SaskPower looks at peaking plant

By Regina Leader-Post


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
SaskPower is proposing to build a 100 megawatt “peaking generation” power plant adjacent to the Tantallon switching station in east-central Saskatchewan.

The proposed plant, which would be used to provide additional electrical power during peak utilization periods, would use natural gas as a fuel.

“SaskPower must ensure the required infrastructure is in place to help meet the demand for power in the province,” Crown Corporations Minister Ken Cheveldayoff commented.

The proposed plant "is part of SaskPower's plans to add peaking capacity to help reinforce the electrical system,'' Cheveldayoff added in a news release.

Consultations with municipal officials and landowners about the project is underway.

An open house to provide information about the project will be held at the Spy Hill Community Hall from 2 to 8 p.m. on March 25.

Related News

Understanding the Risks of EV Fires in Helene Flooding

EV Flood Fire Risks highlight climate change impacts, lithium-ion battery hazards, water damage, post-submersion inspection, first responder precautions, manufacturer safeguards, and insurance considerations for extreme weather, flood-prone areas, and hurricane aftermaths.

 

Key Points

Water-exposed EV lithium-ion batteries may ignite later, requiring inspection, isolation, and trained responders.

✅ Avoid driving through floodwaters; park on high ground.

✅ After submersion, isolate vehicle; seek qualified inspection.

✅ Inform first responders and insurers about EV water damage.

 

As climate change intensifies the frequency and severity of extreme weather events, concerns about electric vehicle (EV) safety in flood-prone areas have come to the forefront. Recent warnings from officials regarding the risks of electric vehicles catching fire due to flooding from Hurricane Idalia underscore the need for heightened awareness and preparedness among consumers and emergency responders, as well as attention to grid reliability during disasters.

The alarming incidents of EVs igniting after being submerged in floodwaters have raised critical questions about the safety of these vehicles during severe weather conditions. While electric vehicles are often touted for their environmental benefits and lower emissions, it is crucial to understand the potential risks associated with their battery systems when exposed to water, even as many drivers weigh whether to buy an electric car for daily use.

The Risks of Submerging Electric Vehicles

Electric vehicles primarily rely on lithium-ion batteries, which can be sensitive to water exposure. When these batteries are submerged, they risk short-circuiting, which may lead to fires. Unlike traditional gasoline vehicles, where fuel may leak out, the sealed nature of an EV’s battery can create hazardous situations when compromised. Experts warn that even after water exposure, the risk of fire can persist, sometimes occurring days or weeks later.

Officials emphasize the importance of vigilance in flood-prone areas, including planning for contingencies like mobile charging and energy storage that support recovery. If an electric vehicle has been submerged, it is crucial to have it inspected by a qualified technician before attempting to drive it again. Ignoring this can lead to catastrophic consequences not only for the vehicle owner but also for surrounding individuals and properties.

Official Warnings and Recommendations

In light of these dangers, safety officials have issued guidelines for electric vehicle owners in flood-prone areas. Key recommendations include:

  1. Avoid Driving in Flooded Areas: The most straightforward advice is to refrain from driving through flooded streets, which can not only damage the vehicle but also pose risks to personal safety.

  2. Inspection After Flooding: If an EV has been submerged, owners should seek immediate professional inspection. Technicians can evaluate the battery and electrical systems for damage and determine if the vehicle is safe to operate.

  3. Inform Emergency Responders: In flood situations, informing emergency personnel about the presence of electric vehicles can help them mitigate risks during rescue operations, including firefighter health risks that may arise. First responders are trained to handle conventional vehicles but may need additional precautions when dealing with EVs.

Industry Response and Innovations

In response to rising concerns, electric vehicle manufacturers are working to enhance the safety features of their vehicles. This includes developing waterproof battery enclosures and improving drainage systems to prevent water intrusion, as well as exploring vehicle-to-home power for resilience during outages. Some manufacturers are also investing in research to improve battery chemistry, making them more resilient in extreme conditions.

The automotive industry recognizes that consumer education is equally important, particularly around utility impacts from mass-market EVs that affect planning. Manufacturers and safety organizations are encouraged to disseminate information about proper EV maintenance, the importance of inspections after flooding, and safety protocols for both owners and first responders.

The Role of Insurance Companies

As the risks associated with electric vehicle flooding become more apparent, insurance companies are also reassessing their policies. With increasing incidences of extreme weather, insurers are likely to adapt coverage options related to water damage and fire risks specific to electric vehicles. Policyholders should consult with their insurance providers to ensure they understand their coverage in the event of flooding.

Preparing for the Future

With the increasing adoption of electric vehicles, it is vital to prepare for the challenges posed by climate change and evolving state power grids capacity. Community awareness campaigns can play a significant role in educating residents about the risks and safety measures associated with electric vehicles during flooding events. By fostering a well-informed public, the likelihood of accidents and emergencies can be reduced.

 

Related News

View more

Sens. Wyden, Merkley Introduce Bill to Ensure More Wildfire Resilient Power Grid

Wildfire Resilient Power Grid Act proposes DOE grants for utility companies to fund wildfire mitigation, grid resilience upgrades, undergrounding power lines, fast-tripping protection, weather monitoring, and vegetation management, prioritizing rural electric cooperatives.

 

Key Points

A federal bill funding utility wildfire mitigation and grid hardening via DOE grants, prioritizing rural utilities.

✅ $1B DOE matching grants for grid upgrades and wildfire mitigation.

✅ Prioritizes rural utilities; supports undergrounding and hardening.

✅ Funds fast-tripping protection, weather stations, vegetation management.

 

U.S. Sens. Ron Wyden and Jeff Merkley today introduced new legislation, amid transmission barriers that persist, to incentivize utility companies to do more to reduce wildfire risks as aging power infrastructure ignite wildfires in Oregon and across the West.

Wyden and Merkley's Wildfire Resilient Power Grid Act of 2020 would ensure power companies do their part to reduce the risk of wildfires through power system upgrades, even as California utility spending crackdown seeks accountability, such as the undergrounding of power lines, fire safety equipment installation and proper vegetation management.

"First and foremost, this is a public safety issue. Fire after fire ignited this summer because the aging power grid could not withstand a major windstorm during the season's hottest and driest days," Wyden said. "Many utility companies are already working to improve the resiliency of their power grid, but the sheer costs of these investments must not come at the expense of equitable regulation for rural utility customers. Congress must do all that it can to stop the catastrophic wildfires decimating the West, and that means improving rural infrastructure. By partnering with utilities around the country, we can increase wildfire mitigation efforts at a modest cost -- a fire prevention investment that will pay dividends by saving lives, homes and businesses."

"When this year's unprecedented wildfire event hit, I drove hundreds of miles across our state to see the damage firsthand and to hear directly from impacted communities, so that I could go back to D.C. and work for the solutions they need," said Merkley. "What I saw was apocalyptic--and we have to do everything we can to reduce the risk of this happening again. That means we have to work with our power companies to get critical upgrades and safety investments into place as quickly as possible."

The Wildfire Resilient Power Grid Act of 2020:

* Establishes a $1 billion-per-year matching grant program for power companies through the Department of Energy, even as ACORE opposed DOE subsidy proposals, to reduce the risk of power lines and grid infrastructure causing wildfires.

* Gives special priority to smaller, rural electric companies to ensure mitigation efforts are targeted to forested rural areas.

* Promotes proven methods for reducing wildfire risks, including undergrounding of lines, installing fast-tripping protection systems, and constructing weather monitoring stations to respond to electrical system fire risks.

* Provides for hardening of overhead power lines and installation of fault location equipment where undergrounding of power lines is not a favorable option.

* Ensures fuels management activities of power companies are carried out in accordance with Federal, State, and local laws and regulations.

* Requires power companies to have "skin in the game" by making the program a 1-to-1 matching grant, with an exception for smaller utilities where the matching requirement is one third of the grant.

* Delivers accountability on the part of utilities and the Department of Energy by generating a report every two years on efforts conducted under the grant program.

Portland General Electric President and CEO Maria Pope: "We appreciate Senator Wyden's and Senator Merkley's leadership in proposing legislation to provide federal funding that will help protect Oregon from devastating wildfires. When passed, this will help make Oregon's electric system safer, faster, without increasing customer prices. That is especially important given the economy and hotter, drier summers and longer wildfire seasons that Oregon will continue to face."

Lane County Commission Chair Heather Butch: " In a matter of hours, the entire Lane County community of Blue River was reduced to ashes by the Holiday Farm Fire. Since the moment I first toured that devastation I've been committed to building it back better. I applaud Senators Wyden and Merkley for drafting the Wildfire Resilient Power Grid Act, as it could well provide the path towards meeting this important goal. Moreover, the resultant programs will better protect rural communities from the increasing dangers of wildfires through a number of preventative measures that would otherwise be difficult to implement."

Linn County Commissioner Roger Nyquist: "This legislation is a smart strategic investment for the future safety of our residents as well as the economic vitality of our community."

Marion County Commissioner Kevin Cameron: "After experiencing a traumatic evacuation during the Beachie Creek and Lion's Head wild fires, I understand the need to strengthen the utility Infrastructure. The improvements resulting from Senator Wyden and Merkley's bill will reduce disasters in the future, but improve everyday reliability for our citizens who live, work and protect the environment in potential wildfire areas."

Edison Electric Institute President Tom Kuhn: "EEI thanks Senator Wyden and Senator Merkley for their leadership in introducing the Wildfire Resilient Power Grid Act. This bill will help support and accelerate projects already planned and underway to enhance energy grid resiliency and mitigate the risk of wildfire damage to power lines. Electric companies across the country are committed to working with our government partners and other stakeholders on preparation and mitigation efforts that combat the wildfire threat and on the rapid deployment of technology solutions, including aggregated DERs at FERC, that address wildfire risks, while still maintaining the safe, reliable, and affordable energy we all need."

Oregon Rural Electric Cooperative Association Executive Director Ted Case: "Oregon's electric cooperatives support the Wildfire Resilient Power Grid Act and appreciate Senator Wyden's and Senator Merkley's leadership and innovative approach to wildfire mitigation, particularly for small, rural utilities. This legislation includes targeted assistance that will help us to continue to provide affordable, reliable and safe electricity to over 500,000 Oregonians."

Sustainable Northwest Director of Government Affairs & Program Strategy Dylan Kruse: "In recent years, the West has seen too many wildfires originate due to poorly maintained or damaged electric utility transmission and distribution infrastructure. This legislation plays an important role to ensure that power lines do not contribute to wildfire starts, while providing safe and reliable power to communities during wildfire events. Utilities must, even as Wyoming clean energy bill proposals emerge, live up to their legal requirements to maintain their infrastructure, but this bill provides welcome resources to expedite and prioritize risk reduction, while preventing cost increases for ratepayers."

Oregon Wild Wilderness Program Manager Erik Fernandez: "2020 taught Oregon the lesson that California learned in the Paradise Fire, and SCE wildfire lawsuits that followed underscore the stakes. Addressing the risk of unnaturally caused powerline fires is an increasingly important critical task. I appreciate Senator Ron Wyden's efforts to protect our homes and communities from powerline fires."

 

Related News

View more

The German economy used to be the envy of the world. What happened?

Germany's Economic Downturn reflects an energy crisis, deindustrialization risks, export weakness, and manufacturing stress, amid Russia gas loss, IMF and EU recession forecasts, and debates over electricity price caps and green transition.

 

Key Points

An economic contraction from energy price shocks, export weakness, and bottlenecks in manufacturing and digitization.

✅ Energy shock after loss of cheap Russian gas

✅ Exports slump amid China slowdown and weak demand

✅ Policy gridlock on power price cap and permits

 

Germany went from envy of the world to the worst-performing major developed economy. What happened?

For most of this century, Germany racked up one economic success after another, dominating global markets for high-end products like luxury cars and industrial machinery, selling so much to the rest of the world that half the economy ran on exports.

Jobs were plentiful, the government’s financial coffers grew as other European countries drowned in debt, and books were written about what other countries could learn from Germany.

No longer. Now, Germany is the world’s worst-performing major developed economy, with both the International Monetary Fund and European Union expecting it to shrink this year.

It follows Russia’s invasion of Ukraine and the loss of Moscow’s cheap Russian gas that underpinned industry — an unprecedented shock to Germany’s energy-intensive industries, long the manufacturing powerhouse of Europe.

The sudden underperformance by Europe’s largest economy has set off a wave of criticism, handwringing and debate about the way forward.

Germany risks “deindustrialization” as high energy costs and government inaction on other chronic problems threaten to send new factories and high-paying jobs elsewhere, said Christian Kullmann, CEO of major German chemical company Evonik Industries AG.

From his 21st-floor office in the west German town of Essen, Kullmann points out the symbols of earlier success across the historic Ruhr Valley industrial region: smokestacks from metal plants, giant heaps of waste from now-shuttered coal mines, a massive BP oil refinery and Evonik’s sprawling chemical production facility.

These days, the former mining region, where coal dust once blackened hanging laundry, is a symbol of the energy transition, as the power sector’s balancing act continues with wind turbines and green space.

The loss of cheap Russian natural gas needed to power factories “painfully damaged the business model of the German economy,” Kullmann told The Associated Press. “We’re in a situation where we’re being strongly affected — damaged — by external factors.”

After Russia cut off most of its gas to the European Union, spurring an energy crisis in the 27-nation bloc that had sourced 40% of the fuel from Moscow, the German government asked Evonik to turn to coal by keeping its 1960s coal-fired power plant running a few months longer.

The company is shifting away from the plant — whose 40-story smokestack fuels production of plastics and other goods — to two gas-fired generators that can later run on hydrogen amid plans to become carbon neutral by 2030 and following the nuclear phase-out of recent years.

One hotly debated solution: a government-funded cap on industrial electricity prices to get the economy through the renewable energy transition, amid an energy crisis that even saw a temporary nuclear extension to stabilize supply.

The proposal from Vice Chancellor Robert Habeck of the Greens Party has faced resistance from Chancellor Olaf Scholz, a Social Democrat, and pro-business coalition partner the Free Democrats. Environmentalists say it would only prolong reliance on fossil fuels, while others advocate a nuclear option to meet climate goals.

Kullmann is for it: “It was mistaken political decisions that primarily developed and influenced these high energy costs. And it can’t now be that German industry, German workers should be stuck with the bill.”

The price of gas is roughly double what it was in 2021, with a senior official arguing nuclear would do little to solve that gas issue, hurting companies that need it to keep glass or metal red-hot and molten 24 hours a day to make glass, paper and metal coatings used in buildings and cars.

A second blow came as key trade partner China experiences a slowdown after several decades of strong economic growth.

These outside shocks have exposed cracks in Germany’s foundation that were ignored during years of success, including lagging use of digital technology in government and business and a lengthy process to get badly needed renewable energy projects approved.

 

Related News

View more

Toronto Cleans Up After Severe Flooding

Toronto Flood Cleanup details the citywide response to storm damage after heavy rain, stressing drainage system upgrades, emergency services, transit disruptions, infrastructure repair, financial aid, insurance claims, and climate resilience planning for future weather.

 

Key Points

Toronto Flood Cleanup is the city's flood response, restoring infrastructure, aiding residents, and upgrading drainage.

✅ Emergency services and public works lead debris removal.

✅ Repairs to roads, bridges, transit, and utilities underway.

✅ Aid, insurance claims, and drainage upgrades prioritized.

 

Toronto is grappling with significant cleanup efforts following severe storms that unleashed heavy rains and caused widespread flooding across the city. The storms, which hit the area over the past week, have left a trail of damage and disruption, prompting both immediate response measures and longer-term recovery plans.

The intense rainfall began with a powerful storm system that moved through southern Ontario, with Sudbury Hydro crews working to reconnect service as the system pressed toward the GTA, delivering an unprecedented volume of water in a short period. The resulting downpours overwhelmed the city's drainage systems, leading to severe flooding in multiple neighborhoods. Streets, basements, and parks were inundated, with many areas experiencing water levels not seen in recent memory.

Emergency services were quickly mobilized to address the immediate impact of the floods. Toronto’s Fire Services, along with other first responders and skilled utility teams, as Ontario recently sent 200 workers to Florida to help restore power, were deployed to assist residents affected by the rising waters. Rescue operations were carried out to help people trapped in their homes or vehicles, and temporary shelters were set up for those displaced by the flooding.

The storm's impact was felt across various sectors of the city. Public transportation services were disrupted, as strong gusts led to significant power outages in parts of the region, with numerous subway stations and bus routes affected by the high water levels. Major roads were closed due to flooding, causing significant traffic delays and affecting daily commutes for many residents. Local businesses also faced challenges, with some forced to close their doors as a result of the water damage.

The city's infrastructure bore the brunt of the storm's fury. Several key infrastructure components, including roads, bridges, and utilities, suffered damage. The city's water treatment plants and sewage systems were stressed by the volume of water, raising concerns about potential contamination and the need for extensive maintenance and repair work.

In the wake of the flooding, the Toronto Municipal Government has launched a comprehensive cleanup and recovery effort. The city's Public Works Department is spearheading the operation, focusing on clearing debris, repairing damaged infrastructure, and restoring essential services, as Hydro One crews restore power to hundreds of thousands across Ontario. Teams of workers are diligently addressing the damage to roads and bridges, ensuring that they are safe for use and functioning properly.

Efforts are also underway to assist residents and businesses affected by the flooding. Financial aid and support programs are being implemented to help those who have suffered property damage or loss, including customers affected by Toronto power outages as repairs continue. The city is working closely with insurance companies to facilitate claims and provide relief to those in need.

In addition to the immediate cleanup, there is a heightened focus on evaluating and improving the city's flood management systems. The recent storms have highlighted vulnerabilities in Toronto’s infrastructure, prompting calls for enhanced flood prevention measures. City officials and urban planners are assessing the current drainage systems and exploring ways to bolster their capacity to handle future extreme weather events.

The storms have also sparked discussions about the broader implications of climate change and its impact on urban areas. Experts suggest that increasingly severe weather events, including heavy rainfall and flooding, may become more common, as seen with Houston's extended power outage after severe storms, as global temperatures rise. This has led to a call for more resilient and adaptable infrastructure to better withstand such events.

Community organizations and volunteers have played a vital role in the recovery process. Local groups have come together to support their neighbors, providing assistance with cleanup efforts, distributing supplies, and offering emotional support to those affected by the disaster. Their contributions underscore the importance of community solidarity in times of crisis.

As Toronto works towards recovery, there is a clear recognition of the need for a comprehensive strategy to address both the immediate and long-term challenges posed by severe weather events. The city’s response will involve not only repairing the damage caused by this storm but also investing in infrastructure improvements, drawing lessons from London power outage disruption cases to harden critical systems, and adopting measures to mitigate the impact of future floods.

In summary, the severe storms that recently struck Toronto have led to widespread flooding and significant disruption across the city. The immediate response has involved extensive cleanup efforts, damage assessment, and support for affected residents and businesses. Looking ahead, Toronto faces the challenge of enhancing its flood management systems and preparing for the potential impacts of climate change. The collective efforts of emergency services, city officials, and community members will be crucial in ensuring a swift recovery and building resilience against future storms.

 

Related News

View more

Disrupting Electricity? This Startup Is Digitizing Our Very Analog Electrical System

Solid-State AC Switching reimagines electrification with silicon-based, firmware-driven controls, smart outlets, programmable circuit breakers, AC-DC conversion, and embedded sensors for IoT, energy monitoring, surge protection, and safer, globally compatible devices.

 

Key Points

Solid-state AC switching replaces mechanical switches with silicon chips for intelligent, programmable power control.

✅ Programmable breakers trip faster and add surge and GFCI protection

✅ Shrinks AC-DC conversion, boosting efficiency and device longevity

✅ Enables sensor-rich, IoT-ready outlets with energy monitoring

 

Electricity is a paradox. On the one hand, it powers our most modern clean cars and miracles of computing like your phone and laptop. On the other hand, it’s one of the least updated, despite efforts to build a smarter electricity infrastructure nationwide, and most ready-for-disruption parts of our homes, offices, and factories.

A startup in Silicon Valley plans to change all that, in California’s energy transition where reliability is top of mind, and has just signed deals with leading global electronics manufacturers to make it happen.

“The end point of the electrification infrastructure of every building out there right now is based on old technology,” Thar Casey, CEO of Amber Solutions, told me recently on the TechFirst podcast. “Basically some was invented ... last century and some came in a little bit later on in the fifties and sixties.”

Ultimately, it’s an almost 18th century part of modern homes.

Even smart homes, with add-ons like the Tesla Powerwall, still rely on legacy switching.

The fuses, breakers, light switches, and electrical outlets in your home are ancient technology that would easily understood by Thomas Edison, who was born in 1847. When you flip a switch and instantly flood your room with light, it feels like a modern right. But you are simply pushing a piece of plastic which physically moves one wire to touch another wire. That completes a circuit, electricity flows, and ... let there be light.

Casey wants to change all that. To transform our hard-wired electrical worlds and make them, in a sense, soft wired. And the addressable market is literally tens of billions of devices.

The core innovation is a transition to solid-state switches.

“Take your table, which is a solid piece of wood,” Casey says. “If you can mimic what an electromechanical switch does, opening and closing, inside that table without any actual moving parts, that means you are now solid state AC switching.”

And solid-state is exactly what Silicon Valley is all about.

“Solid state it means it can be silicon,” Casey says. “It can be a chip, it can be smaller, it can be intelligent, you can have firmware, you can add software ... now you have a mini computer.”

That’s a significant innovation with a huge number of implications. It means that the AC to DC converters attached to every appliance you plug into the wall — the big “bricks” that are part of your power cord, for instance — can now be a tiny fraction of the size. Appliance run on DC, direct current, and the electricity in your walls is AC, alternating current; similar principles underpin advanced smart inverters in solar systems, and it needs to be converted before it’s usable, and that chunk of hardware, with electrolytics, magnetics, transformers and more, can now be replaced, saving space in thermostats, CO2 sensors, coffee machines, hair dryers, smoke detectors ... any small electric device.

(Since those components generally fail before the device does, replacing them is a double win.)

Going solid state also means that you can have dynamic input range: 45 volts all the way up to 600 volts.

So you can standardize one component across many different electric devices, and it’ll work in the U.S., it’ll work in Europe, it’ll work in Japan, and it will work whether it’s getting 100 or 120 or 220 volts.

Building it small and building it solid state has other benefits as well, Casey says, including a much better circuit breaker for power spikes as the U.S. grid faces climate change impacts today.

“This circuit breaker is programmable, it has intelligence, it has WiFi, it has Bluetooth, it has energy monitoring metering, it has surge protection, it has GFCI, and here’s the best part: we trip 3000 times faster than a mechanical circuit breaker.”

What that means is much more ambient intelligence that can be applied all throughout your home. Rather than one CO2 sensor in one location, every power outlet is now a CO2 sensor that can feed virtual power plant programs, too. And a particulate matter sensor and temperature sensor and dampness sensor and ... you name it.

Amber’s next-generation system-on-chip complete replacement for smart outlets
Amber’s next-generation system-on-chip complete replacement for smart outlets JOHN KOETSIER
“We put as many as fifteen functions ... in one single gang box in a wall,” Casey told me.

Solid state is the gift that keeps giving, because now every outlet can be surge-protected. Every outlet can have GFCI — ground fault circuit interruption — not just the ones in your bathroom. And every outlet and light switch in your home can participate in the sensor network that powers your home security system. Oh, and, if you want, Alexa or Siri or the Google Assistant too. Plus energy-efficient dimmers for all lighting appliances that don’t buzz.

So when can you buy Amber switches and outlets?

In a sense, never.

Casey says Amber isn’t trying to be a consumer-facing company and won’t bring these innovations to market themselves. This July, Amber announced a letter of intent with a global manufacturer that includes revenue, plus MOUs with six other major electronics manufacturers. Letters of intent can be a dime a dozen, as can memoranda of understanding, but attaching revenue makes it more serious and significant.

The company has only raised $6.7 million, according to Craft, and has a number of competitors, such as Blixt, which has funding from the European Union, and Atom Power, which is already shipping technology. But since Amber is not trying to be a consumer product and take its innovations to market itself, it needs much less cash to build a brand and a market. You’ll be able to buy Amber’s technology at some point; just not under the Amber name.

“We have over 25 companies that we’re in discussions with,” Casey says. “We’re going to give them a complete solution and back them up and support them toward success. Their success will be our success at the end of the day.”

Ultimately, of course, cost will be a big part of the discussion.

There are literally tens of billions of switches and outlets on the planet, and modernizing all of them won’t happen overnight. And if it’s expensive, it won’t happen quickly either, even as California turns to grid-scale batteries to ease strain.

Casey is a big cagey with costs — there are still a lot of variables, after all. But it seems it won’t cost that much more than current technology.

“This can’t be $1.50 to manufacture, at least not right now, maybe down the road,” he told me. “We’re very competitive, we feel very good. We’re talking to these partners. They recognize that what we’re bringing, it’s a cost that is cost effective.”

 

Related News

View more

Tube Strikes Disrupt London Economy

London Tube Strikes Economic Impact highlights transport disruption reducing foot traffic, commuter flows, and tourism, squeezing small businesses, hospitality revenue, and citywide growth while business leaders urge negotiations, resolution, and policy responses to stabilize operations.

 

Key Points

Reduced transport options cut foot traffic and sales, straining small businesses and slowing London-wide growth.

✅ Hospitality venues report lower revenue and temporary closures

✅ Commuter and tourism declines reduce daily sales and bookings

✅ Business groups urge swift negotiations to restore services

 

London's economy is facing significant challenges due to ongoing tube strikes, challenges that are compounded by scrutiny of UK energy network profits and broader cost pressures across sectors, with businesses across the city experiencing disruptions that are impacting their operations and bottom lines.

Impact on Small Businesses

Small businesses, particularly those in the hospitality sector, are bearing the brunt of the disruptions caused by the strikes. Many establishments rely on the steady flow of commuters and tourists that the tube system facilitates, while also hoping for measures like temporary electricity bill relief that can ease operating costs during downturns. With reduced transportation options, foot traffic has dwindled, leading to decreased sales and, in some cases, temporary closures.

Economic Consequences

The strikes are not only affecting individual businesses but are also having a ripple effect on the broader economy, a dynamic seen when commercial electricity consumption plummeted in B.C. during the pandemic. The reduced activity in key sectors is contributing to a slowdown in economic growth, echoing periods when BC Hydro demand fell 10% and prompting policy responses such as Ontario electricity rate reductions for businesses, with potential long-term consequences if the disruptions continue.

Calls for Resolution

Business leaders and industry groups are urging for a swift resolution to the strikes. They emphasize the need for dialogue between the involved parties to reach an agreement that minimizes further economic damage and restores normalcy to the city's transportation system.

The ongoing tube strikes in London are causing significant disruptions to the city's economy, particularly affecting small businesses that depend on the efficient movement of people. Immediate action is needed to address the issues, drawing on tools like a subsidized hydro plan used elsewhere to spur recovery, to prevent further economic downturn.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified