted to match that rhythm. “We can’t stop the power system for an hour and then try to synchronize,” Deane says. “This has to be done while the system is operating.” It is like jumping onto a moving train or a spinning ride at the playground: the train or ride is not stopping, so you had better time the jump perfectly.

 

Related News

View more

Iran eyes transmitting electricity to Europe as region’s power hub

Iran Electricity Grid Synchronization enables regional interconnection, cross-border transmission, and Caspian-Europe energy corridors, linking Iraq, Azerbaijan, Russia, and Qatar to West Asia and European markets with reliable, flexible power exchange.

 

Key Points

Iran's initiative to link West Asian and European power grids for trade, transit, reliability, and regional influence.

✅ Synchronizes grids with Iraq, Azerbaijan, Russia, and potential Qatar link

✅ Enables east-to-Europe electricity transit via Caspian energy corridors

✅ Backed by gas-fueled and combined-cycle generation capacity

 

Following a plan for becoming West Asia’s electricity hub, Iran has been taking serious steps for joining its electricity network with neighbors in the past few years.

The Iranian Energy Ministry has been negotiating with the neighboring countries including Iraq for the connection of their power networks with Iran, discussing Iran-Iraq energy cooperation as well as ties with Russia, Afghanistan, Azerbaijan, and Qatar to make them enable to import or transmit their electricity to new destination markets through Iran.

The synchronization of power grids with the neighboring countries, not only enhances Iran’s electricity exchanges with them, but it will also increase the political stance of the country in the region.

So far, Iran’s electricity network has been synchronized with Iraq, where Iran is supplying 40% of Iraq's power today, and back in September, the Energy Minister Reza Ardakanian announced that the electricity networks of Russia and Azerbaijan are the next in line for becoming linked with the Iranian grid in the coming months.

“Within the next few months, the study project of synchronization of the electricity networks of Iran, Azerbaijan, and Russia will be completed and then the executive operations will begin,” the minister said.

Meanwhile, Ardakanian and Qatari Minister of State for Energy Affairs Saad Sherida Al-Kaabi held an online meeting in late September to discuss joining the two countries' electricity networks via sea.

During the online meeting, Al-Kaabi said: "Electricity transfer between the two countries is possible and this proposal should be worked on.”

Now, taking a new step toward becoming the region’s power hub, Iran has suggested becoming a bridge between East and Europe for transmitting electricity.

In a virtual conference dubbed 1st Caspian Europe Forum hosted by Berlin on Thursday, the Iranian energy minister has expressed the country’s readiness for joining its electricity network with Europe.

"We are ready to connect Iran's electricity network, as the largest power generation power in West Asia, with the European countries and to provide the ground for the exchange of electricity with Europe," Ardakanian said addressing the online event.

Iran's energy infrastructure in the oil, gas, and electricity sectors can be used as good platforms for the transfer of energy from east to Europe, he noted.

In the event, which was aimed to study issues related to the development of economic cooperation, especially energy, between the countries of the Caspian Sea region, the official added that Iran, with its huge energy resources and having skilled manpower and advanced facilities in the field of energy, can pave the ground for the prosperity of international transport and energy corridors.

"In order to help promote communication between our landlocked neighbors with international markets, as Uzbekistan aims to export power to Afghanistan across the region, we have created a huge transit infrastructure in our country and have demonstrated in practice our commitment to regional development and peace and stability," Ardakanian said.

He pointed out that having a major percentage of proven oil and gas resources in the world, regional states need to strengthen relations in a bid to regulate production and export policies of these huge resources and potentially play a role in determining the price and supply of these resources worldwide.

“EU countries can join our regional cooperation in the framework of bilateral or multilateral mechanisms such as ECO,” he said.

Given the growing regional and global energy needs and the insufficient investment in the field, with parts of Central Asia facing severe electricity shortages today, as well as Europe's increasing needs, this area can become a sustainable area of cooperation, he noted.

Ardakanian also said that by investing in energy production in Iran, Europe can meet part of its future energy needs on a sustainable basis.

In Iraq, plans for nuclear power plants are being pursued to tackle chronic electricity shortages, reflecting parallel efforts to diversify generation.

Iran currently has electricity exchange with Armenia, Azerbaijan, Iraq, where grid rehabilitation deals have been finalized, Turkmenistan, and Afghanistan.

The country’s total electricity exports vary depending on the hot and cold seasons of the year, since during the hot season which is the peak consumption period, the country’s electricity exports decreases, however electrical communication with neighboring countries continues.

Enjoying abundant gas resources, which is the main fuel for the majority of the country’s power plants, Iran has the capacity to produce about 85,500 megawatts [85.5 gigawatts (GW)] of electricity.

Currently, combined cycle power plants account for the biggest share in the country’s total power generation capacity as Iran is turning thermal plants to combined cycle to save energy, followed by gas power plants.

 

Related News

View more

Are we ready for electric tractors?

Electric tractors are surging, with battery-powered models, grid-tethered JD GridCON, and solar-charged designs delivering autonomous guidance, high efficiency, low maintenance, quiet operation, robust PTO compatibility, and durability for sustainable, precision agriculture.

 

Key Points

Electric tractors use battery or grid power to run implements with high efficiency, low noise, and minimal maintenance.

✅ Battery, grid-tethered, or solar-charged power options

✅ Lower operating costs, reduced noise, fewer moving parts

✅ Autonomous guidance, PTO compatibility, and quick charging

 

Car and truck manufacturers are falling off the fossil fuel bandwagon in droves and jumping on the electric train.

Now add tractors to that list.

Every month, another e-tractor announcement comes across our desks. Environmental factors drive this trend, along with energy efficiency, lower maintenance, lower noise level and motor longevity, and even autonomous weed-zapping robots are emerging.

Let’s start with the Big Daddy of them all, the 400 horsepower JD GridCON. This tractor is not a hybrid and it has no hassle with batteries. The 300 kilowatts of power come to the GridCON through a 1,000 metre extension cord connected to the grid, including virtual power plants or an off-field generator. A reel on the tractor rolls the cable in and out. The cable is guided by a robotic arm to prevent the tractor from running over it.

It uses a 700 volt DC bus for electric power distribution onboard and for auxiliary implements. It uses a cooling infrastructure for off-board electrical use. Total efficiency of the drive train is around 85 percent. A 100 kilowatt electric motor runs the IVT transmission. There’s an auxiliary outlet for implements powered by an electric motor up to 200 kW.

GridCON autonomously follows prescribed routes in the field at speeds up to 12 m.p.h., leveraging concepts similar to fleet management solutions for coordination. It can also be guided manually with a remote control when manoeuvring the tractor to enter a field. Empty weight is 8.5 tonnes, which is about the same as a 6195R but with double the power. Deere engineers say it will save about 50 percent in operating costs compared to battery powered tractors.

Solectrac
Two California-built all-battery powered tractors are finally in full production. While the biggest is only 40 horsepower, these are serious tractors that may foretell the future of farm equipment.

The all-electric 40 h.p. eUtility tractor is based on a 1950s Ford built in India. Solectrac is able to buy the bare tractor without an engine, so it can create a brand new electric tractor with no used components for North American customers. One tractor has already been sold to a farmer in Ontario. | Solectrac photo
The tractors are built by Solectrac, owned by inventor Steve Heckeroth, who has been doing electric conversions on cars, trucks, race cars and tractors for 25 years. He said there are three main reasons to take electric tractors seriously: simplicity, energy efficiency and longevity.

“The electric motor has only one moving part, unlike small diesel engines, which have over 300 moving parts,” Heckeroth said, adding that Solectrac tractors are not halfway compromise hybrids but true electric machines that get their power from the sun or the grid, particularly in hydro-rich regions like Manitoba where clean electricity is abundant, whichever is closest.

Neither tractor uses hydraulics. Instead, Heckeroth uses electric linear actuators. The ones he installs provide 1,000 pounds of dynamic load and 3,000 lb. static loads. He uses linear actuators because they are 20 times more efficient than hydraulics.

The eUtility and eFarmer are two-wheel drive only, but engineers are working on compact four-wheel drive electric tractors. Each tractor carries a price tag of US$40,000. Because production numbers are still limited, both tractors are available on a first to deposit basis. One e-tractor has already been sold and delivered to a farmer in Ontario.

The eUtility is a 40 h.p. yard tractor that accepts all Category 1, 540 r.p.m. power take-off implements on the rear three-point hitch, except those requiring hydraulics. An optional hydraulic pump can be installed for $3,000 for legacy implements that require hydraulics. For that price, a dedicated electricity believer might instead consider converting the implement to electric.

“The eUtility is actually a converted new 1950s Ford tractor made in a factory in India that was taken over after the British were kicked out in 1948,” Heckeroth said.

“I am able to buy only the parts I need and then add the motor, controller and batteries. I had to go to India because it’s one of the few places that still makes geared transmissions. These transmissions work the best for electric tractors. Gear reduction is necessary to keep the motor in the most efficient range of about 2,000 r.p.m. It has four gears with a high and low range, which covers everything from creep to 25 m.p.h.

On his eUtility, a single 30 kWh onboard battery pack provides five to eight hours of run time, depending on loads. It can carry two battery packs. The Level 2 quick charge gives an 80 percent charge for one pack in three hours. Two packs can receive a full charge overnight with support from home batteries like Powerwall for load management.

The integrated battery management system protects the batteries during charging and discharging, while backup fuel cell chargers can keep storage healthy in remote deployments. Batteries are expected to last about 10 years, depending on the number of operating cycles and depth of discharge.

Exchangeable battery packs are available to keep the tractor running through the full work day. These smaller 20 kWh packs can be mounted on the rear hitch to balance the weight of the optional front loader or carried in the optional front loader to balance the weight of heavy implements mounted on the rear hitch.

The second tractor is the 20 kWh eFarmer, which features high visibility for row crop farms at a fraction of the cost of diesel fuel tractors. The 30 h.p. eFarmer is basically just a tube frame with the necessary components attached. A simple joystick controls steering, speed and brakes.

Harvest
Introduced to the North American public this spring by Motivo Engineering in California, the Harvest tractor is simply a big battery on wheels. The complex electrical system takes power in through a variety of renewable energy sources, such as solar panels with smart solar inverters enabling optimized PV integration, water wheels, wind turbines or even intermittent electrical grids. It stores electrical power on-board and delivers it when and where required, putting power out to a large number of electrical tools and farm implements. It operates in AC or DC modes.

 

Related News

View more

BC Hydro says three LNG companies continue to demand electricity, justifying Site C

BC Hydro LNG Load Forecast signals rising electricity demand from LNG Canada, Woodfibre, and Tilbury, aligning Site C dam capacity with BCUC review, hydroelectric supply, and a potential fourth project in feasibility study British Columbia.

 

Key Points

BC Hydro's projection of LNG-driven power demand, guiding Site C capacity, BCUC review, and grid planning.

✅ Includes LNG Canada, Woodfibre, and Tilbury load requests

✅ Aligns Site C hydroelectric output with industrial electrification

✅ Notes feasibility study for a fourth LNG project

 

Despite recent project cancellations, such as the Siwash Creek independent power project now in limbo, BC Hydro still expects three LNG projects — and possibly a fourth, which is undergoing a feasibility study — will need power from its controversial and expensive Site C hydroelectric dam.

In a letter sent to the British Columbia Utilities Commission (BCUC) on Oct. 3, BC Hydro’s chief regulatory officer Fred James said the provincially owned utility’s load forecast includes power demand for three proposed liquefied natural gas projects because they continue to ask the company for power.

The letter and attached report provide some detail on which of the LNG projects proposed in B.C. are more likely to be built, given recent project cancellations.

The documents are also an attempt to explain why BC Hydro continues to forecast a surge in electricity demand in the province, as seen in its first call for power in 15 years driven by electrification, even though massive LNG projects proposed by Malaysia’s state owned oil company Petronas and China’s CNOOC Nexen have been cancelled.

An explanation is needed because B.C.’s new NDP government had promised the BCUC would review the need for the $9-billion Site C dam, which was commissioned to provide power for the province’s nascent LNG industry, amid debates over alternatives like going nuclear among residents. The commission had specifically asked for an explanation of BC Hydro’s electric load forecast as it relates to LNG projects by Wednesday.

The three projects that continue to ask BC Hydro for electricity are Shell Canada Ltd.’s LNG Canada project, the Woodfibre LNG project and a future expansion of FortisBC’s Tilbury LNG storage facility.

None of those projects have officially been sanctioned but “service requests from industrial sector customers, including LNG, are generally included in our industrial load forecast,” the report noted, even as Manitoba Hydro warned about energy-intensive customers in a separate notice.

In a redacted section of the report, BC Hydro also raises the possibility of a fourth LNG project, which is exploring the need for power in B.C.

“BC Hydro is currently undertaking feasibility studies for another large LNG project, which is not currently included in its Current Load Forecast,” one section of the report notes, though the remainder of the section is redacted.

The Site C dam, which has become a source of controversy in B.C. and was an important election issue, is currently under construction and, following two new generating stations recently commissioned, is expected to be in service by 2024, a timeline which had been considered to provide LNG projects with power by the time they are operational.

BC Hydro’s letter to the BCUC refers to media and financial industry reports that indicate global LNG markets will require more supply by 2023.

“While there remains significant uncertainty, global LNG demand will continue to grow and there is opportunity for B.C. LNG,” the report notes.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.