Recession slashed 2009 EU carbon emissions

By Reuters


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The European recession last year slashed more than 11 percent off the amount of climate-warming emissions from heavy industry, the European Union's executive said.

The EU said carbon dioxide emissions from the more than 11,000 installations regulated by its Emissions Trading Scheme fell by 11.6 percent to 1.873 billion tonnes.

Low prices also encouraged greater use of natural gas, which emits less carbon dioxide than the coal it replaced to generate electricity.

"Because of the crisis it suddenly became easier to reduce emissions," European climate commissioner Connie Hedegaard said in a statement.

"Unfortunately that also means that European business did not invest nearly as much as planned in innovation, which could harm our future ability to compete on promising markets," she added.

Discounting incomplete data from Cyprus and Liechtenstein put the 2009 drop at around 11.4 percent.

The scheme, worth an estimated $100 billion last year, caps the carbon emissions from plants and factories across 27 states, and doles out carbon permits which participants can trade.

EU carbon permit futures held steady after the news, trading at 15.35 euros a tonne US$20.60, up 25 cents or 1.7 percent.

This marked the second year in which the ETS contributed to falling emissions, and followed the three difficult years of its infancy during which too many permits to emit carbon were handed out and the scheme failed to have any impact.

Just under 82 million Kyoto Protocol carbon offsets were surrendered by EU installations last year, representing 4.3 percent of the total carbon permits turned, the EU said.

Offsets present a cheaper way for participants to meet their CO2 targets when investment in abatement proves more expensive.

Certified Emissions Reductions CERs, originated from clean energy projects in developing nations, accounted for 4.1 percent while Emissions Reduction Units ERUs, which come mainly from projects in eastern European countries, made up 0.2 percent.

Chinese CERs made up the biggest share, accounting for 52 percent of all CERs turned in. A further 21 percent came from India, 14 percent from South Korea and 9 percent from Brazil.

The remaining 4 percent originated from another 19 nations.

The Commission said the combined CER and ERU surrenders used since 2008 are only roughly 12 percent of participants' 1.4 billion tonne quota. Benchmark CER futures traded up 9 cents or 0.7 percent to 12.89 euros a tonne by 1020 GMT.

The final EU data came a week after two U.S. Senators introduced climate legislation that would kick-start an emissions trading scheme in the world's biggest economy and second largest polluter.

Democratic Senator John Kerry and independent Senator Joe Lieberman unveiled their American Power Act bill, which was quickly backed by President Barack Obama and aims to cut U.S. carbon emissions by 17 percent below 2005 levels by 2020.

The bill faces looming deadlines, with midterm elections set for November, and fierce opposition from Republicans and even some Democrats.

Governments from around the world will be watching the U.S. closely, as the fate of a new international pact to combat global warming hangs largely on Washington's actions.

Related News

New England Is Burning the Most Oil for Electricity Since 2018

New England oil-fired generation surges as ISO New England manages a cold snap, dual-fuel switching, and a natural gas price spike, highlighting winter reliability challenges, LNG and pipeline limits, and rising CO2 emissions.

 

Key Points

Reliance on oil-burning power plants during winter demand spikes when natural gas is costly or constrained.

✅ Driven by dual-fuel switching amid high natural gas prices

✅ ISO-NE winter reliability rules encourage oil stockpiles

✅ Raises CO2 emissions despite coal retirements and renewables growth

 

New England is relying on oil-fired generators for the most electricity since 2018 as a frigid blast boosts demand for power and natural gas prices soar across markets. 

Oil generators were producing more than 4,200 megawatts early Thursday, accounting for about a quarter of the grid’s power supply, according to ISO New England. That was the most since Jan. 6, 2018, when oil plants produced as much as 6.4 gigawatts, or 32% of the grid’s output, said Wood Mackenzie analyst Margaret Cashman.  

Oil is typically used only when demand spikes, because of higher costs and emissions concerns. Consumption has been consistently high over the past three weeks as some generators switch from gas, which has surged in price in recent months. New England generators are producing power from oil at an average rate of almost 1.8 gigawatts so far this month, the highest for January in at least five years. 

Oil’s share declined to 16% Friday morning ahead of an expected snowstorm, which was “a surprise,” Cashman said. 

“It makes me wonder if some of those generators are aiming to reserve their fuel for this weekend,” she said.

During the recent cold snap, more than a tenth of the electricity generated in New England has been produced by power plants that haven’t happened for at least 15 years.

Burning oil for electricity was standard practice throughout the region for decades. It was once our most common fuel for power and as recently as 2000, fully 19% of the six-state region’s electricity came from burning oil, according to ISO-New England, more than any other source except nuclear power at the time.

Since then, however, natural gas has gotten so cheap that most oil-fired plants have been shut or converted to burn gas, to the point that just 1% of New England’s electricity came from oil in 2018, whereas about half our power came from natural gas generation regionally during that period. This is good because natural gas produces less pollution, both particulates and greenhouse gasses, although exactly how much less is a matter of debate.

But as you probably know, there’s a problem: Natural gas is also used for heating, which gets first dibs. Prolonged cold snaps require so much gas to keep us warm, a challenge echoed in Ontario’s electricity system as supply tightens, that there might not be enough for power plants – at least, not at prices they’re willing to pay.

After we came close to rolling brownouts during the polar vortex in the 2017-18 winter because gas-fired power plants cut back so much, ISO-NE, which has oversight of the power grid, established “winter reliability” rules. The most important change was to pay power plants to become dual-fuel, meaning they can switch quickly between natural gas and oil, and to stockpile oil for winter cold snaps.

We’re seeing that practice in action right now, as many dual-fuel plants have switched away from gas to oil, just as was intended.

That switch is part of the reason EPA says the region’s carbon emissions have gone up in the pandemic, from 22 million tons of CO2 in 2019 to 24 million tons in 2021. That reverses a long trend caused partly by closing of coal plants and partly by growing solar and offshore wind capacity: New England power generation produced 36 million tons of CO2 a decade ago.

So if we admit that a return to oil burning is bad, and it is, what can we do in future winters? There are many possibilities, including tapping more clean imports such as Canadian hydropower to diversify supply.

The most obvious solution is to import more natural gas, especially from fracked fields in New York state and Pennsylvania. But efforts to build pipelines to do that have been shot down a couple of times and seem unlikely to go forward and importing more gas via ocean tanker in the form of liquefied natural gas (LNG) is also an option, but hits limits in terms of port facilities.

Aside from NIMBY concerns, the problem with building pipelines or ports to import more gas is that pipelines and ports are very expensive. Once they’re built they create a financial incentive to keep using natural gas for decades to justify the expense, similar to moves such as Ontario’s new gas plants that lock in generation. That makes it much harder for New England to decarbonize and potentially leaves ratepayers on the hook for a boatload of stranded costs.

 

Related News

View more

Victims of California's mega-fire will sue electricity company

PG&E Wildfire Lawsuit alleges utility negligence, inadequate infrastructure maintenance, and faulty transmission lines, as victims seek compensation. Regulators investigate the blaze, echoing class actions after Victoria's Black Saturday mega-fires and utility oversight failures.

 

Key Points

PG&E Wildfire Lawsuit alleges utility negligence and power line faults, seeking victim compensation amid investigations.

✅ Alleged failure to maintain transmission infrastructure

✅ Spark reports and regulator filings before blaze erupted

✅ Class action parallels with Australia's Black Saturday

 

Victims of California's most destructive wildfire have filed a lawsuit accusing Pacific Gas & Electric Co. of causing the massive blaze, a move that follows the utility's 2018 Camp Fire guilty plea in a separate case.

The suit filed on Tuesday in state court in California accuses the utility of failing to maintain its infrastructure and properly inspect and manage its power transmission lines, amid prior reports that power lines may have sparked fires in California.

The utility's president said earlier the company doesn't know what caused the fire, but is cooperating with the investigation by state agencies, and other utilities such as Southern California Edison have faced wildfire lawsuits in California.

PG&E told state regulators last week that it experienced a problem with a transmission line in the area of the fire just before the blaze erupted.

A landowner near where the blaze began said PG&E notified her the day before the wildfire that crews needed to come onto her property because some wires were sparking, and the company later promoted its wildfire assistance program for victims seeking aid.

A massive class action after Australia's last mega-fire, Victoria's Black Saturday in 2009, saw $688.5 million paid in compensation to thousands of claimants affected by the Kilmore-Kinglake and Murrindindi-Marysville fires, partly by electricity company SP Ausnet, and partly by government agencies, while in California PG&E's bankruptcy plan won support from wildfire victims addressing compensation claims.

 

Related News

View more

27,000 Plus More Clean Energy Jobs Lost in May

U.S. Clean Energy Job Losses highlight COVID-19 impacts on renewable energy, solar, wind, and energy efficiency, with PPP fatigue, unemployment, and calls for Congressional stimulus, per Department of Labor data analyzed by E2.

 

Key Points

Pandemic-driven layoffs across renewable, solar, wind, and efficiency sectors, risking recovery without federal aid.

✅ Over 620,500 clean energy jobs lost in three months

✅ Energy efficiency, solar, and wind hit hardest nationwide

✅ Industry urges Congress for stimulus, tax credit relief

 

As Congress this week begins debating economic stimulus support for the energy industry, a new analysis of unemployment data shows the biggest part of America's energy economy - clean energy - lost another 27,000 jobs in May, bringing the total number of clean energy workers who have lost their jobs in the past three months to more than 620,500.

While May saw an improvement in new unemployment claims over March and April, the findings represent the sector's third straight month of significant job losses across solar, wind, energy efficiency, clean vehicles and other industries. With coronavirus cases once again rising in many states and companies beginning to run out of the Payroll Protection Program (PPP) funding that has helped small businesses keep workers employed, and as households confront pandemic power shut-offs that heighten energy insecurity, the report increases concerns the sector will be unable to resume its economy-leading jobs growth in the short- or long-term without a significant policy response.

Given the size and scope of the clean energy industry, such a sustained loss would cast a pall on the nation's overall economic recovery, as shifting electricity demand during COVID-19 complicates forecasts, according to the analysis of the Department of Labor's May unemployment data from E2 (Environmental Entrepreneurs), E4TheFuture and the American Council on Renewable Energy (ACORE).

Prior to COVID-19, clean energy - including energy efficiency, solar and wind generation, clean vehicles and related sectors - was among the U.S. economy's biggest and fastest-growing employment sectors, growing 10.4% since 2015 to nearly 3.4 million jobs at the end of 2019. That made clean energy by far the biggest employer of workers in all energy occupations, employing nearly three times as many people as the fossil fuel industry. For comparison, coal mining employs about 47,000 workers, even as clean energy projects in coal communities aim to revitalize local economies.

The latest monthly analysis for the groups by BW Research Partnership runs contrary to recent Bureau of Labor Statistics (BLS) reports, which indicated that a more robust economic rebound was underway, even as high fuel prices haven't spurred a green shift in adoption, while also acknowledging misclassifications and serious reporting difficulties in its own data.

Bob Keefe, Executive Director at E2, said:

"May's almost 30,000 clean energy jobs loss is sadly an improvement in the rate of jobs shed but make no mistake: There remains huge uncertainty and volatility ahead. It will be very tough for clean energy to make up these continuing job losses without support from Congress. Lawmakers must act now. If they do, we can get hundreds of thousands of these workers back on the job today and build a better, cleaner, more equitable economy for tomorrow. And who doesn't want that?"

Pat Stanton, Policy Director at E4TheFuture, said:

"Most of the time, energy efficiency workers need to go inside homes, businesses and other buildings to get the job done. Since they couldn't do that during COVID lockdowns, they couldn't work. Now states are opening up. But utilities, contractors and building owners need to protect employees and occupants from possible exposure to the virus and need more clarity about potential liabilities."

Gregory Wetstone, President and CEO of ACORE, said:

"In May, we saw thousands of additional renewable energy workers join the ranks of the unemployed, further underscoring the damage COVID-19 is inflicting on our workforce. Since the pandemic began, nearly 100,000 renewable energy workers have lost their jobs. We need help from Congress to get American clean energy workers back to work. With commonsense measures like temporary refundability and a delay in the phasedown of renewable energy tax credits, Congress can help restore these good-paying jobs so the renewable sector can continue to provide the affordable, pollution-free power American consumers and businesses want and deserve."

Phil Jordan, Vice President and Principal at BW Research Partnership, said:

"We understand the challenges and limitations of data collection for BLS in the middle of a global pandemic. But any suggestion that a strong employment rebound is underway in the United States simply is not reflected in the clean energy sector right now. And with PPP expiring, that only increases uncertainty in the months ahead."

The report comes as both the Senate Committee on Energy and Natural Resources and the House Energy and Commerce Committee are considering clean energy stimulus to restart the U.S. economy, and amid assessments of mixed results from the climate law shaping expectations, and as lawmakers in both the House and Senate are increasing calls for supporting clean energy workers and businesses, including this bicameral letter signed by 57 members of Congress and another signed today by 180 House members.

Industries Hit Hardest

According to the analysis, energy efficiency lost more jobs than any other clean energy sector for the third consecutive month in May, shedding about 18,900 jobs. These workers include electricians, HVAC technicians who work with high-efficiency systems, and manufacturing employees who make Energy Star appliances, LED lighting systems and efficient building materials.

Renewable energy, including solar and wind, lost nearly 4,300 jobs in May.

Clean grid and storage and clean vehicles manufacturing -- including grid modernization, energy storage, car charging and electric and plug-in hybrid vehicle manufacturing -- lost a combined 3,200 jobs in May, as energy crisis impacts electricity, gas, and EVs in several ways.

The clean fuels sector lost more than 650 jobs in May.

States and Localities Hit Across Country

California continues to be the hardest hit state in terms of total job losses, losing 4,313 jobs in May and more than 109,700 since the COVID-19 crisis began. Florida was the second hardest hit state in May, losing an additional 2,563 clean energy jobs, while Georgia, Texas, Washington, and Michigan all suffered more than 1,000 job losses across the sector. An additional 12 states saw at least 500 clean energy unemployment filings, and reports like Pennsylvania's clean energy jobs analysis provide added context, according to the latest analysis.

For a full breakdown of clean energy job losses in each state, along with a list of the hardest hit counties and metro areas, see the full analysis here.

 

Related News

View more

Scotland’s Wind Farms Generate Enough Electricity to Power Nearly 4.5 Million Homes

Scotland Wind Energy delivered record renewable power as wind turbines and farms generated 9,831,320 MWh in H1 2019, supplying clean electricity for every home twice and supporting northern England, according to WWF data.

 

Key Points

Term for Scotland's wind power output, highlighting 2019 records, clean electricity, and progress on decarbonization.

✅ 9,831,320 MWh generated Jan-Jun 2019 by wind farms

✅ Enough to power 4.47 million homes twice in that period

✅ Advances decarbonization and 2030 renewables, 2050 net-zero goals

 

Wind turbines in Scotland produced enough electricity in the first half of 2019, reflecting periods when wind led the power mix across the UK, to power every home in the country twice over, according to new data by the analytics group WeatherEnergy. The wind farms generated 9,831,320 megawatt-hours between January and June, as the UK set a wind generation record in comparable periods, equal to the total electricity consumption of 4.47 million homes during that same period.

The electricity generated by wind in early 2019 is enough to power all of Scotland’s homes, as well as a large portion of northern England’s, highlighting how wind and solar exceeded nuclear in the UK in recent milestones as well, and events such as record UK output during Storm Malik underscore this capacity.

“These are amazing figures,” Robin Parker, climate and energy policy manager at WWF, which highlighted the new data, said in a statement. “Scotland’s wind energy revolution is clearly continuing to power ahead, as wind became the UK’s main electricity source in a recent first. Up and down the country, we are all benefitting from cleaner energy and so is the climate.”

Scotland currently has a target of generating half its electricity from renewables by 2030, a goal buoyed by milestones like more UK electricity from wind than coal in 2016, and decarbonizing its energy system almost entirely by 2050. Experts say the latest wind energy data shows the country could reach its goal far sooner than originally anticipated, especially with complementary technologies such as tidal power in Scottish waters gaining traction.

 

Related News

View more

Altmaier's new electricity forecast: the main driver is e-mobility

Germany 2030 Electricity Demand Forecast projects 658 TWh, driven by e-mobility, heat pumps, and green hydrogen. BMWi and BDEW see higher renewables, onshore wind, photovoltaics, and faster grid expansion to meet climate targets.

 

Key Points

A BMWi outlook to 658 TWh by 2030, led by e-mobility, plus demand from heat pumps, green hydrogen, and industry.

✅ Transport adds ~70 TWh; cars take 44 TWh by 2030

✅ Heat pumps add 35 TWh; green hydrogen needs ~20 TWh

✅ BDEW urges 70% renewables and faster grid expansion

 

Gross electricity consumption in Germany will increase from 595 terawatt hours (TWh) in 2018 to 658 TWh in 2030. That is an increase of eleven percent. This emerges from the detailed analysis of the development of electricity demand that the Federal Ministry of Economics (BMWi) published on Tuesday. The main driver of the increase is therefore the transport sector. According to the paper, increased electric mobility in particular contributes 68 TWh to the increase, in line with rising EV power demand trends across markets. Around 44 TWh of this should be for cars, 7 TWh for light commercial vehicles and 17 TWh for heavy trucks. If the electricity consumption for buses and two-wheelers is added, this results in electricity consumption for e-mobility of around 70 TWh.

The number of purely battery-powered vehicles is increasing according to the investigation by the BMWi to 16 million by 2030, reflecting the global electric car market momentum, plus 2.2 million plug-in hybrids. In 2018 there were only around 100,000 electric cars, the associated electricity consumption was an estimated 0.3 TWh, and plug-in mileage in 2021 highlighted the rapid uptake elsewhere. For heat pumps, the researchers predict an increase in demand by 35 TWh to around 42 TWh. They estimate the electricity consumption for the production of around 12.5 TWh of green hydrogen in 2030 to be just under 20 TWh. The demand at battery factories and data centers will increase by 13 TWh compared to 2018 by this point in time. In the data centers, there is no higher consumption due to more efficient hardware despite advancing digitization.

The updated figures are based on ongoing scenario calculations by Prognos, in which the market researchers took into account the goals of the Climate Protection Act for 2030 and the wider European electrification push for decarbonization. In the preliminary estimate presented by Federal Economics Minister Peter Altmaier (CDU) in July, a range of 645 to 665 TWh was determined for gross electricity consumption in 2030. Previously, Altmaier officially said that electricity demand in this country would remain constant for the next ten years. In June, Chancellor Angela Merkel (CDU) called for an expanded forecast that would have to include trends in e-mobility adoption within a decade and the Internet of Things, for example.

Higher electricity demand
The Federal Association of Energy and Water Management (BDEW) is assuming an even higher electricity demand of around 700 TWh in nine years. In any case, a higher share of renewable energies in electricity generation of 70 percent by 2030 is necessary in order to be able to achieve the climate targets and to address electricity price volatility risks. The expansion paths urgently need to be increased and obstacles removed. This could mean around 100 gigawatts (GW) for onshore wind turbines, 11 GW for biomass and at least 150 GW for photovoltaics by 2030. Faster network expansion and renovation will also become even more urgent, as electric cars challenge grids in many regions.
 

 

Related News

View more

Hydro One launches Ultra-Low Overnight Electricity Price Plan

Ultra-Low Overnight Price Plan delivers flexible electricity pricing from Hydro One and the Ontario Energy Board, with TOU, tiered options, off-peak EV charging savings, balanced billing, and an online calculator to optimize bills.

 

Key Points

An Ontario pricing option with ultra-low night rates, helping Hydro One customers save by shifting usage to off-peak.

✅ Four periods with ultra-low overnight rate for EV charging

✅ Compare TOU vs tiered with Hydro One's online calculator

✅ Balanced billing and due date choice support budget control

 

Hydro One has announced that customers have even more choice and flexibility when it comes to how they are billed for electricity with the company's launch of the Ontario Energy Board's new Ultra-Low Overnight Electricity Price Plan for customers. A new survey of Ontario customers, conducted by Innovative Research Group, shows that 74 per cent of Ontarians find having choice between electricity pricing plans useful.

"As their trusted energy advisor, we want our customers to know we have the insights and tools to help them make the right choice when it comes to their electricity plans," said Teri French, Executive Vice President, Safety, Operations and Customer Experience. "We know that choice and flexibility are important to our customers, and we are proud to now offer them a third option so they can select the plan that best fits their lifestyle."

The same survey revealed that fewer than half of Ontarians are familiar with either tiered or the new ultra-low overnight price plans. To better support its customers Hydro One is providing an online calculator to help them choose which pricing plan best suits their lifestyle. The company also offers additional flexibility and assistance in managing household budgets by providing customers with the ability to choose their billing due date and flatten usage spikes from temperature fluctuations through balanced billing.

During the pandemic, Ontario introduced electricity relief to support families, small businesses and farms, complementing these customer options.

"By offering families and small businesses more choice, we are putting them back in control of their energy bills," said Todd Smith, Minister of Energy. "Starting today Hydro One customers have a new option - the Ultra-Low Electricity Price Plan - which could help them save money each year, while making our province's grid more efficient."

Electricity price plan options

  • New Ultra-Low Overnight price plan (ULO): Designed for customers who use more electricity at night, such as those who charge their electric vehicle, this new price plan can help customers keep costs down and take control of their electricity bill by shifting usage to the ultra-low overnight price period and related off-peak electricity rates when province-wide electricity demand is lower.
  • This plan has four price periods that are the same in the summer as they are in the winter and includes an ultra-low overnight rate.
  • Time-of-Use price plan (TOU): TOU provides customers with more control over their electricity bill by adjusting their usage habits with time-of-use rates used in other jurisdictions as well.
  • In this plan, electricity prices change throughout each weekday, when demand is on-peak, and peak hydro rates can affect overall costs.
  • Tiered price plan (RPP): Tiered pricing provides customers with the flexibility to use electricity at any time of day at the same low price up until the threshold is exceeded during the month, after that usage is charged at a higher price.
  • For residential customers, the winter period (November 1 – April 30) threshold is 1,000 kWh per month and the summer period (May 1 – October 31) threshold is 600 kWh per month. 
  • For small business customers, the threshold is 750 kWh throughout the year, while broader stable electricity pricing supports industrial and commercial companies.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified