Ameresco Completes Fourth Renewable EPC Project with Hoosier Energy


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Orchard Hills Landfill Gas-to-Energy powers 16 MW near Rockford, Illinois, using landfill gas biogas with GE Jenbacher engines; Ameresco and Hoosier Energy deliver renewable electricity, EPC expertise, and greenhouse gas reduction.

 

Key Points

A 16 MW Ameresco LFG-to-power plant converting landfill gas into renewable electricity for Hoosier Energy.

✅ 16 MW capacity; powers 8,000+ average homes

✅ Six GE Jenbacher J620 engines; biogas fueled

✅ Operated by Ameresco for Hoosier Energy

 

A leading energy efficiency and renewable energy company, today announced the completion of the 16 megawatt (MW) landfill gas-to-energy (LFGTE) project at the Orchard Hills Generating Station located just south of Rockford, Illinois, supporting regional grid reliability alongside the Transource transmission project in Missouri. Contracted in July 2014, the Engineering, Procurement and Construction Contract (EPC) for the LFGTE facility included comprehensive design, engineer-procure, permit, and construction services. With the project reaching operation, Ameresco will now operate and maintain the facility for Hoosier Energy. This is the fourth biogas-fueled project Ameresco operates for Hoosier Energy.

“The Orchard Hills generating station plays an important role in Hoosier Energy’s renewables program,” said Rob Horton, Vice President, Power Production, Hoosier Energy. “We are proud of our partnership with Ameresco and look forward to producing a significant amount of renewable energy at the landfill for years to come.”

The new multi-million facility turns landfill gas into electricity, and in the process, removes a potent greenhouse gas, complementing waste-derived pathways such as food waste to green hydrogen. The facility is powered by six 620 GE Jenbacher engines and is capable of producing enough electricity to power more than 8,000 homes that use 1,200 kwh of electricity per month, amid broader capacity additions like a 955-MW gas plant in Ohio.

The LFGTE plant safely diverts landfill gas through extraction wells and pipes it to a landfill gas-to-energy plant, where it is cleaned before specialized engines convert it to electricity for use. It can also be paired with thermal energy storage to enhance flexibility. The LFGTE facilities also improve greenhouse gas compliance and provide revenue for landfill owners while providing end users with a renewable option for their energy. These efforts align with grid software initiatives like NYPA and GE Power software that aim to deliver cleaner, more reliable power.

“Ameresco is honored to have been entrusted by Hoosier Energy, once again, to build another best-in-class alternative-fueled renewable energy facility,” said Michael T. Bakas, Senior Vice President, Ameresco. “We are proud of the hard work and dedication of our employees, in close collaboration with Hoosier Energy, for their passion in ensuring the successful construction and commercial operations of this new 16 MW utility-grade facility, and we look forward to operating and maintaining this new asset to the benefit of Hoosier Energy and its members for the long term.”

 

Related News

Related News

California regulators weigh whether the state needs more power plants

California Natural Gas Plant Rethink signals a shift toward clean energy, renewables, distributed solar, battery storage, and grid modernization as LADWP and regulators pause repowering plans amid an electricity oversupply and rising ratepayer costs.

 

Key Points

California pauses new gas plants to assess renewables, storage, and grid solutions for reliability.

✅ LADWP delays $2.2B gas repowers to study clean alternatives

✅ CEC weighs halting Oxnard plant amid grid oversupply

✅ Distributed solar, batteries, demand response boost reliability

 

California energy officials are, for the first time, rethinking plans to build expensive natural gas power plants in the face of an electricity glut and growing use of cleaner and cheaper energy alternatives.

The Los Angeles Department of Water and Power announced Tuesday that it has put a hold on a $2.2-billion plan to rebuild several old natural gas power plants while it studies clean energy alternatives to meet electricity demands. And the California Energy Commission may decide as early as Thursday to halt a natural gas project in Ventura County.

The scrutiny comes after an investigation found that the state is operating with an oversupply of electricity, driven largely by the construction of gas-fueled generating plants, leading to higher rates as regulators consider a rate overhaul to clean the grid. The state’s power plants are on track to be able to produce at least 21% more electricity than needed by 2020, according to the Times report.

Californians are footing a $40-billion annual bill while using less electricity, paying $6.8 billion more than they did in 2008 when power use in the state was at its all-time high. Electricity consumption has since fallen and remained largely flat.

Utilities in California have been on a years-long building binge, adding new natural gas plants even as the nation’s electricity system has undergone significant change, including consumer choice reforms that are reshaping the market.

Where utilities once delivered all electrical services from huge power plants along miles of transmission lines, the industry now must consider power delivered to the electric grid not only from its own sources, but also from solar systems and batteries at homes and businesses.

At the same time, utilities have been aggressively upgrading or rebuilding their aging natural gas plants — a move critics have said is unnecessary because consumers are using less power and clean energy technology is making those plants obsolete.

The DWP and energy commission moves involve as many as seven natural gas plant projects proposed for Southern California, despite warnings about a looming shortage if capacity is retired too fast, from Oxnard to Carlsbad, at a cost of more than $6 billion.

Reiko Kerr, the DWP’s senior assistant general manager of power systems, said given the changes in the energy world, the assessment is necessary to protect ratepayer dollars and the environment.

“The whole utility paradigm has shifted,” Kerr said in an interview. “We really are doing our ratepayers a disservice by not considering all viable options.

“We’re just looking at everything,” she said. “What can help us solve this reliability, renewable and greenhouse gas challenge that we all have?”

State and local governments have felt a heightened sense of urgency to deal with climate change after President Trump decided last week to withdraw the United States from the Paris climate accord.

California already has mandated that at least 50% of the state’s electricity come from clean energy sources by 2030. Senate leader Kevin de León (D-Los Angeles) wants to increase that to 100% by 2045.

Building or overhauling natural gas plants throughout Southern California, environmentalists argue, isn’t helping achieve those goals, even as some contend the state can't keep the lights on without gas during the transition.

The DWP’s move to delay plans for the fossil fuel plants, which seemed all but set to be built, came as a surprise to clean-energy advocates, who hailed the decision.

“This is a great first step toward smart energy investments that save customers money, ensure the lights stay on and protect our health and environment,” Graciela Geyer of the Sierra Club said.

The environmental group said that if the utility had moved ahead with the $2.2-billion investment in repowering natural gas plants, it “would have blown an irreparable hole in the city and the state’s hopes to achieve 100% generation” from clean energy sources.

Angela Johnson Meszaros, attorney at EarthJustice, said in a statement: "As our city struggles with the worst smog we’ve seen in years, we appreciate that LADWP is taking some much-needed time to reassess its plans to build fossil fuel power plants. We look forward to the day that LADWP announces that we are going to power our city with 100% clean energy.”

The gas-fired generating units slated for demolition and rebuilding are at the Scattergood, Haynes and Harbor electricity plants, which range from 34 to 67 years old.

As a group, the three plants have generated less than 20% of their combined capacity since 2001. The Harbor facility has operated on the low end at just 7%, while Haynes ran on the high end at 22%.

“The old model, the old legacy clunkers, won’t get us into the future we want,” DWP’s Kerr said.

DWP staff members told the utility’s’ commissioners Tuesday that their analysis of possible alternatives would be completed no later than early 2018.

Separately, the California Energy Commission this week is evaluating whether to halt a natural gas project in Ventura County after the state’s electric grid operator offered to conduct a study of clean energy alternatives to the roughly $250-million project on Mandalay Bay in Oxnard.

An energy commission committee has been deliberating since a hearing Monday during which Southern California Edison and the project’s developer, NRG Energy, argued that a study is simply a delay tactic that probably would kill a project needed to ensure reliable electric service and to avoid blackouts during peak demand.

The California Independent System Operator, which runs the state’s electric grid, told the energy commission that it would take three to four weeks to conduct its study on alternatives to the Oxnard natural gas project.

“Here we have an actual offer by the ISO to do such an analysis,” Ellison Folk, a lawyer representing the city of Oxnard, told the energy commission as she pushed for the study. “Its view that this is an analysis worth doing is something worth taking seriously.”

Energy commission members reviewing the study proposal are scheduled to meet again Thursday to consider the offer.

The board of governors for the California Independent System Operator made the unusual offer at its May 1 meeting to conduct a eleventh-hour study of clean-energy alternatives to building a new natural gas plant.

“If we’re going to be moving forward with a gas plant at this time, in this juncture, in the context of everything that’s going on, not evaluating other alternatives that are viable, noncombustion alternatives, is a missed opportunity,” Angelina Galetiva. a commission board member, said during the May 1 meeting.

 

Related News

View more

Montreal's first STM electric buses roll out

STM Electric Buses Montreal launch a zero-emission pilot with rapid charging stations on the 36 Monk line from Angrignon to Square Victoria, winter-tested for reliability and aligned with STM's 2025 fully electric fleet plan.

 

Key Points

STM's pilot deploys zero-emission buses with charging on the 36 Monk line, aiming for a fully electric fleet by 2025.

✅ 36 Monk route: Angrignon to Square Victoria with rapid charging

✅ Winter-tested performance; 15-25 km range per charge

✅ Quebec-built: motors Boucherville; buses Saint-Eustache

 

The first of three STM electric buses are rolling in Montreal, similar to initiatives with Vancouver electric buses elsewhere in Canada today.

The test batch is part of the city's plan to have a fully electric fleet by 2025, mirroring efforts such as St. Albert's electric buses in Alberta as well.

Over the next few weeks, one bus at a time will be put into circulation along the 36 Monk line, a rollout approach similar to Edmonton's first electric bus efforts in that city, going from Angrignon Metro station to Square Victoria Metro station. 

Rapid charging stations have been set up at both locations, a model seen in TTC's battery-electric rollout to support operations, so that batteries can be charged during the day between routes. The buses are also going to be fully charged at regular charging stations overnight.

Each bus can run from 15 to 25 kilometres on a single charge. The Monk line was chosen in part for its length, around 11 kilometres.

The STM has been testing the electric buses to make sure they can stand up to Montreal's harsh winters, drawing on lessons from peers such as the TTC electric bus fleet in Toronto, and now they are ready to take on passengers.

 

Keeping it local

The motors were designed in Boucherville, and the buses themselves were built in Saint-Eustache.

No timeline has been set for when the STM will be ready to roll out the whole fleet, but Montreal Mayor Denis Coderre, who was on hand at Tuesday's unveiling, told reporters he has confidence in the $11.9-million program.

"We start with three. Trust me, there will be more." said Coderre.

 

Related News

View more

Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

View more

Israeli ministries order further reduction in coal use

Israel Coal Reduction accelerates the energy transition, cutting coal use in electricity production by 30% as IEC shifts to natural gas, retires Hadera units, and targets a 2030 phase-out to lower emissions.

 

Key Points

Plan to cut coal power by 30%, retire IEC units, and end coal by 2030, shifting electricity generation to natural gas.

✅ 30% immediate cut in coal use for electricity by IEC

✅ Hadera units scheduled for retirement and gas replacement by 2022

✅ Complete phase-out of coal and gasoil in power by 2030

 

Israel's Energy and Water and Environmental Protection Ministers have ordered an immediate 30% reduction in coal use for electricity production by state utility Israel Electric Corporation as the country increases its dependence on domestic natural gas.

IEC, which operates four coal power plants with a total capacity of 4,850 MW and imports thermal coal from Australia, Colombia, Russia and South Africa, has been planning, as part of the decision to reduce coal use, to shut one of its coal plants during autumn 2018, when demand is lowest.

Israel has already decided to shut the four units of the oldest coal power plant at Hadera by 2022, echoing Britain's coal-free week milestones, and replace the capacity with gas plants.

"By 2030 Israel will completely stop the use of coal and gasoil in electricity production," minister Yuval Steinmetz said.

Coal consumption peaked in 2012 at 14 million mt and has declined steadily, aligning with global trends where renewables poised to eclipse coal in power generation, with the coming on line of Israel's huge Tamar offshore gas field in 2013.

In 2015 coal accounted for more than 50% of electricity production, even as German renewables outpaced coal in generation across that market. Coal's share would decline to less than 30% under the latest decision.

Israel's coal consumption in 2016 totaled 8.7 million mt, as India rationed coal supplies amid surging demand, and was due to decline to 8 million mt last year.

Three years ago, the ministers ordered a 15% reduction in coal use, while Germany's coal generation share remained significant, and the following year a further 5% cut was added.

 

Related News

View more

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

San Diego utility offers $10,000 off Nissan Leaf, BMW i3 electric cars

San Diego Gas & Electric EV incentives deliver $10,000 utility discounts plus a $200 EV Climate Credit, stackable with California rebates and federal tax credits on BMW i3 and Nissan Leaf purchases through participating dealers.

 

Key Points

Utility-backed rebates that cut EV purchase costs and stack with California and federal tax credits for added savings.

✅ $10,000 off BMW i3 or Nissan Leaf via SDG&E partner dealers

✅ Stack with $7,500 federal and up to $4,500 California rebates

✅ $200 annual EV Climate Credit for eligible account holders

 

For southern California residents, it's an excellent time to start considering the purchase of a BMW i3 or Nissan Leaf electric car as EV sales top 20% in California today.

San Diego Gas & Electric has joined a host of other utility companies in the state in offering incentives towards the purchase of an i3 or a Leaf as part of broader efforts to pursue EV grid stability initiatives in California.

In total, the incentives slash $10,000 from the purchase price of either electric car, and an annual $200 credit to reduce the buyer's electricity bill is included through the EV Climate Credit program, which can complement home solar and battery options for some households.

SDG&E's incentives may be enough to sway some customers into either electric car, but there's better news: the rebates can be combined with state and federal incentives.

The state of California offers a $4,500 purchase rebate for qualified low-income applicants, while others are eligible for $2,500

Additionally, the federal government income-tax credit of up to $7,500 can bring the additional incentives to $10,000 on top of the utility's $10,000.

While the federal and state incentives are subject to qualifications and paperwork established by the two governments, the utility company's program is much more straight forward.

SDG&E simply asks a customer to provide a copy of their utility bill and a discount flyer to any participating BMW or Nissan dealership.

Additional buyers who live in the same household as the utility's primary account holder are also eligible for the incentives, although proof of residency is required.

Nissan is likely funding some of the generous incentives to clear out remaining first-generation Nissan Leafs.

The 2018 Nissan Leaf will be revealed next month and is expected to offer a choice of two battery packs—one of which should be rated at 200 miles of range or more.

SDG&E joins Southern California Edison as the latest utility company to offer discounts on electric cars as California aims for widespread electrification and will need a much bigger grid to support it, though SCE has offered just $450 towards a purchase.

However, the $450 incentive can be applied to new and used electric cars.

Up north, California utility company Pacific Gas & Electric offers $500 towards the purchase of an electric car as well, and is among utilities plotting a bullish course for EV charging infrastructure across the state today.

Two Hawaiian utilities—Kaua'i Island Utility Cooperative and the Hawaiian Electric Company—offered $10,000 rebates similar to those in San Diego from this past January through March.

Those rebates once again were destined for the Nissan Leaf.

SDG&E's program runs through September 30, 2017, or while supplies of the BMW i3 and Nissan Leaf last at participating local dealers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.