Buyer's Remorse: Questions about grid modernization affordability


power lines

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Grid Modernization drives utilities to integrate DER, AMI, and battery storage while balancing reliability, safety, and affordability; regulators pursue cost-benefit analyses, new rate design, and policy actions to guide investment and protect customer-owned resources.

 

Key Points

Upgrading the grid to manage DER with digital tools, while maintaining reliability, safety, and customer affordability.

✅ Cost-benefit analyses guide prudent grid investments

✅ AMI and storage deployments enable DER visibility and control

✅ Rate design reforms support customer-owned resources

 

Utilities’ pursuit of a modern grid, including the digital grid concept, to maintain the reliability and safety pillars of electricity delivery has raised a lot of questions about the third pillar — affordability.

Utilities are seeing rising penetrations of emerging technologies, highlighted in recent grid edge trends reports, like distributed solar, behind-the-meter battery storage, and electric vehicles. These new distributed energy resources (DER) do not eliminate utilities' need to keep distribution systems safe and reliable.

But the need for modern tools to manage DER imposes costs on utilities, prompting calls to invest in smarter infrastructure even as some regulators, lawmakers and policymakers are concerned those costs could drive up electricity rates.

The result is an increasing number of legislative and regulatory grid modernization actions aimed at identifying what is necessary to serve the coming power sector transformation and address climate change risks across the grid.

 

The rise of grid modernization

Grid modernization, which is supported by both conservatives and distributed energy resources advocates, got a lot of attention last year. According to the 2017 review of grid modernization policy by the North Carolina Clean Energy Technology Center (NCCETC), 288 grid modernization policy actions were proposed, pending or enacted in 39 states.

These numbers from NCCETC's first annual review of policy activity set a benchmark against which future years' activity can be measured.

The most common type of state actions, by far, were those that focused on the deployment of advanced metering infrastructure (AMI) and battery energy storage. Those are two of the 2017 trends identified in NCCETC’s 50 States of Grid Modernization report. But deployment of those technologies, while foundational to an updated grid, only begins to prepare distribution systems for the coming power sector transformation.

Bigger advances, including the newest energy system management tools, are being held back by 2017’s other policy actions requiring more deliberation and fact-finding, even as grid vulnerability report cards underscore the risks that modernization seeks to mitigate.

Utilities’ proposals to more fully prepare their grids to deliver 21st century technologies are being met with questions about completeness and cost.

Utilities are being asked to address these questions in comprehensive, public utility commission-led cost-benefit analyses and studies. This is also one of NCCETC’s top 2017 policy action trends for grid modernization. The outcome to date appears to be an increased, but still incomplete, understanding of what is needed to build a 21st century grid.

Among the top objectives of those driving the policy actions are resolving questions about private sector participation in grid modernizaton buildouts and developing new rate designs to protect and support customer-owned distributed energy resources. Actions on those topics are also on NCCETC’s list of 2017 policy trends.

Altogether, the trend list is dominated by actions that do not lead to completion of grid modernization but to more work on it.

Related News

N.S. senior suspects smart meter to blame for shocking $666 power bill

Nova Scotia Power smart meter billing raises concerns amid estimated billing, catch-up bills, and COVID-19 meter reading delays, after seniors report doubled electricity usage and higher utility charges despite consistent consumption and on-time payments.

 

Key Points

Smart meter billing uses digital reads, limits estimates, and may trigger catch-up charges after reading suspensions.

✅ COVID-19 reading pause led to estimated bills and later catch-ups

✅ Smart meters reduce reliance on estimated billing errors

✅ Customers can seek payment plans and bill reviews

 

A Nova Scotia senior says she couldn't believe her eyes when she opened her most recent power bill. 

Gloria Chu was billed $666 -- more than double what she normally pays, and similar spikes such as rising electricity bills in Calgary have drawn attention.

As someone who always pays her bi-monthly Nova Scotia Power bill in full and on time, Chu couldn't believe it.

According to her bill, her electricity usage almost tripled during the month of May, compared to last year, and is even more than it was last winter, and with some utilities exploring seasonal power rates customers may see confusing swings.

She insists she and her husband aren't doing anything differently -- but one thing has changed.

"I have had a problem since they put the smart meter in," said Chu, who lives in Upper Gulf Shore, N.S.

Chu got a big bill right after the meter was installed in January, too. That one was more than $530.

She paid it, but couldn't understand why it was so high.

As for this bill, she says she just can't afford it, especially amid a recently approved 14% rate hike in Nova Scotia.

"That's all of my CPP," Chu said. "Actually, it's more than my CPP."

Chu says a neighbor up the road who also has a smart meter had her bill double, too. In nearby Pugwash, she says some residents have seen an increase of about $20-$30.

Nova Scotia Power had put a pause on installing smart meters because of the COVID-19 pandemic, but it has resumed as of June 1, with the goal of upgrading 500,000 meters by 2021, even as in other provinces customers have faced fees for refusing smart meters during similar rollouts.

In this case, the utility says it's not the meter that's the problem, and notes that in New Brunswick some old meters gave away free electricity even as the pandemic forced Nova Scotia Power to suspend meter readings for two months.

"As a result, every one of our customers in Nova Scotia received an estimated bill," said Jennifer parker, Nova Scotia Power's director of customer care.

The utility estimated Chu's bill at $182 -- less than she normally pays -- so her latest bill is considered a catch-up bill after meter readings resumed last month.

Parker admits how estimates are calculated isn't perfect.

"There would be a lot of customers who probably had a more accurate bill because of the way that we estimate, and that's actually one of things that smart meters will get rid of, is that we won't need to do estimated billing," Parker said.

Chu isn't quite convinced.

"It is pretty smart for the power company, but it's not smart for us," she said with a laugh.

Nova Scotia Power has put a hold on her bill and says it will work with Chu on an affordable solution, though the province cannot order the utility to lower rates which limits what can be offered.

She just hopes to never see a big bill like this again, while elsewhere in Newfoundland and Labrador a lump-sum electricity credit is being provided to help customers.

 

Related News

View more

IEC reaches settlement on Palestinian electricity debt

IEC-PETL Electricity Agreement streamlines grid management, debt settlement, and bank guarantees, shifting power supply, transmission, and distribution to PETL via IEC-built sub-stations, bolstering energy cooperation, utility billing, and payment assurance in PA areas.

 

Key Points

A 15-year deal transferring PA grid operations to PETL, settling legacy debt, and securing payments with bank guarantees.

✅ NIS 915 million repaid in 48 installments.

✅ PETL assumes distribution, O&M, and sub-station ownership.

✅ 15-year, NIS 2.8b per year supply and services contract.

 

The Palestinian Authority will pay Israel Electric NIS 915 million and take over management of its grid through Palestinian electricity supplier PETL.

The Israel Electric Corporation (IEC) (TASE: ELEC.B22) and Palestinian electricity supplier PETL have signed a draft commercial agreement under which the Palestinian Authority's (PA) debt of almost NIS 1 billion will be repaid. The agreement also transfers actual management of the supply of electricity to Palestinian customers from IEC to the Palestinian electricity authority, enabling consideration of distributed solutions such as a virtual power plant program in future planning.

Up until now, the IEC was unable to actually collect debts for electricity from Palestinian customers, because the connection with them was through the PA. Responsibility for collection will now be exclusively in Palestinian hands, with the PA providing hundreds of millions of shekels in bank guarantees for future debts. The agreement, which is valid for 15 years, amounts to an estimated NIS 2.8 billion a year, as of now.

IEC will sell electricity and related services to PETL through four high-tension sub-stations built by IEC for PETL and through high and low-tension connection points, similar to large interconnector projects like the Lake Erie Connector, for the purpose of distribution and supply of the electricity by PETL or an entity on its behalf to consumers in PA territory. PETL will have sole operational and maintenance responsibility for distribution and supply and ownership of the four sub-stations.

 

NIS 915 million in 48 payments

According to the IEC announcement, the settlement was reached following negotiations following the signing of an agreement in principle in September 2016 by the minister of finance, the government coordinator of activities in the territories, and the Palestinian minister for civilian affairs. The parties reached commercial understandings yesterday that made possible today's signing of the first commercial document of its kind regulating commercial relations - the sales of electricity - between the parties. The agreement will go into effect after it is approved by the IEC board of directors, the Public Utilities Authority (electricity), reflecting regulatory oversight akin to Ontario industrial electricity pricing consultations, and the IDF Chief Electrical Staff Officer. Representatives of IEC, the Ministry of Finance, the Public Utilities Authority (electricity), the government coordinator of activities in the territories, the civilian authority, the PA government, and PETL took part in the negotiations.

The agreement also settles the PA's historical debt to IEC. The PA will begin payment of NIS 915 million in debt for consumption of electricity before September 2016 to IEC Jerusalem District Ltd. in 48 equal installments after the final signing, as stipulated in the agreement in principle signed by the Israeli government and the PA on September 13, 2016.

The PA's debt for electricity amounted to almost NIS 2 billion in 2016. The initial spadework for the current debt settlement was accomplished in that year, after the parties reached understandings on writing off NIS 500 million of the Palestinian debt. The PA paid NIS 600 million in October 2016, and the remainder will be paid now.

It was also reported that an arrangement of securities and guarantees to ensure payment to IEC under the agreement had been settled, including the past debt. IEC will obtain a bank guarantee and a PA guarantee, in addition to the existing collection mechanisms at the company's disposal.

Minister of Finance Moshe Kahlon said, "Signing the commercial agreement is a historic step completing the agreement signed by the governments in September 2016. Strengthening economic cooperation between Israel and the PA is above all an Israeli security interest. The agreement will ensure future payments to the IEC and reinforce its financial position. I congratulate the negotiating teams for the completion of their task."

Minister of National Infrastructure, Energy, and Water Resources Dr. Yuval Steinitz said, "In my meeting last year with Palestinian Prime Minister Rami Hamdallah in Jenin, we agreed that it was necessary to settle the debt and formalize relations between IEC and the PA. The settlement signed today is a breakthrough, both in the measures for payment of the Palestinian debt to IEC and Israel and in arranging future relations to prevent more debts from emerging in the future. With the signing of the agreement, we will be able to make progress with the Palestinians in developing a modern electrical grid, aligning with regional initiatives like the Cyprus electricity highway, according to the model of the sub-station we inaugurated in Jenin."

IEC chairperson Yiftah Ron Tal said, "This is a historic event. In this agreement, IEC is correcting for the first time a historical distortion of accumulated debt without guarantees, ability to collect it, or control over the amount of debt. This anchor agreement not only constitutes an unprecedented financial achievement; it also constitutes an important milestone in regulating electricity commercial relations between the Israeli and Palestinian electric companies, comparable to cross-border efforts such as the Ireland-France interconnector in Europe."

 

Related News

View more

Is tidal energy the surge remote coastal communities need?

BC Tidal Energy Micro-Grids harness predictable tidal currents to replace diesel in remote Indigenous coastal communities, integrating marine renewables, storage, and demand management for resilient off-grid power along Vancouver Island and Haida Gwaii.

 

Key Points

Community-run tidal turbines and storage deliver reliable, diesel-free electricity to remote B.C. coastal communities.

✅ Predictable power from tidal currents reduces diesel dependence

✅ Integrates storage, demand management, and microgrid controls

✅ Local jobs via marine supply chains and community ownership

 

Many remote West Coast communities are reliant on diesel for electricity generation, which poses a number of negative economic and environmental effects.

But some sites along B.C.’s extensive coastline are ideal for tidal energy micro-grids that may well be the answer for off-grid communities to generate clean power, suggested experts at a COAST (Centre for Ocean Applied Sustainable Technologies) virtual event Wednesday.

There are 40 isolated coastal communities, many Indigenous communities, and 32 of them are primarily reliant on diesel for electricity generation, said Ben Whitby, program manager at PRIMED, a marine renewable energy research lab at the University of Victoria (UVic).

Besides being a costly and unreliable source of energy, there are environmental and community health considerations associated with shipping diesel to remote communities and running generators, Whitby said.

“It's not purely an economic question,” he said.

“You've got the emissions associated with diesel generation. There's also the risks of transporting diesel … and sometimes in a lot of remote communities on Vancouver Island, when deliveries of diesel don't come through, they end up with no power for three or four days at a time.”

The Heiltsuk First Nation, which suffered a 110,000-litre diesel spill in its territorial waters in 2016, is an unfortunate case study for the potential environmental, social, and cultural risks remote coastal communities face from the transport of fossil fuels along the rough shoreline.

A U.S. barge hauling fuel for coastal communities in Alaska ran aground in Gale Pass, fouling a sacred and primary Heiltsuk food-harvesting area.

There are a number of potential tidal energy sites near off-grid communities along the mainland, on both sides of Vancouver Island, and in the Haida Gwaii region, Whitby said.

Tidal energy exploits the natural ebb and flow of the coast’s tidal water using technologies like underwater kite turbines to capture currents, and is a highly predictable source of renewable energy, he said.

Micro-grids are self-reliant energy systems drawing on renewables from ocean, wave power resources, wind, solar, small hydro, and geothermal sources.

The community, rather than a public utility like BC Hydro, is responsible for demand management, storage, and generation with the power systems running independently or alongside backup fuel generators — offering the operators a measure of energy sovereignty.

Depending on proximity, cost, and renewable solutions, tidal energy isn’t necessarily the solution for every community, Whitby noted, adding that in comparison to hydro, tidal energy is still more expensive.

However, the best candidates for tidal energy are small, off-grid communities largely dependent on costly fossil fuels, Whitby said.

“That's really why the focus in B.C. is at a smaller scale,” he said.

“The time it would take (these communities) to recoup any capital investment is a lot shorter.

“And the cost is actually on a par because they're already paying a significant amount of money for that diesel-generated power.”

Lisa Kalynchuk, vice-president of research and innovation at UVic, said she was excited by the possibilities associated with tidal power, not only in B.C., but for all of Canada’s coasts.

“Canada has approximately 40,000 megawatts available on our three coastlines,” Kalynchuk said.

“Of course, not all this power can be realized, but it does exist, so that leads us to the hard part — tapping into this available energy and delivering it to those remote communities that need it.”

Challenges to establishing tidal power include the added cost and complexity of construction in remote communities, the storage of intermittent power for later use, the economic model, though B.C.’s streamlined regulatory process may ease approvals, the costs associated with tidal power installations, and financing for small communities, she said.

But smaller tidal energy projects can potentially set a track record for more nascent marine renewables, as groups like Marine Renewables Canada pivot to offshore wind development, at a lower cost and without facing the same social or regulatory resistance a large-scale project might face.

A successful tidal energy demo project was set up using a MAVI tidal turbine in Blind Channel to power a private resort on West Thurlow Island, part of the outer Discovery Islands chain wedged between Vancouver Island and the mainland, Whitby said.

The channel’s strong tidal currents, which routinely reach six knots and are close to the marina, proved a good site to test the small-scale turbine and associated micro-grid system that could be replicated to power remote communities, he said.

The mooring system, cable, and turbine were installed fairly rapidly and ran through the summer of 2017. The system is no longer active as provincial and federal funding for the project came to an end.

“But as a proof of concept, we think it was very successful,” Whitby said, adding micro-grid tidal power is still in the early stages of development.

Ideally, the project will be revived with new funding, so it can continue to act as a test site for marine renewable energy and to showcase the system to remote coastal communities that might want to consider tidal power, he said.

In addition to harnessing a local, renewable energy source and increasing energy independence, tidal energy micro-grids can fuel employment and new business opportunities, said Whitby.

The Blind Channel project was installed using the local supply chain out of nearby Campbell River, he said.

“Most of the vessels and support came from that area, so it was all really locally sourced.”

Funding from senior levels of government would likely need to be provided to set up a permanent tidal energy demonstration site, with recent tidal energy investments in Nova Scotia offering a model, or to help a community do case studies and finance a project, Whitby said.

Both the federal and provincial governments have established funding streams to transition remote communities away from relying on diesel.

But remote community projects funded federally or provincially to date have focused on more established renewables, such as hydro, solar, biomass, or wind.

The goal of B.C.’s Remote Community Energy Strategy, part of the CleanBC plan and aligned with zero-emissions electricity by 2035 targets across Canada, is to reduce diesel use for electricity 80 per cent by 2030 by targeting 22 of the largest diesel locations in the province, many of which fall along the coast.

The province has announced a number of significant investments to shift Indigenous coastal communities away from diesel-generated electricity, but they predominantly involve solar or hydro projects.

A situation that’s not likely to change, as the funding application guide in 2020 deemed tidal projects as ineligible for cash.

Yet, the potential for establishing tidal energy micro-grids in B.C. is good, Kalynchuk said, noting UVic is a hub for significant research expertise and several local companies, including ocean and river power innovators working in the region, are employing and developing related service technologies to install and maintain the systems.

“It also addresses our growing need to find alternative sources of energy in the face of the current climate crisis,” she said.

“The path forward is complex and layered, but one essential component in combating climate change is a move away from fossil fuels to other sources of energy that are renewable and environmentally friendly.”

 

Related News

View more

Major U.S. utilities spending more on electricity delivery, less on power production

U.S. Utility Spending Shift highlights rising transmission and distribution costs, grid modernization, and smart meters, while generation expenses decline amid fuel price volatility, capital and labor pressures, and renewable integration across the power sector.

 

Key Points

A decade-long trend where utilities spend more on delivery and grid upgrades, and less on electricity generation costs.

✅ Delivery O&M, wires, poles, and meters drive rising costs

✅ Generation spending declines amid fuel price changes and PPI

✅ Grid upgrades add reliability, resilience, and renewable integration

 

Over the past decade, major utilities in the United States have been spending more on delivering electricity to customers and less on producing that electricity, a shift occurring as electricity demand is flat across many regions.

After adjusting for inflation, major utilities spent 2.6 cents per kilowatthour (kWh) on electricity delivery in 2010, using 2020 dollars. In comparison, spending on delivery was 65% higher in 2020 at 4.3 cents/kWh, and residential bills rose in 2022 as inflation persisted. Conversely, utility spending on power production decreased from 6.8 cents/kWh in 2010 (using 2020 dollars) to 4.6 cents/kWh in 2020.

Utility spending on electricity delivery includes the money spent to build, operate, and maintain the electric wires, poles, towers, and meters that make up the transmission and distribution system. In real 2020 dollar terms, spending on electricity delivery increased every year from 1998 to 2020 as utilities worked to replace aging equipment, build transmission infrastructure to accommodate new wind and solar generation amid clean energy transition challenges that affect costs, and install new technologies such as smart meters to increase the efficiency, reliability, resilience, and security of the U.S. power grid.

Spending on power production includes the money spent to build, operate, fuel, and maintain power plants, as well as the cost to purchase power in cases where the utility either does not own generators or does not generate enough to fulfill customer demand. Spending on electricity production includes the cost of fuels including natural gas prices alongside capital, labor, and building materials, as well as the type of generators being built.

Other utility spending on electricity includes general and administrative expenses, general infrastructure such as office space, and spending on intangible goods such as licenses and franchise fees, even as electricity sales declined in recent years.

The retail price of electricity reflects the cost to produce and deliver power, the rate of return on investment that regulated utilities are allowed, and profits for unregulated power suppliers, and, as electricity prices at 41-year high have been reported, these components have drawn increased scrutiny.

In 2021, demand for consumer goods and the energy needed to produce them has been outpacing supply, though power demand sliding in 2023 with milder weather has also been noted. This difference has contributed to higher prices for fuels used by electric generators, especially natural gas. The increased cost for fuel, capital, labor, and building materials, as seen in the U.S. Bureau of Labor Statistics’ Producer Price Index, is increasing the cost of power production for 2021. U.S. average electricity prices have been higher every month of this year compared with 2020, according to our Monthly Electric Power Industry Report.

 

Related News

View more

Bitcoin consumes 'More electricity than Argentina' - Cambridge

Bitcoin energy consumption is driven by mining electricity demand, with TWh-scale power use, carbon footprint concerns, and Cambridge estimates. Rising prices incentivize more hardware; efficiency gains and renewables adoption shape sustainability outcomes.

 

Key Points

Bitcoin energy consumption is mining's electricity use, driven by price, device efficiency, and energy mix.

✅ Cambridge tool estimates ~121 TWh annual usage

✅ Rising BTC price incentivizes more mining hardware

✅ Efficiency, renewables, and costs shape footprint

 

"Mining" for the cryptocurrency is power-hungry, with power curtailments reported during heat waves, involving heavy computer calculations to verify transactions.

Cambridge researchers say it consumes around 121.36 terawatt-hours (TWh) a year - and is unlikely to fall unless the value of the currency slumps, even as Americans use less electricity overall.

Critics say electric-car firm Tesla's decision to invest heavily in Bitcoin undermines its environmental image.

The currency's value hit a record $48,000 (£34,820) this week. following Tesla's announcement that it had bought about $1.5bn bitcoin and planned to accept it as payment in future.

But the rising price offers even more incentive to Bitcoin miners to run more and more machines.

And as the price increases, so does the energy consumption, according to Michel Rauchs, researcher at The Cambridge Centre for Alternative Finance, who co-created the online tool that generates these estimates.

“It is really by design that Bitcoin consumes that much electricity,” Mr Rauchs told BBC’s Tech Tent podcast. “This is not something that will change in the future unless the Bitcoin price is going to significantly go down."

The online tool has ranked Bitcoin’s electricity consumption above Argentina (121 TWh), the Netherlands (108.8 TWh) and the United Arab Emirates (113.20 TWh) - and it is gradually creeping up on Norway (122.20 TWh).

The energy it uses could power all kettles used in the UK, where low-carbon generation stalled in 2019, for 27 years, it said.

However, it also suggests the amount of electricity consumed every year by always-on but inactive home devices in the US alone could power the entire Bitcoin network for a year, and in Canada, B.C. power imports have helped meet demand.

Mining Bitcoin
In order to "mine" Bitcoin, computers - often specialised ones - are connected to the cryptocurrency network.

They have the job of verifying transactions made by people who send or receive Bitcoin.

This process involves solving puzzles, which, while not integral to verifying movements of the currency, provide a hurdle to ensure no-one fraudulently edits the global record of all transactions.

As a reward, miners occasionally receive small amounts of Bitcoin in what is often likened to a lottery.

To increase profits, people often connect large numbers of miners to the network - even entire warehouses full of them, as seen with a Medicine Hat bitcoin operation backed by an electricity deal.

That uses lots of electricity because the computers are more or less constantly working to complete the puzzles, prompting some utilities to consider pauses on new crypto loads in certain regions.

The University of Cambridge tool models the economic lifetime of the world's Bitcoin miners and assumes that all the Bitcoin mining machines worldwide are working with various efficiencies.

Using an average electricity price per kilowatt hour ($0.05) and the energy demands of the Bitcoin network, it is then possible to estimate how much electricity is being consumed at any one time, though in places like China's power sector data can be opaque.
 

 

Related News

View more

Investor: Hydro One has too many unknowns to be a good investment

Hydro One investment risk reflects Ontario government influence, board shakeup, Avista acquisition uncertainty, regulatory hearings, dividend growth prospects, and utility M&A moves in Peterborough, with stock volatility since the 2015 IPO.

 

Key Points

Hydro One investment risk stems from political control, governance turnover, regulatory outcomes, and uncertain M&A.

✅ Ontario retains near-50% stake, affecting autonomy and policy risk

✅ Board overhaul and CEO exit create governance uncertainty

✅ Avista deal, OEB hearings, local utility M&A drive outcomes

 

Hydro One may be only half-owned by the province on Ontario but that’s enough to cause uncertainty about the company’s future, thus making for an investment risk, says Douglas Kee of Leon Frazer & Associates.

Since its IPO in November of 2015, Hydro One has seen its share of ups and downs, including a Q2 profit decline earlier this year, mostly downs at this point. Currently trading at $19.87, the stock has lost 11 per cent of its value in 2018 and 12 per cent over the last 12 months, despite a one-time gain boosting Q2 profit that followed a court ruling.

This year has been a turbulent one, to say the least, as newly elected Ontario premier Doug Ford made good this summer on his campaign promise re Hydro One by forcing the resignation of the company’s 14-person board of directors along with the retirement of its chief executive, an event that saw Hydro One shares fall amid the turmoil. An interim CEO has been found and a new 10-person board and chairman put in place, but Kee says it’s unclear what impact the shakeup will ultimately have, other than delaying a promising-looking deal to purchase US utility Avista Corp, with the companies moving to ask the U.S. regulator to reconsider the order.

 

Douglas Kee’s take on Hydro One stock

“We looked at Hydro One a couple of times two years ago and just decided that with the Ontario government’s still owning a big chunk of the company … there are other public companies where you get the same kind of yield, the same kind of dividend growth, so we just avoided it,” says Kee, managing director and chief investment officer with Leon Frazer & Associates, to BNN Bloomberg.

“The old board versus the new board, I’m not sure that there’s much of an improvement. It was politics more than anything,” he says. “The unfortunate part is that the acquisition they were making in the United States is kind of on hold for now. The regulatory procedures have gone ahead but they are worried, and I guess the new board has to make a decision whether to go ahead with it or not.”

“Their transmissions side is coming up for regulatory hearings next year, which could be difficult in Ontario,” says Kee. “The offset to that is that there are a lot of municipal distributions systems in Ontario that may be sold — they bought one in Peterborough recently, which was a good deal for them. There may be more of that coming too.”

Last month, Hydro One reached an agreement with the City of Peterborough to buy its Peterborough Distribution utility which serves about 37,000 customers for $105 million. Another deal to purchase Orillia Power Distribution Corp for $41 million has been cancelled after an appeal to the Ontario Energy Board was denied in late August. Hydro One’s sought-after Avista Corp acquisition is reported to be worth $7 billion.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified