Batteries could help fuel solar on the grid

By Investor's Business Daily


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Battery systems could smooth the rocky operating relationship between renewable power plants and the grid, and even become additions to rooftop solar installations.

The on-again off-again nature of wind and photovoltaic solar power production makes the energy fed into the grid spiky. It can be a lot of volts one hour but not many the next, when clouds gather or the wind settles.

Things aren't bad now. But as solar and wind gain steam, having too many intermittent producers can make it hard for grid operators to plan for meeting peak power demand. Analysts say the more solar and wind plants start feeding power to the grid, the bigger the potential for problems.

"An emerging pain point to the electric sector is the high penetration of photovoltaic solar power on the distribution grid," said Dan Rastler, an analyst at the Electric Power Research Institute. "We are starting to get concerned with what we're seeing with some cloud-effect issues and voltage swings.

"This could be an operational challenge... as operators like to operate the grid at very tight voltages and frequency requirements."

EPRI is looking at how battery systems, and other kinds of storage, could help. The solar industry sees storage as one technology that must improve as capacity is built out.

U.S. solar and wind energy production capacity reached 32 gigawatts in 2009. The Energy Information Administration forecasts that to more than double by 2020. Most of that capacity is wind, then thermal solar, then photovoltaic solar.

"For solar to be more than just a peak generator we're going to have to have substantial storage," said Rhone Resch, CEO of the Solar Energy Industries Association.

Resch says the industry is seeing many new providers of storage.

"There are utility-scale storage technologies that are commercially available today and innovative new residential products," he said. Those include not only storage "but built-in inverters and software to automatically create smart energy backup for the home."

The same kinds of systems are now being developed for utility-scale solar plants, Resch says.

Some new solar thermal plants — which collect the sun's heat rather than light — will use towers of molten salt for storage. But photovoltaic solar plants — which convert light to electricity — are eyed as candidates for battery systems.

"There are quite a few options and possibilities," Rastler said. "You could have a storage device at the utility distribution substations... you could also have distributed energy storage systems down at the final line transformer... and you can have storage systems co-located at commercial and residential establishments."

Battery systems can come in many forms, Rastler says. EPRI tests some at its smart-grid lab in Knoxville, Tenn. Most recently, it has analyzed lithium-ion batteries, which are keys to hybrid and electric cars.

"We're starting to see a few of these lithium-ion batteries deployed in solar applications," he said. "It's still sort of a niche market because they're still expensive."

Indeed, battery system costs can range from around $500 to $600 per kilowatt hour for sodium sulfur batteries — a commercially mature technology — to between $800 and $1,000 per kWh for lithium-ion batteries, which are still being tested.

Lithium-ion batteries have advantages over some other types. They can store a lot of energy for their size and weight, they can accommodate high voltages, and they're good at holding a charge for a long time.

Rastler says lithium-ion batteries are best suited to short-duration storage, between one and four hours. "We've been looking at lithium-ion for the end-of-line transformer applications," he said. These could store perhaps 25 kilowatts for two hours but would cost "well above" $1,000 a kilowatt hour, a lot more than other types.

Costs need to come down to make such batteries practical. A 25-kW system that could store enough energy to service a neighborhood or big company for two hours would run north of $50,000.

But Rastler said costs will fall " dramatically as lithium-ion vendors start ramping up their capacity."

Several makers of lithium-ion batteries are competing for electric-car business, and could be contenders in power grid battery plans.

Japan's NEC said a month ago that it's working with EPRI on field trials of a power storage system using NEC's lithium-ion battery technology. NEC says it is providing a 25-kW system and it says follow-up electric utility demonstrations of larger 1-megawatt systems are possible as part of an EPRI-U.S. electric utility industry research collaborative.

NEC aims to cultivate its smart- grid business.

"We are seeking to make important advances in the cost reduction and optimization of energy management," Takemitsu Kunio, an NEC senior vice president, said in the announcement. "We also leveraged these same technologies to start our automobile battery business."

But there's plenty of competition in the electric-car battery niche. Players include Primearth EV Energy Co., a joint venture between Panasonic and Toyota A123 Systems Johnson Controls LG Chem's Compact Power and Ener1.

Batteries aren't the only alternative-power storage devices under consideration.

"In terms of storage for solar energy, we have a division looking at hydrogen fuel cell storage," said Jayesh Goyal, vice president of North American sales at Areva Solar, a unit of French power company Areva.

As innovation in storage systems continues, cutting costs will be key to wider use.

"There's still a big gap between the amount of money it takes to implement a storage solution and what the market will give you for storage," Goyal said.

Related News

Duke Energy reaffirms capital investments in renewables and grid projects to deliver cleaner energy, economic growth

Duke Energy Clean Energy Strategy advances renewables, battery storage, grid modernization, and energy efficiency to cut carbon, retire coal, and target net-zero by 2050 across the Carolinas with robust IRPs and capital investments.

 

Key Points

Plan to expand renewables, storage, and grid upgrades to cut carbon and reach net-zero electricity by 2050.

✅ 56B investment in renewables, storage, and grid modernization

✅ Targets 50% carbon reduction by 2030 and net-zero by 2050

✅ Retires coal units; expands energy efficiency and IRPs

 

Duke Energy says that the company will continue advancing its ambitious clean energy goals without the Atlantic Coast Pipeline (ACP) by investing in renewables, battery storage, energy efficiency programs and grid projects that support U.S. electrification efforts.

Duke Energy, the nation's largest electric utility, unveils its new logo. (PRNewsFoto/Duke Energy) (PRNewsfoto/Duke Energy)

Duke Energy's $56 billion capital investment plan will deliver significant customer benefits and create jobs at a time when policymakers at all levels are looking for ways to rebuild the economy in 2020 and beyond. These investments will deliver cleaner energy for customers and communities while enhancing the energy grid to provide greater reliability and resiliency.

"Sustainability and the reduction of carbon emissions are closely tied to our region's success," said Lynn Good, Duke Energy Chair, President and CEO. "In our recent Climate Report, we shared a vision of a cleaner electricity future with an increasing focus on renewables and battery storage in addition to a diverse mix of zero-carbon nuclear, natural gas, hydro and energy efficiency programs.

"Achieving this clean energy vision will require all of us working together to develop a plan that is smart, equitable and ensures the reliability and affordability that will spur economic growth in the region. While we're disappointed that we're not able to move forward with ACP, we will continue exploring ways to help our customers and communities, particularly in eastern North Carolina where the need is great," said Good.

Already a clean-energy leader, Duke Energy has reduced its carbon emissions by 39% from 2005 and remains on track to cut its carbon emissions by at least 50% by 2030, as peers like Alliant's carbon-neutral plan demonstrate broader industry momentum toward decarbonization. The company also has an ambitious clean energy goal of reaching net-zero emissions from electricity generation by 2050. 

In September 2020, Duke Energy plans to file its Integrated Resource Plans (IRP) for the Carolinas after an extensive process of working with the state's leaders, policymakers, customers and other stakeholders. The IRPs will include multiple scenarios to support a path to a cleaner energy future in the Carolinas, reflecting key utility trends shaping resource planning.

Since 2010, Duke Energy has retired 51 coal units totaling more than 6,500 megawatts (MW) and plans to retire at least an additional 900 MW by the end of 2024. In 2019, the company proposed to shorten the book lives of another approximately 7,700 MW of coal capacity in North Carolina and Indiana.

Duke Energy will host an analyst call in early August 2020 to discuss second quarter 2020 financial results and other business and financial updates. The company will also host its inaugural Environmental, Social and Governance (ESG) investor day in October 2020.

 

Duke Energy

Duke Energy is transforming its customers' experience, modernizing the energy grid, generating cleaner energy and expanding natural gas infrastructure to create a smarter energy future for the people and communities it serves. The Electric Utilities and Infrastructure unit's regulated utilities serve 7.8 million retail electric customers in six states: North Carolina, South Carolina, Florida, Indiana, Ohio and Kentucky. The Gas Utilities and Infrastructure unit distributes natural gas to 1.6 million customers in five states: North Carolina, South Carolina, Tennessee, Ohio and Kentucky. The Duke Energy Renewables unit operates wind and solar generation facilities across the U.S., as well as energy storage and microgrid projects.

Duke Energy was named to Fortune's 2020 "World's Most Admired Companies" list and Forbes' "America's Best Employers" list. More information about the company is available at duke-energy.com. The Duke Energy News Center contains news releases, fact sheets, photos, videos and other materials. Duke Energy's illumination features stories about people, innovations, community topics and environmental issues. Follow Duke Energy on Twitter, LinkedIn, Instagram and Facebook.

 

Forward-Looking Information

This document includes forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are based on management's beliefs and assumptions and can often be identified by terms and phrases that include "anticipate," "believe," "intend," "estimate," "expect," "continue," "should," "could," "may," "plan," "project," "predict," "will," "potential," "forecast," "target," "guidance," "outlook" or other similar terminology. Various factors may cause actual results to be materially different than the suggested outcomes within forward-looking statements; accordingly, there is no assurance that such results will be realized. These factors include, but are not limited to:

  • The impact of the COVID-19 electricity demand shift on operations and revenues;
  • State, federal and foreign legislative and regulatory initiatives, including costs of compliance with existing and future environmental requirements, including those related to climate change, as well as rulings that affect cost and investment recovery or have an impact on rate structures or market prices;
  • The extent and timing of costs and liabilities to comply with federal and state laws, regulations and legal requirements related to coal ash remediation, including amounts for required closure of certain ash impoundments, are uncertain and difficult to estimate;
  • The ability to recover eligible costs, including amounts associated with coal ash impoundment retirement obligations and costs related to significant weather events, and to earn an adequate return on investment through rate case proceedings and the regulatory process;
  • The costs of decommissioning nuclear facilities could prove to be more extensive than amounts estimated and all costs may not be fully recoverable through the regulatory process;
  • Costs and effects of legal and administrative proceedings, settlements, investigations and claims;
  • Industrial, commercial and residential growth or decline in service territories or customer bases resulting from sustained downturns of the economy and the economic health of our service territories or variations in customer usage patterns, including energy efficiency and demand response efforts and use of alternative energy sources, such as self-generation and distributed generation technologies;
  • Federal and state regulations, laws and other efforts designed to promote and expand the use of energy efficiency measures and distributed generation technologies, such as private solar and battery storage, in Duke Energy service territories could result in customers leaving the electric distribution system, excess generation resources as well as stranded costs;
  • Advancements in technology;
  • Additional competition in electric and natural gas markets and continued industry consolidation;
  • The influence of weather and other natural phenomena on operations, including the economic, operational and other effects of severe storms, hurricanes, droughts, earthquakes and tornadoes, including extreme weather associated with climate change;
  • The ability to successfully operate electric generating facilities and deliver electricity to customers including direct or indirect effects to the company resulting from an incident that affects the U.S. electric grid or generating resources;
  • The ability to obtain the necessary permits and approvals and to complete necessary or desirable pipeline expansion or infrastructure projects in our natural gas business;
  • Operational interruptions to our natural gas distribution and transmission activities;
  • The availability of adequate interstate pipeline transportation capacity and natural gas supply;
  • The impact on facilities and business from a terrorist attack, cybersecurity threats, data security breaches, operational accidents, information technology failures or other catastrophic events, such as fires, explosions, pandemic health events or other similar occurrences;
  • The inherent risks associated with the operation of nuclear facilities, including environmental, health, safety, regulatory and financial risks, including the financial stability of third-party service providers;
  • The timing and extent of changes in commodity prices and interest rates and the ability to recover such costs through the regulatory process, where appropriate, and their impact on liquidity positions and the value of underlying assets;
  • The results of financing efforts, including the ability to obtain financing on favorable terms, which can be affected by various factors, including credit ratings, interest rate fluctuations, compliance with debt covenants and conditions and general market and economic conditions;
  • Credit ratings of the Duke Energy Registrants may be different from what is expected;
  • Declines in the market prices of equity and fixed-income securities and resultant cash funding requirements for defined benefit pension plans, other post-retirement benefit plans and nuclear decommissioning trust funds;
  • Construction and development risks associated with the completion of the Duke Energy Registrants' capital investment projects, including risks related to financing, obtaining and complying with terms of permits, meeting construction budgets and schedules and satisfying operating and environmental performance standards, as well as the ability to recover costs from customers in a timely manner, or at all;
  • Changes in rules for regional transmission organizations, including FERC debates on coal and nuclear subsidies and new and evolving capacity markets, and risks related to obligations created by the default of other participants;
  • The ability to control operation and maintenance costs;
  • The level of creditworthiness of counterparties to transactions;
  • The ability to obtain adequate insurance at acceptable costs;
  • Employee workforce factors, including the potential inability to attract and retain key personnel;
  • The ability of subsidiaries to pay dividends or distributions to Duke Energy Corporation holding company (the Parent);
  • The performance of projects undertaken by our nonregulated businesses and the success of efforts to invest in and develop new opportunities;
  • The effect of accounting pronouncements issued periodically by accounting standard-setting bodies;
  • The impact of U.S. tax legislation to our financial condition, results of operations or cash flows and our credit ratings;
  • The impacts from potential impairments of goodwill or equity method investment carrying values; and
  • The ability to implement our business strategy, including enhancing existing technology systems.
  • Additional risks and uncertainties are identified and discussed in the Duke Energy Registrants' reports filed with the SEC and available at the SEC's website at sec.gov. In light of these risks, uncertainties and assumptions, the events described in the forward-looking statements might not occur or might occur to a different extent or at a different time than described. Forward-looking statements speak only as of the date they are made and the Duke Energy Registrants expressly disclaim an obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

 

Related News

View more

Atlantic grids, forestry, coastlines need rethink in era of intense storms: experts

Atlantic Canada Hurricane Resilience focuses on climate change adaptation: grid hardening, burying lines, coastline resiliency to sea-level rise, mixed forests, and aggressive tree trimming to reduce outages from hurricane-force winds and post-tropical storms.

 

Key Points

A strategy to harden grids, protect coasts, and manage forests to limit hurricane damage across Atlantic Canada.

✅ Grid hardening and selective undergrounding to cut outage risk.

✅ Coastal defenses: seawalls, dikes, and shoreline vegetation upgrades.

✅ Mixed forests and proactive tree trimming to reduce windfall damage.

 

In an era when storms with hurricane-force winds are expected to keep battering Atlantic Canada, experts say the region should make major changes to electrical grids, power utilities and shoreline defences and even the types of trees being planted.

Work continues today to reconnect customers after post-tropical storm Dorian knocked out power to 80 per cent of homes and businesses in Nova Scotia. By early afternoon there were 56,000 customers without electricity in the province, compared with 400,000 at the storm's peak on the weekend, a reminder that major outages can linger long after severe weather.

Recent scientific literature says 35 hurricanes -- not including post-tropical storms like Dorian -- have made landfall in the region since 1850, an average of one every five years that underscores the value of interprovincial connections like the Maritime Link for reliability.

Heavy rains and strong winds batter Shelburne, N.S. on Saturday, Sept. 7, 2019 as Hurricane Dorian approaches, making storm safety practices crucial for residents. (Suzette Belliveau/ CTV Atlantic)

Anthony Taylor, a forest ecologist scientist with Natural Resources Canada, wrote in a recent peer-reviewed paper that climate change is expected to increase the frequency of severe hurricanes.

He says promoting more mixed forests with hardwoods would reduce the rate of destruction caused by the storms.

Erni Wiebe, former director of distribution at Manitoba Hydro, says the storms should cause Atlantic utilities to rethink their view that burying lines is too expensive and to contemplate other long-term solutions such as the Maritime Link that enhance grid resilience.

Blair Feltmate, head of the Intact Centre on Climate Change at the University of Waterloo, says Atlantic Canada should also develop standards for coastline resiliency due to predictions of rising sea levels combining with the storms, while considering how delivery rate changes influence funding timelines.

He says that would mean a more rapid refurbishing of sea walls and dike systems, along with more shoreline vegetation.

Feltmate also calls for an aggressive tree-trimming program to limit power outages that he says "will otherwise continue to plague the Maritimes," while addressing risks like copper theft through better security.

 

Related News

View more

Cabinet Of Ministers Of Ukraine - Prime Minister: Our Goal In The Energy Sector Is To Synchronize Ukraine's Integrated Power System With Entso-e

Ukraine's EU Energy Integration aims for ENTSO-E synchronization, electricity market liberalization, EU Green Deal alignment, energy efficiency upgrades, hydrogen development, and streamlined grid connections to accelerate reform, market pricing, and sustainable growth.

 

Key Points

Ukraine's EU Energy Integration syncs with ENTSO-E, liberalizes power markets, and aligns with the EU Green Deal.

✅ ENTSO-E grid synchronization and cross-border trade readiness

✅ Electricity market liberalization and market-based pricing

✅ EU Green Deal alignment: efficiency, hydrogen, coal regions

 

Ukraine's goal in the energy sector is to ensure the maximum integration of energy markets with EU markets, and in line with the EU plan to dump Russian energy that is reshaping the region, synchronization of Ukraine's integrated energy system with ENTSO-E while leaning on electricity imports as needed to maintain stability. Prime Minister Denys Shmyhal emphasized in his statement at the Fourth Ukraine Reform Conference underway through July 7-8 in Vilnius, the Republic of Lithuania.

The Head of Government presented a plan of reforms in Ukraine until 2030. In particular, energy sector reform and environmental protection, according to the PM, include the liberalization of the electricity market, with recent amendments to the market law guiding implementation, the simplification of connection to the electrical grid system and the gradual transition to market electricity prices, alongside potential EU emergency price measures under discussion, and the monetization of subsidies for vulnerable groups.

"Ukraine shares and fully supports the EU's climate ambitions and aims to synchronize its policies in line with the EU Green Deal, including awareness of Hungary's energy alignment with Russia to ensure coherent regional planning. The interdepartmental working group has determined priority areas for cooperation with the European Union: energy efficiency, hydrogen, transformation of coal regions, waste management," said the Prime Minister.

According to Denys Shmyhal, Ukraine has supported the EU's climate ambitions to move towards climate-neutral development by 2050 within the framework of the European Green Deal and should become an integral part of it in order not only to combat the effects of climate change in synergy with the EU but, as the country prepares for winter energy challenges and strengthens resilience, within the economic strategy development aimed to enhance security and create new opportunities for Ukrainian business, with continued energy security support from partners bolstering implementation.

 

Related News

View more

NB Power launches public charging network for EVs

NB Power eCharge Network expands EV charging in New Brunswick with fast chargers, level 2 stations, Trans-Canada Highway coverage, and green infrastructure, enabling worry-free electric vehicle travel and lower emissions across the province.

 

Key Points

NB Power eCharge Network is a provincewide EV charging system with fast and level 2 stations for reliable travel.

✅ 15 fast-charging sites on Trans-Canada and northern New Brunswick

✅ Level 2 stations at highways, municipalities, and businesses

✅ 20-30 minute DC fast charging; cut emissions ~80% and fuel ~75%

 

NB Power announced Friday the eCharge Network, the province’s first electric vehicle charging network aimed at giving drivers worry-free travel everywhere in the province.

The network includes 15 locations along the province’s busiest highways where both fast-chargers and level-2 chargers will be available. In addition, nine level-2 chargers are already located at participating municipalities and businesses throughout the province. The new locations will be installed by the end of 2017.

NB Power is working with public and private partners to add to the network to enable electric vehicle owners to drive with confidence and to encourage others to make the switch from gas to electric vehicles, supported by a provincial rebate program now available.

“We are incredibly proud to offer our customers and visitors to New Brunswick convenient charging with the launch of our eCharge Network,” said Gaëtan Thomas, president and CEO of NB Power. “Our goal is to make it easy for owners of electric vehicles to drive wherever they choose in New Brunswick, and to encourage more drivers to consider an electric vehicle for their next purchase.”

An electric vehicle owner in New Brunswick can shrink their vehicle carbon footprint by about 80 per cent while reducing their fuel-related costs by about 75 per cent, according to NB Power, and broader grid benefits are being explored through Nova Scotia's vehicle-to-grid pilot across the region.

In addition to the network of standard charging stations, the eCharge network will also include 400 volt fast-charging stations along the Trans-Canada Highway and in the northern parts of New Brunswick. The first of their kind in New Brunswick, these 15 fast-charging stations, similar to Newfoundland and Labrador's newly completed fast-charging network connecting communities, will enable all-electric vehicles to recharge in as little as 20 to 30 minutes. Fast-charge sites will include standard level-2 stations for both battery electric vehicles and plug-in hybrids.

NB Power will install fast-charge and level-2 sites at five locations throughout northern New Brunswick, addressing northern coverage challenges seen elsewhere, such as Labrador's infrastructure gaps today, which will be cost-shared with government. Locations include the areas of Saint-Quentin/Kedgwick, Campbellton, Bathurst, Tracadie, and Miramichi.

“Our government understands that embracing the green economy and reducing our carbon footprint is a priority for New Brunswickers,” said Environment and Local Government Minister Serge Rousselle. “Our climate change action plan calls for a collaborative approach to creating the strategic infrastructure to support electric vehicles throughout all regions in the province, and we are pleased to see this important step underway. New Brunswickers will now have the necessary network to adopt new methods of transportation and contribute to our provincial plan to increase the number of electric vehicles on the road and will help meet emission reduction targets as we work to combat climate change.”

An investment of $500,000 from Natural Resources Canada will go towards purchasing and installing the charging stations for the 10 fast-charging stations along the Trans-Canada Highway.

“The eCharge Network will make it easier for Canadians to choose cleaner options and helps put New Brunswick’s transportation system on a path to a lower-carbon future,” said Moncton-Riverview-Dieppe MP Ginette Petitpas Taylor. “The Government of Canada continues to support green infrastructure in the transportation sector that will advance Canada’s efforts to build a clean economy, create well-paying jobs, and achieve our climate change goals.”

Petitpas Taylor attended for federal Natural Resources Minister Jim Carr.

Fast chargers are being installed at the following locations along the Trans-Canada Highway across New Brunswick:

– Irving Big Stop, Aulac

– Edmundston Truck Stop

– Irving Big Stop, Saint-André

– Johnson Guardian, Perth-Andover

– Murray’s Irving, Woodstock

– Petro-Canada / Acorn Restaurant, Prince William

– Irving Big Stop, Waasis

 

Related News

View more

Notley announces plans to move Alberta's electricity grid to net-zero by 2035 if elected

Alberta NDP Net-Zero Electricity Plan targets a 2035 clean grid, expands renewable energy, cuts emissions, creates jobs, and boosts economic diversification and rural connectivity, aligning Alberta with Canada's 2050 climate goals.

 

Key Points

A policy to achieve a net-zero electricity grid by 2035, advance renewable energy, cut emissions, and grow jobs.

✅ Net-zero electricity grid target set for 2035

✅ Scales renewable energy and emissions reductions

✅ Focus on jobs, rural connectivity, and diversification

 

Ahead of the NDP’s weekend convention, Alberta’s Opposition leader has committed to transforming the province’s energy sector and moving the province’s electricity grid to net-zero by 2035, despite debate over the federal 2035 net-zero electricity grid target in other provinces, should an orange crush wash over Alberta in the next election.

NDP Leader Rachel Notley said they would achieve this as part of the path towards Canada’s 2050 net-zero emissions goal, aligning with broader clean grids trends, which will help preserve and create jobs in the province.

“I think it’s an important goal. It’s a way of framing the work that we’re going to do within our energy industry and our energy sector, including how Alberta produces and pays for electricity going forward,” said Notley. “We know the world is moving toward different objectives and we still have the ability to lead on that front, but we need to lay down the markers early and focus on reaching those goals.”

Premier Jason Kenney has previously called the 2050 target “aspirational,” and, as the electricity sector faces profound change in Alberta, Notley said, once the work begins, it’s likely they would meet the objective earlier than proposed to reduce greenhouse gas emissions that contribute to global warming.

This is just one key issue that will be addressed at the party’s online convention, which is the first since the NDP’s defeat by the UCP in the last provincial election. Notley said other key issues will address economic diversification, economic recovery, job creation and social issues, as Alberta’s electricity market is headed for a reshuffle too. The focus, as she puts it, is “jobs, jobs, jobs.”

Attendees will also debate more than 140 policy resolutions over the weekend, including the development of a safe supply drug policy, banning coal mining in the Rocky Mountains and providing paid sick leave for workers.

Outside the formal agenda, debate over electricity market competition continues in Alberta as stakeholders weigh options.

Notley said an area of growing focus for the NDP will be rural Alberta, which is typically a conservative stronghold. One panel presentation during the convention will focus on connecting and building relationships with rural Albertans and growing the NDP profile in those areas.

“We think that we have a lot to offer rural Alberta and that, quite frankly, the UCP and (Kenney), in particular, have profoundly taken rural Alberta for granted,” she said. “Because of that, we think with a renewed energy amongst our membership to go out to parts of the province where we haven’t been previously as active, and talk about what they have been subjected to in the last two years, that we have huge opportunities there.”

Delegates will be asked to support a call for high-speed internet coverage across Alberta, which would remove barriers to access in rural Alberta and Indigenous communities, said the convention guidebook.

The convention comes as the NDP has a wide lead on the UCP, according to the latest polls. A Leger online survey of 1,001 Albertans conducted between March 5 to 8 found 40 per cent of respondents support the NDP, compared to just 20 per cent for the UCP.

Notley said it’s “encouraging” to see, but they aren’t taking anything for granted.

“I’ve always believed that Alberta Democrats have to work twice as hard as anybody else in the political spectrum, or the political arena,” she said. “So what we’re going to do is continue to do exactly what we have been, not only being a strong and I would argue fearless Opposition, but also trying to match every oppositional position with something that is propositional — offering Albertans a different vision, including an Alberta path to clean electricity where possible.”

 

Related News

View more

France nuclear power stations to limit energy output due to high river temps

France Nuclear Heatwave Restrictions signal reduced nuclear power along the Rhone River as EDF imposes output limits due to high water temperatures, grid needs, with minimal price impact amid strong solar and exports.

 

Key Points

Temporary EDF output limits at Rhone River reactors due to hot water, protecting ecosystems and grid reliability.

✅ EDF expects halved output at Bugey and Saint Alban.

✅ Cuts align with water temperature and discharge rules.

✅ Weekend midday curtailments offset by solar supply.

 

The high temperature warning has come early this year but will affect fewer nuclear power plants. High temperatures could halve nuclear power production, with river temperature limits at plants along France's Rhone River this week. 

Output restrictions are expected at two nuclear plants in eastern France due to high temperature forecasts, nuclear operator EDF said. It comes several days ahead of a similar warning that was made last year but will affect fewer plants, and follows a period when power demand has held firm during lockdowns across Europe.

The hot weather is likely to halve the available power supply from the 3.6 GW Bugey plant from 13 July and the 2.6 GW Saint Alban plant from 16 July, the operator said.

However, production will be at least 1.8 GW at Bugey and 1.3 GW at Saint Alban to meet grid requirements, and may change according to grid needs, the operator said.

Kpler analyst Emeric de Vigan said the restrictions were likely to have little effect on output in practice. Cuts are likely only at the weekend or midday when solar output was at its peak so the impact on power prices would be slim.

He said the situation would need monitoring in the coming weeks, however, noting it was unusually early in the summer for nuclear-powered France to see such restrictions imposed.

Water temperatures at the Bugey plant already eclipsed the initial threshold for restrictions on 9 July, as European power hits records during the heatwave. They are currently forecast to peak next week and then drop again, Refinitiv data showed.

"France is currently net exporting large amounts of power – and, despite a nuclear power dispute with Germany, single nuclear units' supply restrictions will not have the same effect as last year," Refinitiv analyst Nathalie Gerl said.

The Garonne River in southern France has the highest potential for critical levels of warming, but its Golfech plant is currently offline for maintenance until mid-August, as Europe faces nuclear losses, the data showed.

"(The restrictions were) to be expected and it will probably occur more often," Greenpeace campaigner Roger Spautz said.

"The authorities must stick to existing regulations for water discharges. Otherwise, the ecosystems will be even more affected," he added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified