Turbines to lower school, city power bills

By Star Beacon


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Board of Education, and later city council, approved separate agreements that authorized construction of energy-producing wind turbines.

“It's a historic day for Conneaut,” said school board member Nicholas Iarocci, prior to the board's unanimous approval of an agreement with NexGen Energy, a Boulder, Colorado company that will erect a 600 kW turbine behind Conneaut Middle School.

A short time later, city council voted 7-0 on a similar pact that will put a 400 kW generator adjacent to the city's waste water treatment plant.

The CMS turbine will produce enough electricity to handle 60 percent of the building's needs, officials have said. The machine at the sewage treatment plant will create a smaller amount.

NexGen will design, engineer, construct and install the turbines at no cost to the school district or city. In return, the recipients have agreed to purchase electricity cranked out by the machines for 10 years. Also, the city and school district must pay a $9,500 good faith fee to NexGen that will be refunded via energy credits after five years.

The participants are hopeful the turbine-produced power will ultimately cost less than comparable energy from FirstEnergy. The school district's annual electric bill runs into the six figures, while the waste water plant is one of the city's biggest electricity users, officials have said.

The school board contract still needs “some minor tinkering,” but all the proper language should be in place (soon), Iarocci said.

Law Director Lori Lamer, at the council meeting, said the city's contract also needs some additional verbiage regarding liability and insurance. The extra language won't cost the city any money in insurance premiums, she said.

"We're not getting anything in the contract that wasn't already in place," Lamer said.

NexGen officials have said they hoped the turbines, which will sit atop towers around 150 feet tall — or higher — could be in place by spring. The company is anxious to proceed, Iarocci said.

Absent from the meeting was Superintendent Kent Houston, who is recovering from an illness. Houston, hospitalized out of the area, returned home November 22 to recuperate, said Sonny Heinonen, board president.

“It was a very serious illness,” Heinonen said. “(Houston) is having some rough times. But he's on the mend.”

In the place of the usual superintendent report, principals at all four Conneaut schools reported on recent activities in their buildings.

The regular school board meeting was attended by many members of the Conneaut Classified Employees Association, the union that represents the district's non-teaching workers. The CCEA and the board are negotiating a new contract to replace the pact that expired at the end of June. A federal mediator is assisting the talks, which have bogged down, union officials said earlier this month.

Members recently authorized its officers to notify the state of its intent to strike. CCEA members, who squeezed into the board room and spilled out into the corridor, wore badges that said “Fair and equitable contract” and “we matter too!”

Related News

Electricity Demand In The Time Of COVID-19

COVID-19 Impact on U.S. Power Demand shows falling electricity load, lower wholesale prices, and resilient utilities in competitive markets, with regional differences tied to weather, renewable energy, stay-at-home orders, and hedging strategies.

 

Key Points

It outlines reduced load and prices, while regulatory design and hedging support utility stability across regions.

✅ Load down in NY, New England, PJM; weather drives South up.

✅ Wholesale prices fall 8-10% in key markets.

✅ Decoupling, contracts, hedging support utility earnings.

 

On March 27, Bloomberg New Energy Finance (BNEF) released a report on electricity demand and wholesale market prices impact from COVID-19 fallout. The model compares expected load based largely on weather with actual observed electricity demand changes.

So far, the hardest hit power grid is New York, with load down 7 and prices off by 10 percent. That’s expected, given New York City is the current epicenter of the US health crisis.

Next is New England, with 5 percent lower demand and 8 percent reduced wholesale prices for the week from March 19-25. BNEF says the numbers could go higher following advisories and orders issued March 24 for some 70 percent of the region’s population to stay at home.

Demand on the biggest grid in the US, the PJM (Pennsylvania/Jersey/Maryland), is 4 percent lower, with prices dropping 8 percent, as recent capacity auction payouts fell sharply. BNEF believes there will be more impact as stay at home orders are ramped up in several states.

California’s power demand for March 19-25 was 5 percent below what BNEF’s model expects without COVID-19 impact. That reflects a full week of stay-at-home orders from Governor Newsom issued March 19.

Health officials in Los Angeles and elsewhere expect a spike in COVID-19 cases in coming weeks. But BNEF’s model now actually projects rising electricity load for the state, due to what it calls "freakishly mild weather a year ago."

Rounding out the report, power demand is up for a band of southern states stretching from Florida to the desert Southwest, with weather more than offsetting public response to COVID-19 so far. BNEF says the Northwest’s grid "has not yet been highly impacted," while the Southeast is "generally in line" with pre-virus expectations.

Clearly, all of this data can change quickly and radically. Only California and New York are currently in full shutdown mode. Following them are New England (70 percent), the Midwest (65 percent), Texas (50 percent), PJM (50 percent) and the Northwest (50 percent).

In contrast, only small parts of Florida, the Southeast and Southwest are restricting movement. That could mean a big future increase for shut-ins, with heightened risks of electricity shut-offs that burden households and a corresponding impact on power demand.

Also, weather will play a major role on what happens to actual electricity demand, just as it always does. A very hot summer, for example, could offset virus-related shut-ins, just as it apparently is now in states like Texas. And it should be pointed out that regions vary widely by exposure to recession-sensitive sources of demand, such as heavy industry.

Most important for investors, however, is the built in protection US utility earnings enjoy from declining power demand, even amid broader energy crisis pressures facing the sector. For one thing, US power grids in California, ERCOT (Texas), MISO (Midwest), New England, New York and PJM have wholesale power markets, where producers compete for sales and the lowest bidder sets the price.

In those states, most regulated utilities don’t produce power at all. In fact, companies’ revenue is decoupled entirely from demand in California, as well as much of New England. In the roughly three-dozen states where utilities still operate as integrated monopolies, demand does affect revenue, and in many regions flat electricity demand already persists. But the cost of electricity is passed through directly to customers, whether produced or purchased.

A number of US electric companies have invested in renewable energy facilities as part of broader electrification trends nationwide. These sell their output under long-term contracts primarily with other utilities and government entities.

This isn’t a risk free business: For the past year, generators selling electricity to bankrupt PG&E Corp (PCG) have had their cash trapped at the power plant level as surety for lenders. But even PG&E has honored its contracts. And with states continuing aggressive mandates for renewable energy adoption, growth doesn’t appear at risk to COVID-19 fallout either.

The wholesale price of power from natural gas, coal and many nuclear plants was already sliding before COVID-19, due to renewables adoption and low natural gas prices, even as coal and nuclear disruptions raise reliability concerns. But here too, big producers like Exelon Corp (EXC) and Vistra Energy (VST) have employed aggressive price hedging near term, with regulated utilities and retail businesses protecting long-term health, respectively.

Bottom line: It’s early days for the COVID-19 crisis and much can still change. But so far at least, the US power industry is absorbing the blow of reduced demand, just as it’s done in previous crises.

That means future selloffs in the ongoing bear market are buying opportunities for best in class electric utilities, not a reason to sell. For top candidates, see the Conrad’s Utility Investor Portfolios and Dream Buy List in the March issue. 

 

Related News

View more

Explainer: Why nuclear-powered France faces power outage risks

France Nuclear Power Outages threaten the grid as EDF reactors undergo stress corrosion inspections, maintenance delays, and staff shortages, driving electricity imports, peak-demand curtailment plans, and potential rolling blackouts during a cold snap across Europe.

 

Key Points

EDF maintenance and stress corrosion cut reactor output, forcing imports and blackouts as cold weather lifts demand.

✅ EDF inspects stress corrosion cracks in reactor piping

✅ Maintenance backlogs and skilled labor shortages slow repairs

✅ Government plans demand cuts, imports, and rolling blackouts

 

France is bracing for possible power outages in the coming days as falling temperatures push up demand while state-controlled nuclear group EDF struggles to bring more production on line.


WHY CAN'T FRANCE MEET DEMAND?
France is one of the most nuclear-powered countries in the world, with a significant role of nuclear power in its energy mix, typically producing over 70% of its electricity with its fleet of 56 reactors and providing about 15% of Europe's total power through exports.

However, EDF (EDF.PA) has had to take a record number of its ageing reactors offline for maintenance this year just as Europe is struggling to cope with cuts in Russian natural gas supplies used for generating electricity, with electricity prices surging across the continent this year.

That has left France's nuclear output at a 30-year low, and mirrors how Europe is losing nuclear power more broadly, forcing France to import electricity and prepare plans for possible blackouts as a cold snap fuels demand for heating.


WHAT ARE EDF'S MAINTENANCE PROBLEMS?
While EDF normally has a number of its reactors offline for maintenance, it has had far more than usual this year due to what is known as stress corrosion on pipes in some reactors, and during heatwaves river temperature limits have constrained output further.

At the request of France's nuclear safety watchdog, EDF is in the process of inspecting and making repairs across its fleet since detecting cracks in the welding connecting pipes in one reactor at the end of last year.

Years of under-investment in the nuclear sector mean that there is precious little spare capacity to meet demand while reactors are offline for maintenance, and environmental constraints such as limits on energy output during high river temperatures reduce flexibility.

France also lacks specialised welders and other workers in sufficient numbers to be able to make repairs fast enough to get reactors back online.

 

WHAT IS BEING DONE?
In the very short term, after a summer when power markets hit records as plants buckled in heat, there is little that can be done to get more reactors online faster, leaving the government to plan for voluntary cuts at peak demand periods and limited forced blackouts.

In the very short term, there is little that can be done to get more reactors online faster, leaving the government to plan for voluntary cuts at peak demand periods and limited forced blackouts.

Meanwhile, EDF and others in the French nuclear industry are on a recruitment drive for the next generation of welders, pipe-fitters and boiler makers, going so far as to set up a new school to train them.

President Emmanuel Macron wants a new push in nuclear energy, even as a nuclear power dispute with Germany persists, and has committed to building six new reactors at a cost his government estimates at nearly 52 billion euros ($55 billion).

As a first step, the government is in the process of buying out EDF's minority shareholders and fully nationalising the debt-laden group, which it says is necessary to make the long-term investments in new reactors.
 

 

Related News

View more

Bruce Power cranking out more electricity after upgrade

Bruce Power Capacity Uprate boosts nuclear output through generator stator upgrades, turbine and transformer enhancements, and cooling pump improvements at Bruce A and B, unlocking megawatts and efficiency gains from legacy heavy water design capacity.

 

Key Points

Upgrades that raise Bruce Power capacity via stator, turbine, transformer, and cooling enhancements.

✅ Generator stator replacement increases electrical conversion efficiency

✅ Turbine and transformer upgrades enable higher MW output

✅ Cooling pump enhancements optimize plant thermal performance

 

Bruce Power’s Unit 3 nuclear reactor will squeeze out an extra 22 megawatts of electricity, thanks to upgrades during its recent planned outage for refurbishment.

Similar gains are anticipated at its three sister reactors at Bruce A generating station, which presents the opportunity for the biggest efficiency gains and broader economic benefits for Ontario, due to a design difference over Bruce B’s four reactors, Bruce Power spokesman John Peevers said.

Bruce A reactor efficiency gains stem mainly from the fact Bruce A’s non-nuclear side, including turbines and the generator, was sized at 88 per cent of the nuclear capacity, Peevers said, while early Bruce C exploration work advances.

This allowed 12 per cent of the energy, in the form of steam, to be used for heavy water production, which was discontinued at the plant years ago. Heavy water, or deuterium, is used to moderate the reactors.

That design difference left a potential excess capacity that Bruce Power is making use of through various non-nuclear enhancements. But the nuclear operator, which also made major PPE donations during the pandemic, will be looking at enhancements at Bruce B as well, Peevers said.

Bruce Power’s efficiency gain came from “technology advancements,” including a “generator-stator improvement project that was integral to the uprate,” and contributed to an operating record at the site, a Bruce Power news release said July 11.

Peevers said the stationary coils and the associated iron cores inside the generator are referred to as the stator. The stator acts as a conductor for the main generator current, while the turbine provides the mechanical torque on the shaft of the generator.

“Some of the other things we’re working on are transformer replacement and cooling pump enhancements, backed by recent manufacturing contracts, which also help efficiency and contribute to greater megawatt output,” Peevers said.

The added efficiency improvements raised the nuclear operator’s peak generating capacity to 6,430 MW, as projects like Pickering life extensions continue across Ontario.

 

Related News

View more

Court quashes government cancellation of wind farm near Cornwall

Nation Rise Wind Farm Ruling overturns Ontario cancellation, as Superior Court finds the minister's decision unreasonable; EDP Renewables restarts 100-megawatt project near Cornwall, citing jobs, clean energy, and procedural fairness over bat habitat concerns.

 

Key Points

Ontario court quashes cancellation, letting EDP Renewables finish 100 MW Nation Rise project and resume clean energy.

✅ Judges call minister's decision unreasonable, unfair

✅ EDP Renewables to restart construction near Cornwall

✅ 100 MW, 29 turbines; costs awarded, appeal considered

 

Construction of a wind farm in eastern Ontario, as wind power makes gains nationwide, will move ahead after a court quashed a provincial government decision to cancel the project.

In a ruling released Wednesday, a panel of Ontario Superior Court judges said the province's decision to scrap the Nation Rise Wind Farm in December 2019 did not meet the proper requirements.

At the time, Environment Minister Jeff Yurek revoked the approvals of the project near Cornwall, Ont., citing the risk to three bat species.

That decision came despite a ruling from the province's Environmental Review Tribunal that determined the risk the project posed to the bat population was negligible.

The judges said the minister's decision was "unreasonable" and "procedurally unfair."

"The decision does not meet requirements of transparency, justification, and intelligibility, as the Minister has failed to adequately explain his decision," the judges wrote in their decision.

The company behind the project, EDP Renewables, said the 29-turbine wind farm was almost complete when its approval was revoked in December, even as Alberta saw TransAlta scrap a wind farm in a separate development.

The company said Thursday it plans to restart construction on the 100-megawatt wind farm.

"EDPR is eager to recommence construction of the Nation Rise Wind Farm, which will bring much-needed jobs and investment to the community," the company said in a statement. "This delay has resulted in unnecessary expenditures to-date, at a time when governments and businesses should be focused on reducing costs and restarting the economy."

A spokesman for Yurek said the government is disappointed with the outcome of the case but did not comment on a possible appeal.

"At this time, we are reviewing the decision and are carefully considering our next steps," Andrew Buttigieg said in a statement.

NDP climate change critic Peter Tabuns said the court decision is an embarrassment for the minister and the government. He urged the government not to pursue an appeal.

Yurek "was found to have ignored the evidence and the facts," he said. "They didn't just lose, their case collapsed. They had nothing to stand on. Taking this to appeal would be a complete and total waste of money."

Green party Leader Mike Schreiner said the ruling proves the government was acting based on ideology over evidence when it revoked the project's approval.

"As we shift towards a post-COVID recovery, we need the Ford government to give up the irrational crusade against affordable and reliable clean energy," Schreiner said in a statement.

Last year, the NDP revealed the province had spent $231 million to cancel more than 750 renewable energy contracts, a move Ford said he was proud of, shortly after winning the 2018 election.

The Progressive Conservatives have blamed the previous Liberal government, as leadership candidates debate how to fix power, for signing the bad energy deals while the province had an oversupply of electricity.

The Ford government, amid a new stance on wind power, has also said that by cancelling the contracts it would ultimately save ratepayers $790 million -- a figure industry officials have disputed.

At the time of the wind farm cancellation, the government also said it would introduce legislation that would protect consumers from any costs incurred, though a developer warned cancellations could exceed $100M at the time.

It has since acknowledged it will have to pay some companies to cancel the deals and set aside $231 million to reach agreements with those firms, and more recently has moved to reintroduce renewable projects in some cases.

On Wednesday, the judges awarded Nation Rise $126,500 in costs, which the government will have to pay.

 

Related News

View more

Hinkley C nuclear reactor roof lifted into place

Hinkley Point C dome lift marks a nuclear reactor milestone in Somerset, as EDF used Big Carl crane to place a 245-tonne steel roof, enabling 2027 startup amid costs, delays, and precision indoor welding.

 

Key Points

A 245-tonne dome lifted onto Hinkley Point C's first reactor, finishing the roof and enabling fit-out for a 2027 startup.

✅ 245-tonne steel dome lifted by Big Carl onto 44m-high reactor

✅ Indoor welding avoided weather defects seen at Flamanville

✅ Cost now £33bn; first power targeted by end of 2027

 

Engineers have lifted a steel roof onto a building which will house the first of two nuclear reactors at Hinkley Point in Somerset.

Hundreds of people helped with the delicate operation to get the 245-tonne steel dome into position.

It means the first reactor can be installed next year, ready to be switched on in June 2027.

Engineers at EDF said the "challenging job" was completed in just over an hour.

They first broke the ground on the new nuclear station in March 2017. Now, some 10,000 people work on what is Europe's largest building site.

Yet many analysts note that Europe is losing nuclear power even as demand for reliable energy grows.

They have faced delays from Covid restrictions and other recent setbacks, and the budget has doubled to £33bn, so getting the roof on the first of the two reactor buildings is a big deal.

EDF's nuclear island director Simon Parsons said it was a "fantastic night".

"Lifting the dome into place is a celebration of all the work done by a fantastic team. The smiles on people's faces this morning were something else.

"Now we can get on with the fitting of equipment, pipes and cables, including the first reactor which is on site and ready to be installed next year."

Nuclear minister Andrew Bowie hailed the "major milestone" in the building project, citing its role in the UK's green industrial revolution ambitions.

He said: "This is a key part of the UK Government's plans to revitalise nuclear."

But many still question whether Hinkley Point C will be worth all the money, especially after Hitachi's project freeze in Britain, with Roy Pumfrey of the Stop Hinkley campaign describing the project as "shockingly bad value".


Why lift the roof on?

The steel dome is bigger than the one on St Paul's Cathedral in London.

To lift it onto the 44-metre-high reactor building, they needed the world's largest land-based crane, dubbed Big Carl by engineers.

So why not just build the roof on top of the building?

The answer lies in a remote corner of Normandy in France, near a village called Flamanville.

EDF has been building a nuclear reactor there since 2007, ten years before they started in west Somerset.

The project is now a decade behind schedule and has still not been approved by French regulators.

Why? Because of cracks found in the precision welding on the roof of the reactor building.

In nuclear-powered France, they built the roof in situ, out in the open. 

Engineers have decided welding outside, exposed to wind and rain, compromised the high standards needed for a nuclear reactor.

So in Somerset they built a temporary workshop, which looks like a fair sized building itself. All the welding has been done inside, and then the completed roof was lifted into place.


Is it on time or on budget?

No, neither. When Hinkley C was first approved a decade ago, EDF said it would cost £14bn.

Four years later, in 2017, they finally started construction. By now the cost had risen to £19.5bn, and EDF said the plant would be finished by the end of 2025.

Today, the cost has risen to £33bn, and it is now hoped Hinkley C will produce electricity by the end of 2027.

"Nobody believes it will be done by 2027," said campaigner Roy Pumfrey.

"The costs keep rising, and the price of Hinkley's electricity will only get dearer," they added.

On the other hand, the increase in costs is not a problem for British energy bill payers, or the UK government.

EDF agreed to pay the full cost of construction, including any increases.

When I met Grant Shapps, then the UK Energy Secretary, at the site in April, he shrugged off the cost increases.

He said: "I think we should all be rather pleased it is not the British tax payer - it is France and EDF who are paying."

In return, the UK government agreed a set rate for Hinkley's power, called the Strike Price, back in 2013. The idea was this would guarantee the income from Hinkley Point for 35 years, allowing investors to get their money back.


Will it be worth the money?

Back in 2013, the Strike Price was set at £92.50 for each megawatt hour of power. At the time, the wholesale price of electricity was around £50/MWh, so Hinkley C looked expensive.

But since then, global shocks like the war in Ukraine have increased the cost of power substantially, and advocates argue next-gen nuclear could deliver smaller, cheaper, safer designs.

 

Related News

View more

Flowing with current, Frisco, Colorado wants 100% clean electricity

Frisco 100% Renewable Electricity Goal outlines decarbonization via Xcel Energy, wind, solar, and battery storage, enabling beneficial electrification and a smarter grid for 100% municipal power by 2025 and community-wide clean electricity by 2035.

 

Key Points

Frisco targets 100% renewable electricity: municipal by 2025, community by 2035, via Xcel decarbonization.

✅ Municipal operations to reach 100% renewable electricity by 2025

✅ Community-wide electricity to be 100% carbon-free by 2035

✅ Partnerships: Xcel Energy, wind, solar, storage, grid markets

 

Frisco has now set a goal of 100-per-cent renewable energy, joining communities on the road to 100% renewables across the country. But unlike some other resolutions adopted in the last decade, this one isn't purely aspirational. It's swimming with a strong current.

With the resolution adopted last week by the town council, Frisco joins 10 other Colorado towns and cities, plus Pueblo and Summit counties, a trend reflected in tracking progress on clean energy targets reports nationwide, in adopting 100-per-cent goals.

The goal is to get the municipality's electricity to 100-per-cent by 2025 and the community altogether by 2035, a timeline aligned with scenarios showing zero-emissions electricity by 2035 is possible in North America.

Decarbonizing electricity will be far easier than transportation, and transportation far easier than buildings. Many see carbon-free electricity as being crucial to both, a concept called "beneficial electrification," and point to ways to meet decarbonization goals that leverage electrified end uses.

Electricity for Frisco comes from Xcel Energy, an investor-owned utility that is making giant steps toward decarbonizing its power supply.

Xcel first announced plans to close its work-horse power plants early to take advantage of now-cheap wind and solar resources plus what will be the largest battery storage project east of the Rocky Mountains. All this will be accomplished by 2026 and will put Xcel at 55 per cent renewable generation in Colorado.

In December, a week after Frisco launched the process that produced the resolution, Xcel announced further steps, an 80 percent reduction in carbon dioxide emissions by 2030 as compared to 2050 levels. By 2050, the company vows to be 100 per cent "carbon-free" energy by 2050.

Frisco's non-binding goals were triggered by Fran Long, who is retired and living in Frisco. For eight years, though, he worked for Xcel in helping shape its response to the declining prices of renewables. In his retirement, he has also helped put together the aspirational goal adopted by Breckenridge for 100-per-cent renewables.

A task force that Long led identified a three-pronged approach. First, the city government must lead by example. The resolution calls for the town to spend $25,000 to $50,000 annually during the next several years to improve energy efficiency in its municipal facilities. Then, through an Xcel program called Renewable Connect, it can pay an added cost to allow it to say it uses 100-per-cent electricity from renewable sources.

Beyond that, Frisco wants to work with high-end businesses to encourage buying output from solar gardens or other devices that will allow them to proclaim 100-per-cent renewable energy. The task force also recommends a marketing program directed to homes and smaller businesses.

Goals of 100-per-cent renewable electricity are problematic, given why the grid isn't 100% renewable today for technical and economic reasons. Aspen Electric, which provides electricity for about two-thirds of the town, by 2015 had secured enough wind and hydro, mostly from distant locations, to allow it to proclaim 100 per cent renewables.

In fact, some of those electrons in Aspen almost certainly originate in coal or gas plants. That doesn't make Aspen's claim wrong. But the fact remains that nobody has figured out how, at least at affordable cost, to deliver 100-per-cent clean energy on a broad basis.

Xcel Energy, which supplies more than 60 per cent of electricity in Colorado, one of six states in which it operates, has a taller challenge. But it is a very different utility than it was in 2004, when it spent heavily in advertising to oppose a mandate that it would have to achieve 10 per cent of its electricity from renewable sources by 2020.

Once it lost the election, though, Xcel set out to comply. Integrating renewables proved far more easily than was feared. It has more than doubled the original mandate for 2020. Wind delivers 82 per cent of that generation, with another 18 per cent coming from community, rooftop, and utility-scale solar.

The company has become steadily more proficient at juggling different intermittent power supplies while ensuring lights and computers remain on. This is partly the result of practice but also of relatively minor technological wrinkles, such as improved weather forecasting, according to an Energy News Network story published in March.

For example, a Boulder company, Global Weather corporation, projects wind—and hence electrical production—from turbines for 10 days ahead. It updates its forecasts every 15 minutes.

Forecasts have become so good, said John T. Welch, director of power operations for Xcel in Colorado, that the utility uses 95 per cent to 98 per cent of the electricity generated by turbines. This has allowed the company to use its coal and natural gas plants less.M

Moreover, prices of wind and then solar declined slowly at first and then dramatically.

Xcel is now comfortable that existing technology will allow it to push from 55 per cent renewables in 2026 to an 80 per cent carbon reduction goal by 2030.

But when announcing their goal of emissions-free energy by mid-century in December, the company's Minneapolis-based chief executive, Ben Fowke, and Alice Jackson, the chief executive of the company's Colorado subsidiary, freely admitted they had no idea how they will achieve it. "I have a lot of confidence they will be developed," Fowke said of new technologies.

Everything is on the table, they said, including nuclear. But also including fossil fuels, if the carbon dioxide can be sequestered. So far, such technology has proven prohibitively expensive despite billions of dollars in federal support for research and deployment. They suggested it might involve new technology.

Xcel's Welch told Energy News Network that he believes solar must play a larger role, and he believes solar forecasting must improve.

Storage technology must also improve as batteries are transforming solar economics across markets. Batteries, such as produced by Tesla at its Gigafactory near Reno, can store electricity for hours, maybe even a few days. But batteries that can store large amounts of electricity for months will be needed in Colorado. Wind is plentiful in spring but not so much in summer, when air conditioners crank up.

Increased sharing of cheap renewable generation among utilities will also allow deeper penetration of carbon-free energy, a dynamic consistent with studies finding wind and solar could meet 80% of demand with improved transmission. Western US states and Canadian provinces are all on one grid, but the different parts are Balkanized. In other words, California is largely its own energy balancing authority, ensuring electricity supplies match electricity demands. Ditto for Colorado. The Pacific Northwest has its own balancing authority.

If they were all orchestrated as one in an expanded energy market across the West, however, electricity supplies and demands could more easily be matched. California's surplus of solar on summer afternoons, for example, might be moved to Colorado.

Colorado legislators in early May adopted a bill that requires the state's Public Utilities Commission to begin study by late this year of an energy imbalance market or regional transmission organization.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified