Integrity car company in Kentucky runs out of money

By Associated Press


CSA Z463 Electrical Maintenance -

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A company that pledged to hire up to 4,000 workers if it was allowed to build an electric car plant in the state has shut down, according to its accountant.

"They ran out of money," Ken Sach, who identified himself as an accountant for Integrity Manufacturing, told The Courier-Journal. "I am cleaning out my desk. They have closed their doors."

Sach said the company at one time last year employed 200 workers. He declined to comment further.

The one-story factory near Interstate 65 in Bullitt County was locked and the parking lot was nearly deserted.

Last summer, Integrity announced plans to build a plant in Franklin in Simpson County, with the help of hefty tax incentives.

The company had persuaded the state to amend traffic laws to allow the three-wheeled, low-speed ZAP electric vehicles on state roads.

As those plans fell apart last fall amid failure to attract $125 million in private bond financing, Integrity Manufacturing officials pledged to build the ZAP vehicles instead in Shepherdsville. As recently as last month, Integrity trumpeted plans to sponsor Louisville's 2009 Great Steamboat Race — an annual event held during pre-Kentucky Derby festivities — in partnership with ZAP, the Santa Rosa, Calif.-based electric car company.

But a ZAP spokesman Thursday disavowed any connection with the steamboat race and declined to comment on the closure of Integrity Manufacturing.

"I keep seeing news of all our activities in Kentucky that we know nothing about," ZAP spokesman Alex Campbell said by telephone of published reports that that Integrity Automotive, Integrity Manufacturing and ZAP would sponsor the annual event.

Campbell declined to comment on the future of ZAP manufacturing in Kentucky.

"There is so much that has happened, I am not sure what is going on," Campbell said. "We have our existing business to run."

Randall S. Waldman, chief executive officer and owner of Integrity Manufacturing, could not be immediately reached for comment. Matt Hudzik, chief operating officer for the company, also could not be reached.

Waldman resigned as a member of the board of directors of ZAP, according to a filing Wednesday with the U.S. Securities and Exchange Commission. The filing also declared that Waldman "has sold his interest in Integrity Automotive, LLC, now called ZAP Motor Manufacturing Inc."

A new firm, ZAP Motor Manufacturing of Kentucky Inc., filed incorporation papers with the Kentucky Secretary of State, state records show. ZAP Motor Manufacturing is located in Prospect, according to state records.

Related News

N.S. approves new attempt to harness Bay of Fundy's powerful tides

Bay of Fundy Tidal Energy advances as Nova Scotia permits Jupiter Hydro to test floating barge platforms with helical turbines in Minas Passage, supporting renewable power, grid-ready pilots, and green jobs in rural communities.

 

Key Points

A Nova Scotia tidal energy project using helical turbines to generate clean power and create local jobs.

✅ Permits enable 1-2 MW prototypes near Minas Passage

✅ Floating barge platforms with patented helical turbines

✅ PPA at $0.50/kWh with Nova Scotia Power

 

An Alberta-based company has been granted permission to try to harness electricity from the powerful tides of the Bay of Fundy.

Nova Scotia has issued two renewable energy permits to Jupiter Hydro.

Backers have long touted the massive energy potential of Fundy's tides -- they are among the world's most powerful -- but large-scale commercial efforts to harness them have borne little fruit so far, even as a Scottish tidal project recently generated enough power to supply nearly 4,000 homes elsewhere.

The Jupiter application says it will use three "floating barge type platforms" carrying its patented technology. The company says it uses helical turbines mounted as if they were outboard motors.

"Having another company test their technology in the Bay of Fundy shows that this early-stage industry continues to grow and create green jobs in our rural communities," Energy and Mines Minister Derek Mombourquette said in a statement.

The first permit allows the company to test a one-megawatt prototype that is not connected to the electricity grid.

The second -- a five-year permit for up to two megawatts -- is renewable if the company meets performance standards, environmental requirements and community engagement conditions.

Mombourquette also authorized a power purchase agreement that allows the company to sell the electricity it generates to the Nova Scotia grid through Nova Scotia Power for 50 cents per kilowatt hour.

On its web site, Jupiter says it believes its approach "will prove to be the most cost effective marine energy conversion technology in the world," even as other regional utilities consider initiatives like NB Power's Belledune concept for turning seawater into electricity.

The one megawatt unit would have screws which are about 5.5 metres in diameter.

The project is required to obtain all other necessary approvals, permits and authorizations.

It will be located near the Fundy Ocean Research Center for Energy in the Minas Passage and will use existing electricity grid connections.

A study commissioned by the Offshore Energy Research Association of Nova Scotia says by 2040, the tidal energy industry could contribute up to $1.7 billion to Nova Scotia's gross domestic product and create up to 22,000 full-time jobs, a transition that some argue should be planned by an independent body to ensure reliability.

Last month, Nova Scotia Power said it now generates 30 per cent of its power from renewables, as the province moves to increase wind and solar projects after abandoning the Atlantic Loop.

The utility says 18 per cent came from wind turbines, nine per cent from hydroelectric and tidal turbines and three per cent by burning biomass across its fleet.

However, over half of the province's electrical generation still comes from the burning of coal or petroleum coke, even as environmental advocates push to reduce biomass use in the mix. Another 13 per cent come from burning natural gas and five per cent from imports.

 

Related News

View more

Scientists generate 'electricity from thin air.' Humidity could be a boundless source of energy.

Air Humidity Energy Harvesting converts thin air into clean electricity using air-gen devices with nanopores, delivering continuous renewable energy from ambient moisture, as demonstrated by UMass Amherst researchers in Advanced Materials.

 

Key Points

A method using nanoporous air-gen devices to harvest continuous clean electricity from ambient atmospheric moisture.

✅ Nanopores drive charge separation from ambient water molecules

✅ Works across materials: silicon, wood, bacterial films

✅ Predictable, continuous power unlike intermittent solar or wind

 

Sure, we all complain about the humidity on a sweltering summer day. But it turns out that same humidity could be a source of clean, pollution-free energy, aligning with efforts toward cheap, abundant electricity worldwide, a new study shows.

"Air humidity is a vast, sustainable reservoir of energy that, unlike wind and solar power resources, is continuously available," said the study, which was published recently in the journal Advanced Materials.

While humidity harvesting promises constant output, advances like a new fuel cell could help fix renewable energy storage challenges, researchers suggest.

“This is very exciting,” said Xiaomeng Liu, a graduate student at the University of Massachusetts-Amherst, and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

In fact, researchers say, nearly any material can be turned into a device that continuously harvests electricity from humidity in the air, a concept echoed by raindrop electricity demonstrations in other contexts.

“The air contains an enormous amount of electricity,” said Jun Yao, assistant professor of electrical and computer engineering at the University of Massachusetts-Amherst and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt – but we don’t know how to reliably capture electricity from lightning.

"What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

The heart of the human-made cloud depends on what Yao and his colleagues refer to as an air-powered generator, or the "air-gen" effect, which relates to other atmospheric power concepts like night-sky electricity studies in the field.

In broader renewable systems, flexible resources such as West African hydropower can support variable wind and solar output, complementing atmospheric harvesting concepts as they mature.

The study builds on research from a study published in 2020. That year, scientists said this new technology "could have significant implications for the future of renewable energy, climate change and in the future of medicine." That study indicated that energy was able to be pulled from humidity by material that came from bacteria; related bio-inspired fuel cell design research explores better electricity generation, the new study finds that almost any material, such as silicon or wood, also could be used.

The device mentioned in the study is the size of a fingernail and thinner than a single hair. It is dotted with tiny holes known as nanopores, it was reported. "The holes have a diameter smaller than 100 nanometers, or less than a thousandth of the width of a strand of human hair."

 

Related News

View more

Should California classify nuclear power as renewable?

California Nuclear Renewable Bill AB 2898 seeks to add nuclear to the Renewables Portfolio Standard, impacting Diablo Canyon, PG&E compliance, carbon-free targets, and potential license extensions while addressing climate goals and natural gas reliance.

 

Key Points

A bill to add nuclear to California's RPS, influencing Diablo Canyon, PG&E planning, and carbon-free climate targets.

✅ Reclassifies nuclear as renewable in California's RPS.

✅ Could influence Diablo Canyon license extension and ownership.

✅ Targets carbon-free goals while limiting natural gas reliance.

 

Although he admits it's a long shot, a member of the California Legislature from the district that includes the Diablo Canyon nuclear plant has introduced a bill that would add nuclear power to the state's list of renewable energy sources.

"I think that nuclear power is an important component of generating large-scale electricity that's good for the environment," said Jordan Cunningham, R-San Luis Obispo. "Without nuclear as part of the renewable portfolio, we're going to have tremendous difficulty meeting the state's climate goals without a significant cost increase on electricity ratepayers."

Established in 2002, California's Renewables Portfolio Standard spells out the power sources eligible to count toward the state's goals to wean itself of fossil fuels. The list includes solar, wind, biomass, geothermal, small hydroelectric facilities and even tidal currents. The standard has been updated, currently calling for 60 percent of California's electricity to come from renewables by 2030 and 100 percent from carbon-free sources by 2045, even as some analyses argue net-zero emissions may be difficult to achieve without nuclear power.

Nuclear power is not part of the portfolio standard and Diablo Canyon — the only remaining nuclear plant in California — is scheduled to stop producing electricity by 2025, even as some Southern California plant closures face postponement to maintain grid reliability.

Pacific Gas & Electric, the operators of Diablo Canyon, announced in 2016 an agreement with a collection of environmental and labor groups to shut down the plant, often framed as part of a just transition for workers and communities. PG&E said Diablo will become uneconomical to run due to changes in California's power grid — such as growth of renewable energy sources, increased energy efficiency measures and the migration of customers from traditional utilities to community choice energy programs.

But Cunningham thinks the passage of Assembly Bill 2898, which he introduced last week, — as innovators like Bill Gates' mini-reactor venture tout new designs — could give the plant literally a new lease on life.

"If PG&E were able to count the power produced (at Diablo) toward its renewable goals, it might — I'm not saying it will or would, but it might — cause them to reconsider applying to extend the operating license at Diablo," Cunningham said.

Passing the bill, supporters say, could also make Diablo Canyon attractive to an outside investor to purchase and then apply to the Nuclear Regulatory Commission for a license extension.

But nuclear power has long generated opposition in California and AB 2898 will face long odds in Sacramento, and similar efforts elsewhere have drawn opposition from power producers as well. The Legislature is dominated by Democrats, who have expressed more interest in further developing wind and solar energy projects than offering a lifeline to nuclear.

And if the bill managed to generate momentum, anti-nuclear groups will certainly be quick to mobilize, reflecting a national energy debate over Three Mile Island and whether to save struggling plants.

When told of Cunningham's bill, David Weisman, outreach coordinator for the Alliance for Nuclear Responsibility, said flatly, "Diablo Canyon has become a burdensome, costly nuclear white elephant."

Critics say nuclear power by definition cannot be considered renewable because it leaves behind waste in the form of spent nuclear fuel that then has to be stored, while supporters point to next-gen nuclear designs that aim to improve safety and costs. The federal government has not found a site to deposit the waste that has built up over decades from commercial nuclear power plants.

Even though Diablo Canyon is the only nuclear plant left in the Golden State, it accounts for 9 percent of California's power mix. Cunningham says if the plant closes, the state's reliance on natural gas — a fossil fuel — will increase, pointing to what happened when the San Onofre Nuclear Generating Station closed.

In 2011, the final full year operations for San Onofre, nuclear accounted for 18.2 percent of in-state generation and natural gas made up 45.4 percent. The following year, nuclear dropped to 9.3 percent and gas shot up to 61.1 percent of in-state generation.

"If we're going to get serious about being a national leader as California has been on dealing with climate change, I think nuclear is part of the answer," Cunningham said.

But judging from the response to an email from the Union-Tribune, PG&E isn't exactly embracing Cunningham's bill.

"We remain focused on safely and reliably operating Diablo Canyon Power Plant until the end of its current operating licenses and planning for a successful decommissioning," said Suzanne Hosn, a PG&E senior manager at Diablo Canyon. "The Assemblyman's proposal does not change any of PG&E's plans for the plant."

Cunningham concedes AB 2898 is "a Hail Mary pass" but said "it's an important conversation that needs to be had."

The second-term assemblyman introduced a similar measure late last year that sought to have the Legislature bring the question before voters as an amendment to the state constitution. But the legislation, which would require a two-thirds majority vote in the Assembly and the Senate, is still waiting for a committee assignment.

AB 2898, on the other hand, requires a simple majority to move through the Legislature. Cunningham said he hopes the bill will receive a committee assignment by the end of next month.
 

 

Related News

View more

Sudbury, Ont., eco groups say sustainability is key to grid's future

Sudbury Electrification and Grid Expansion is driving record power demand, EV charging, renewable energy planning, IESO forecasts, smart grid upgrades, battery storage, and industrial electrification, requiring cleaner power plants and transmission capacity in northern Ontario.

 

Key Points

Rising electricity demand and clean energy upgrades in Sudbury to power EVs, industry, and a smarter, expanded grid.

✅ IESO projects system size may need to more than double

✅ EVs and smart devices increase peak and off-peak load

✅ Battery storage and V2G can support reliability and resiliency

 

Sudbury, Ont., is consuming more power than ever, amid an electricity supply crunch in Ontario, according to green energy organizations that say meeting the demand will require cleaner energy sources.

"This is the welfare of the entire city on the line and they are putting their trust in electrification," said David St. Georges, manager of communications at reThink Green, a non-profit organization focused on sustainability in Sudbury.

According to St. Georges, Sudbury and northern Ontario can meet the growing demand for electricity to charge clean power for EVs and smart devices. 

According to the Independent Electricity System Operator (IESO), making a full switch from fossil fuels to other renewable energy sources could require more power plants, while other provinces face electricity shortages of their own.

"We have forecasted that Ontario's electricity system will need significant expansion to meet this, potentially more than doubling in size," the IESO told CBC News in an emailed statement.

Electrification in the industrial sector is adding greater demand to the electrical grid as electric cars challenge power grids in many regions. Algoma Steel in Sault Ste. Marie and ArcelorMittal Dofasco in Hamilton both aim to get electric arc furnaces in operation. Together, those projects will require 630 megawatts.

"That's like adding four cities the size of Sudbury to the grid," IESO said.

Devin Arthur, chapter president of the Electric Vehicle society in Greater Sudbury, said the city is coming full circle with fully electrifying its power grid, reflecting how EVs are a hot topic in Alberta and beyond.

"We're going to need more power," he said.

"Once natural gas was introduced, that kind of switched back, and everyone was getting out of electrification and going into natural gas and other sources of power."

Despite Sudbury's increased appetite for electricity, Arthur added it's also easier to store now as Ontario moves to rely on battery storage solutions.

"What that means is you can actually use your electric vehicle as a battery storage device for the grid, so you can actually sell power from your vehicle that you've stored back to the grid, if they need that power," he said.

Harneet Panesar, chief operating officer for the Ontario Energy Board, told CBC the biggest challenge to going green is seeing if it can work around older infrastructure, while policy debates such as Canada's 2035 EV sales mandate shape the pace of change.

"You want to make sure that you're building in the right spot," he said.

"Consumers are shifting from combustion engines to EV drivetrains. You're also creating more dependency. At a very high level, I'm going to say it's probably going to go up in terms of the demand for electricity."

Fossil fuels are the first to go for generating electricity, said St. Georges.

"But we're not there yet, because it's not a light switch solution. It takes time to get to that, which is another issue of electrification," he said.

"It's almost impossible for us not to go that direction."

 

Related News

View more

Mike Sangster to Headline Invest in African Energy Forum

TotalEnergies Africa Energy Strategy 2025 spotlights oil, gas, LNG, and renewables, with investments in Namibia, Congo, Mozambique, Uganda, Morocco, and South Africa, driving upstream growth, clean energy, and energy transition partnerships.

 

Key Points

An investment roadmap uniting oil, gas, LNG, and renewables to speed Africa's upstream growth and energy transition.

✅ Keynote by Mike Sangster at IAE Paris 2025.

✅ Oil, gas, LNG projects across Namibia, Congo, Mozambique, Uganda.

✅ Scaling renewables: solar, wind, green ammonia for export.

 

Mike Sangster, Senior Vice President for Africa at TotalEnergies, will play a pivotal role in the upcoming Invest in African Energy (IAE) Forum, which will take place in Paris on May 13-14, 2025. As a key figure in one of the world’s largest energy companies, Sangster's participation in the forum is expected to offer crucial insights into Africa’s evolving energy landscape, particularly in the areas of oil, gas, and renewable energy.

TotalEnergies' Role in Africa's Energy Landscape

TotalEnergies has long been a major player in Africa’s energy sector, driving development across both emerging and established markets. The company has a significant footprint in countries such as Namibia, the Republic of Congo, Libya, Mozambique, Uganda, and South Africa. TotalEnergies’ investments span both traditional oil and gas projects as well as renewable energy initiatives, reflecting its commitment to a more diversified energy future for Africa.

In Namibia, for instance, TotalEnergies is advancing its Venus-1 discovery, with plans to produce its first oil by the end of the decade. The company is also heavily involved in the Orange Basin exploration. Meanwhile, in the Republic of Congo, TotalEnergies is investing $600 million to enhance deepwater production at its Moho Nord field.

Beyond oil and gas, the company is expanding its renewable energy portfolio across the continent. This includes significant solar, wind, and hydropower projects, such as the 500 MW Sadada solar project in Libya, a 216 MW solar plant with battery storage in South Africa, and a 1 GW wind and solar project in Morocco designed to produce green ammonia for export.

The Invest in African Energy Forum

The IAE Forum, which TotalEnergies’ Sangster will headline, is an exclusive event aimed at facilitating investment between African energy markets and global investors, including discussions on COVID-19 funding for electricity access mechanisms that emerged, and their relevance to current capital flows. With a focus on fostering partnerships and discussions about the future of energy in Africa, the event will bring together industry experts, project developers, investors, and policymakers for two days of intensive engagement.

The forum will also serve as a crucial platform for sharing perspectives on the role of private investment, as outlined in the IEA investment outlook for Africa's power systems, in Africa’s energy future, strategies for unlocking new upstream opportunities, and the transition to a more sustainable energy system. This makes Sangster's participation, as someone directly involved in both conventional and renewable energy projects across the continent, particularly significant.

TotalEnergies' Diversified Strategy in Africa

Sangster’s keynote address and participation in an exclusive fireside chat will provide an in-depth look into TotalEnergies’ strategy for Africa. His insights will touch upon the company's ongoing projects in the oil and gas sectors, as well as its renewable energy investments. TotalEnergies has committed to making its portfolio more sustainable, underscored by its recent VSB acquisition to expand renewables capabilities, while continuing to be a leader in the energy transition.

One of the company’s notable projects is the Mozambique LNG initiative, a $20 billion venture aimed at supplying liquefied natural gas to international markets. Additionally, TotalEnergies is gearing up for the first oil from its Tilenga field in Uganda, which will be transported through the East African Crude Oil Pipeline (EACOP), the longest heated crude oil pipeline in the world.

In South Africa, TotalEnergies is constructing one of the largest renewable energy projects, a 216 MW solar power plant with integrated battery storage. This project is expected to significantly contribute to the country’s clean energy ambitions. Furthermore, in Morocco, TotalEnergies is developing a major wind and solar facility that will produce green ammonia, aligning with its broader strategy to provide solutions for Europe’s energy needs.

Africa’s Energy Transition

The forum’s timing could not be more critical, given the pressing need for an energy transition in Africa. While the continent remains heavily reliant on fossil fuels for its energy needs, there is growing momentum toward incorporating renewable energy sources, a point reinforced by the IRENA renewables report on decarbonisation and quality of life, which highlights the transformative potential. Africa’s vast natural resources, combined with global investments and partnerships, position the continent as a key player in the global shift toward sustainable energy.

However, Africa faces unique challenges in transitioning to renewable energy, reflecting a broader Sub-Saharan electricity challenge that also presents opportunity, across many markets. These challenges include a lack of infrastructure, financial constraints, and the need for increased political stability in certain regions. The IAE Forum provides an opportunity to address these barriers, with industry leaders like Sangster offering solutions based on real-world experiences and investments.

As the energy sector continues to evolve globally, and even if electricity systems are unlikely to go fully green this decade according to some outlooks, Africa's potential remains vast. The continent’s diverse energy resources, from oil and gas to renewables, offer a unique opportunity to build a more sustainable and resilient energy future. The Invest in African Energy Forum serves as an important platform for global stakeholders to collaborate, learn, and invest in the energy transformation taking place across the continent.

Mike Sangster’s insights at the forum will undoubtedly shape discussions on how companies like TotalEnergies are navigating the intersection of universal electricity access goals, sustainability, and economic growth in Africa. With Africa’s energy needs expected to increase exponentially in the coming decades, ensuring that these needs are met sustainably and equitably will be a priority for both policymakers and private investors.

As the global energy landscape continues to shift, the Invest in African Energy Forum provides a critical space for shaping the future of Africa’s energy sector, offering invaluable opportunities for investment, innovation, and collaboration.

 

Related News

View more

Toronto Prepares for a Surge in Electricity Demand as City Continues to Grow

Toronto Electricity Demand Growth underscores IESO projections of rising peak load by 2050, driven by population growth, electrification, new housing density, and tech economy, requiring grid modernization, transmission upgrades, demand response, and local renewable energy.

 

Key Points

It refers to the projected near-doubling of Toronto's peak load by 2050, driven by electrification and urban growth.

✅ IESO projects peak demand nearly doubling by 2050

✅ Drivers: population, densification, EVs, heat pumps

✅ Solutions: efficiency, transmission, storage, demand response

 

Toronto faces a significant challenge in meeting the growing electricity needs of its expanding population and ambitious development plans. According to a new report from Ontario's Independent Electricity System Operator (IESO), Toronto's peak electricity demand is expected to nearly double by 2050. This highlights the need for proactive steps to secure adequate electricity supply amidst the city's ongoing economic and population growth.


Key Factors Driving Demand

Several factors are contributing to the projected increase in electricity demand:

Population Growth: Toronto is one of the fastest-growing cities in North America, and this trend is expected to continue. More residents mean more need for housing, businesses, and other electricity-consuming infrastructure.

  • New Homes and Density: The city's housing strategy calls for 285,000 new homes within the next decade, including significant densification in existing neighbourhoods. High-rise buildings in urban centers are generally more energy-intensive than low-rise residential developments.
  • Economic Development: Toronto's robust economy, a hub for tech and innovation, attracts new businesses, including energy-intensive AI data centers that fuel further demand for electricity.
  • Electrification: The push to reduce carbon emissions is driving the electrification of transportation and home heating, further increasing pressure on Toronto's electricity grid.


Planning for the Future

Ontario and the City of Toronto recognize the urgency to secure stable and reliable electricity supplies to support continued growth and prosperity without sacrificing affordability, drawing lessons from British Columbia's clean energy shift to inform local approaches. Officials are collaborating to develop a long-term plan that focuses on:

  • Energy Efficiency: Efforts aim to reduce wasteful electricity usage through upgrades to existing buildings, promoting energy-efficient appliances, and implementing smart grid technologies. These will play a crucial role in curbing overall demand.
  • New Infrastructure: Significant investments in building new electricity generation, transmission lines, and substations, as well as regional macrogrids to enhance reliability, will be necessary to meet the projected demands of Toronto's future.
  • Demand Management: Programs incentivizing energy conservation during peak hours will help to avoid strain on the grid and reduce the need to build expensive power plants only used at peak demand times.


Challenges Ahead

The path ahead isn't without its hurdles.  Building new power infrastructure in a dense urban environment like Toronto can be time-consuming, expensive, and sometimes disruptive, especially as grids face harsh weather risks that complicate construction and operations. Residents and businesses might worry about potential rate increases required to fund these necessary investments.


Opportunity for Innovation

The IESO and the city view the situation as an opportunity to embrace innovative solutions. Exploring renewable energy sources within and near the city, developing local energy storage systems, and promoting distributed energy generation such as rooftop solar, where power is created near the point of use, are all vital strategies for meeting needs in a sustainable way.

Toronto's electricity future depends heavily on proactive planning and investment in modernizing its power infrastructure.  The decisions made now will determine whether the city can support economic growth, address climate goals and a net-zero grid by 2050 ambition, and ensure that lights stay on for all Torontonians as the city continues to expand.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified