Centrica acquires battery storage project that could "unlock North Sea wind energy potential"


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Centrica Dyce Battery Storage will deliver 30MW 2hr capacity in Aberdeenshire, capturing North Sea offshore wind to reduce curtailment, enhance grid flexibility, and strengthen UK energy independence with reliable renewable energy balancing.

 

Key Points

A 30MW 2hr battery in Dyce, Aberdeenshire, storing North Sea wind to cut curtailment and ease UK grid constraints.

✅ 30MW 2hr system near North Sea offshore wind connection

✅ Cuts curtailment and boosts grid flexibility and reliability

✅ Can power 70,000 homes for an hour with daily cycles

 

CENTRICA Business Solutions has secured the development rights for a fully consented 30MW 2hr battery storage plant in Aberdeenshire that will help maximise the use of renewable energy in the Scottish North Sea.

The site in Dyce, near Aberdeen is located near a connection for North Sea UK offshore wind farms and will contribute towards managing network constraints – by storing electricity when it is abundant for times when it is not, helping improve the energy independence of the UK and reduce our reliance on fossil fuels. 

Last year, the National Grid paid £244million to wind farm operators to shut down turbines, as they risked overloading the Scottish grid, a process known as curtailment. Battery storage is one method of helping to utilise that wasted energy resource, ensuring fewer green electrons are curtailed. 

Once built, the 30MW 2hr Dyce battery storage plant will store enough energy to power 70,000 homes for an hour. This discharge happens up to four hours per day, as seen in other large-scale deployments like France's largest battery platform that optimise grid balancing.

The project was developed by Cragside Energy Limited, backed by Omni Partners LLP, and obtained planning consent in November 2021. The go-live date for the project is mid-2024, construction should last eight months and will be aligned with the grid connection date.

“Battery storage can play a strategic role in helping to transition away from fossil fuels, by smoothing out the peak demand and troughs associated with renewable energy generation,” said Bill Rees, Director of Centrica Energy Assets. “We should treat renewable energy like a precious resource and projects like this can help to maximise its efficacy.” 

The project forms part of Centrica Energy Assets’ plan to deliver 900MW of solar and battery storage assets by 2026, increasingly paired with solar in global deployments. Centrica already owns and operates the 49MW fast response battery at Roosecote, Cumbria. 

Centrica Business Solutions Managing Director Greg McKenna, said: “Improving the energy independence of the UK is essential to help manage energy costs and move away from fossil fuels. The Government has set a target of a green electricity grid by 2035 – that’s only achievable if we build out the level of flexibility in the system, to help manage supply and demand.”

Centrica Energy Assets will work with Cragside Energy to identify new opportunities in the energy storage space. Cragside Energy’s growing pipeline exceeds 200MW, and focuses on low carbon and flexible assets, including energy storage, solar and peaking plant schemes, supported by falling battery costs across the sector.

Ben Coulston, Director of Cragside Energy, added: “Targeted investment into a complementary mix of diverse energy sources and infrastructure is crucial if the UK is to fully harness its renewable energy potential. Battery storage, such as the project in Dyce, will contribute to the upkeep of a stable and resilient network and we have enjoyed partnering with Centrica as the project transitions into the next phase”.

Related News

Enabling storage in Ontario's electricity system

OEB Energy Storage Integration advances DERs and battery storage through CDM guidelines, streamlined connection requirements, IESO-aligned billing, grid modernization incentives, and the Innovation Sandbox, providing regulatory clarity and consumer value across Ontario's electricity system.

 

Key Points

A suite of OEB initiatives enabling storage and DERs via modern rules, cost recovery, billing reforms, and pilots.

✅ Updated CDM guidelines recognize storage at all grid levels.

✅ Standardized connection rules for DERs effective Oct 1, 2022.

✅ Innovation Sandbox supports pilots and temporary regulatory relief.

 

The energy sector is in the midst of a significant transition, where energy storage is creating new opportunities to provide more cost-effective, reliable electricity service. The OEB recognizes it has a leadership role to play in providing certainty to the sector while delivering public value, and a responsibility to ensure that the wider impacts of any changes to the regulatory framework, including grid rule changes, are well understood. 

Accordingly, the OEB has led a host of initiatives to better enable the integration of storage resources, such as battery storage, where they provide value for consumers.

Energy storage integration – our journey 
We have supported the integration of energy storage by:

Incorporating energy storage in Conservation and Demand Management (CDM) Guidelines for electricity distributors. In December 2021, the OEB released updated CDM guidelines that, among other things, recognize storage – either behind-the-meter, at the distribution level or the transmission level – as a means of addressing specific system needs. They also provide options for distributor cost recovery, aligning with broader industrial electricity pricing discussions, where distributor CDM activities also earn revenues from the markets administered by the Independent Electricity System Operator (IESO).
 
Modernizing, standardizing and streamlining connection requirements, as well as procedures for storage and other DERs, to help address Ontario's emerging supply crunch while improving project timelines. This was done through amendments to the Distribution System Code that take effect October 1, 2022, as part of our ongoing DER Connections Review.
 
Facilitating the adoption of Distributed Energy Resources (DERs), which includes storage, to enhance value for consumers by considering lessons from BESS in New York efforts. In March 2021, we launched the Framework for Energy Innovation consultation to achieve that goal. A working group is reviewing issues related to DER adoption and integration. It is expected to deliver a report to the OEB by June 2022 with recommendations on how electricity distributors can assess the benefits and costs of DERs compared to traditional wires and poles, as well as incentives for distributors to adopt third-party DER solutions to meet system needs.
 
Examining the billing of energy storage facilities. A Generic Hearing on Uniform Transmission Rates is underway. In future phases, this proceeding is expected to examine the basis for billing energy storage facilities and thresholds for gross-load billing. Gross-load billing demand includes not just a customer’s net load, but typically any customer load served by behind-the-meter embedded generation/storage facilities larger than one megawatt (or two megawatts if the energy source is renewable).
 
Enabling electricity distributors to use storage to meet system needs. Through a Bulletin issued in August 2020, we gave assurance that behind-the-meter storage assets may be considered a distribution activity if the main purpose is to remediate comparatively poor reliability of service.
 
Offering regulatory guidance in support of technology integration, including for storage, through our OEB Innovation Sandbox, as utilities see benefits across pilot deployments. Launched in 2019, the Innovation Sandbox can also provide temporary relief from a regulatory requirement to enable pilot projects to proceed. In January 2022, we unveiled Innovation Sandbox 2.0, which improves clarity and transparency while providing opportunities for additional dialogue. 
Addressing the barriers to storage is a collective effort and we extend our thanks to the sector organizations that have participated with us as we advanced these initiatives. In that regard, we provided an update to the IESO on these initiatives for a report it submitted to the Ministry of Energy, which is also exploring a hydrogen economy to support decarbonization.

 

Related News

View more

Bus depot bid to be UK's largest electric vehicle charging hub

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

View more

Renewables Are Ready to Deliver a Renewable World - Time for Action for 100% Renewable Energy Globally

100% Renewable Energy Transition unites solar, wind, hydropower, geothermal, and bioenergy with storage, smart grids, and sector coupling, delivering decarbonization, energy security, and lower LCOE amid post-Fukushima policy shifts and climate resilience goals.

 

Key Points

It is a pathway using all renewables plus storage and grids to fully decarbonize power, heat, transport, and industry.

✅ Integrates solar, wind, hydro, geothermal, and bioenergy

✅ Uses storage, smart grids, and sector coupling for reliability

✅ Requires enabling policies, finance, and rapid deployment

 

Renewable energy organizations representing different spheres of the renewable energy community have gathered on the occasion of the tenth anniversary of the Great East Japan Earthquake and Fukushima nuclear accident to emphasize that renewable energies are not only available in abundance, with global renewable power on course to shatter more records, but ready to deliver a renewable world.

The combination of all renewable technologies, be it bioenergy, geothermal energy, hydropower, ocean energy, solar energy or wind power, in particular in combination with storage options, can satisfy all energy needs of mankind, be it for power, heating/cooling, transportation, or industrial processes.

Renewables have seen tremendous growth rates and cost reduction over the past two decades, but there are still many barriers that need to be addressed for a faster renewable energy deployment to eventually achieve global 100% renewable energy, as outlined in an on the road to 100% renewables initiative that charts the path. It is up to political decision-makers to create the legislative and regulatory conditions so that the renewable energy community can act as fast as needed.

Such rapid switch towards renewables is not only a must in light of nuclear risks and the growing threats of climate change, but also the necessary response to the current pandemic situation. And it will allow those hundreds of millions of humans in unserved areas to get for the first time ever access to modern energy services, as noted by a new IRENA report that details how renewables can decarbonise the energy sector and improve lives.

Speakers from the renewable energy community presented today in a joint webinar that a renewable future is a realistic vision, representing:

Energy Watch Group, Global100RE Platform, Global100RE Strategy Group, International Geothermal Association, ISEP Japan, REN Alliance, World Bioenergy Association, World Wind Energy Association.

Dr. Tetsunari Iida, Director of the Institute for Sustainable Energy Policies ISEP Japan:

Ten years ago, on 11 March 2021, the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident occurred. It is a "coincidence of global history" that it now coincides with the starting point of the 100% renewable energy initiative that is accelerating around the world.

The world has changed dramatically since 311. Germany, Italy, Switzerland, Taiwan, South Korea, China and many other countries were all shocked by 311 and shifted their focus from nuclear power to renewable energy, and in the U.S. clean energy industries are setting sights on market majority to accelerate this trend. The next ten years will be the decade in which this perception will rapidly become the "new reality". 311 was the "starting point" for a structural energy shift in world history.

Hans-Josef Fell, former MP, President of the Energy Watch Group and co-initiator of the Global100RE Strategy Group:

The disasters of Fukushima and Chernobyl are urging the entire world to quickly end the use of atomic energy, and many call for a fossil fuel lockdown to catalyze a climate revolution alongside the transition. Contrary to what is often claimed, nuclear energy cannot make a contribution to climate protection, but only creates immense problems with toxic radioactivity emissions, nuclear waste, atomic bomb material and the dangers of a nuclear catastrophe. In contrast, 100% renewable energies until 2030 can help achieve climate protection and a simultaneous nuclear phase-out, according to a recently published statement by a world-leading group of energy researchers from the USA, EU and Australia.

Their research suggests that a 100% renewable energy supply, including storage systems, can provide full energy security for all of mankind by 2030 and will even be cheaper than the existing nuclear and fossil energy supply, and with over 30% of global electricity already from renewables, momentum is strong. The only requirement for implementation is the right decisions taken by decision makers both in governments and industry. All technical and economic prerequisites for a disruptive conversion of the global energy supply to 100% renewable energies are already in place.

Hon. Peter Rae AO, President of WWEA and Honorary Chairman of the REN Alliance:

40 years ago, the idea of developing nuclear power appealed to me as a non-polluting method of generating electricity. So I studied it. How to deal with waste and how to ensure it would not create a danger to life. Along came Chernobyl and other accidents. Storage of waste was leaving dangerous hiding places while some waste was alleged to be dumped at sea. I became more and more concerned. There were demonstrations that the existing methods were dangerous and required very strict construction and operational tolerances - up went the cost. Long delays and huge cost increases. I had visited nuclear power stations and talked to expert proponents in UK, France, US, Taiwan and Australia, and debates such as New Zealand's electricity future reflect similar concerns. The more I did the more certain I became that it was not the way to go. Then Fukushima put the dangers and cost beyond doubt.

Let's get on with the rollover to renewables.

Dr. Marit Brommer, Executive Director of the International Geothermal Association IGA:

The IGA is proud to work with all renewable energy associations to continuously provide a unified voice to a cleaner energy future. The Geothermal sector is proven to be a partner of choice for many locations in the world serving baseload power and clean heat to customers. We are particularly interested in the increased attention system integration gets, which underpins the importance of all renewables coming together at events such as the webinar organised by the WWEA.

Christian Rakos, President of the World Bioenergy Association:

The IPCC has emphasized the important role of sustainable bioenergy for climate protection. Recent advances in technology allow us to use feedstock from forestry, wood processing and agricultural production in an efficient and clean way. Today, bioenergy already contributes 12 - 13% to global final energy demand. Importantly, contribution from bioenergy is more than 5 times as much as nuclear energy worldwide. Together with other renewable energy technologies such as solar, wind, geothermal and hydropower, bioenergy can increase the contribution in a substantial way to meet the energy demands of all end use sectors and meet the international energy and climate goals.

Stefan Gsanger, Secretary General of the World Wind Energy Association and Co-chair of the Global100RE Platform:

The switch to a renewable energy future requires new political and economic thinking: from centralised structures with few large actors towards decentralised, participatory models with millions of communities and citizens playing an active role, not only as consumers but also as producers of energy. To make this new paradigm the predominant energy paradigm is the true challenge of the energy transformation which we as the world community are facing. If we manage this shift well and on time, billions of people across the globe, in industrialised and developing countries alike, will benefit and will face a bright future.

 

Related News

View more

The Spanish inventor creating electricity from plants

Bioo Soil-Generated Electricity turns biological batteries and photosynthesis into renewable energy, powering IoT sensors for smart farming and lighting, using microbe-powered soil electrochemistry to cut battery waste, reduce costs, and scale sustainable agritech infrastructure.

 

Key Points

Bioo Soil-Generated Electricity powers IoT sensors and lighting using soil microbes, delivering clean renewable energy.

✅ Microbe-driven soil batteries replace disposable chemical cells

✅ Powers IoT agritech sensors for moisture, pH, and temperature

✅ Cuts maintenance and costs while enabling sustainable farming

 

SCENES shines a spotlight on youth around the world that are breaking down barriers and creating change. The character-driven short films will inspire and amaze, as these young change-makers tell their remarkable stories.

Pablo Vidarte is a born inventor. At the age of eight, he was programming video games. By 16, he was challenging NASA and competing with the Spanish army to enhance the efficiency of external combustion engines. "I wanted to perfect a system that NASA did in 2002 oriented to powering cars. I was able to increase that efficiency by 60 per cent, which was pretty cool," Pablo explained. Aged 18, he created his first company specialising in artificial intelligence. A year later, he founded Bioo, a revolutionary startup that generates electricity from plants' photosynthesis.

"Imagine, being in the middle of a park or a street and being able to touch a plant and turn on the lights of that specific area," Pablo told Scenes. "Imagine storing the memories of humanity itself in nature. Imagine storing voice messages in a library that is an open field where you can go and touch the plants and communicate and interact with them. That's what we do at Bioo," he added.

The creation of Bioo, however, was not a walk in the park. Pablo relied on nanotechnology engineers and biologists volunteering their time to turn his idea of biological batteries, inspired by biological design, into a reality. It took a year for a prototype to be created and an investor to come on board. Today, Bioo is turning plants into biological switches, generating renewable energy from nature, and transforming the environment.

"We realised that we were basically killing the planet, and then we invented things like solar panels and solutions like peer-to-peer energy that we're able to prevent things from getting worse, but the next step is to be able to reverse the whole equation to revive that planet that we're starting to lose," the 25-year-old explained.

Batteries creating electricity from soil
Bioo has designed biological batteries that generate electricity from the energy released when organic soil decomposes. Like traditional batteries, they have an anode and a cathode, but instead of using materials like lithium to power them, organic matter is used as fuel. When microorganisms break down the organic soil, electrons are released. These electrons are then transported from the anode to the cathode, and a current of electricity is created. The batteries come in the shape of a rectangular box and can be dug into any fertile soil. They produce up to 200Wh a year per square metre, and just as some tidal projects use underwater kites to harvest energy, these systems tap natural processes.

Bioo's batteries are limited to low-power applications, but they have grown in popularity and are set to transform the agriculture industry.

Cost savings for farmers
Farmers can monitor their crops using a large network of sensors. The sensors allow them to analyse growing conditions, such as soil moisture, PH levels and air temperature. Almost 90 per cent of the power used to run the sensors come from chemical batteries, which deplete, underscoring the renewable energy storage problem that new solutions target.

"The huge issue is that chemical batteries need to be replaced every single year. But the problem is that you literally need an army of people replacing batteries and recalibrating them," Pablo explains. "What we do, it's literally a solution that is hidden, and that's nourishing from the soil itself and has the same cost as using chemical batteries. So the investment is basically returned in the first year," Pablo added.

Bioo has partnered with Bayer, a leading agricultural producer, to trial their soil-powered sensors on 50 million hectares of agricultural land. If successful, the corporation could save €1.5 billion each year. Making it a game-changer for farmers around the world.

A BioTech World
In addition to agriculture, Bioo's batteries are now being installed in shopping centres, offices and hospitals to generate clean power for lighting, while other companies are using ocean and river power to diversify clean generation portfolios.

Pablo's goal is to create a more environmentally efficient world, so shares his technology with international tech companies as green hydrogen projects scale globally. "I wanted to do something that could really mean a change for our world. Our ambition right now is to create a biotech world, a world that is totally interconnected with nature," he said.

As Bioo continues to develop its technology, Pablo believes that soil-generated electricity will become a leader in the global energy market, aligning with progress toward cheap, abundant electricity becoming a reality worldwide.

 

Related News

View more

Ukraine's Green Fightback: Rising from the Ashes with Renewable Energy

Ukraine Green Fightback advances renewable energy, energy independence, and EU integration, rebuilding war-damaged grids with solar, wind, and storage, exporting power to Europe, and scaling community microgrids for resilient, low-carbon recovery and REPowerEU alignment.

 

Key Points

Ukraine Green Fightback shifts to renewables and resilient grids, aiming 50% clean power by 2035 despite wartime damage.

✅ 50% renewable electricity target by 2035, up from 15% in 2021

✅ Community solar and microgrids secure hospitals and schools

✅ Wind and solar rebuild capacity; surplus exports to EU grids

 

Two years after severing ties with Russia's power grid, Ukraine stands defiant, rebuilding its energy infrastructure with a resolute focus on renewables. Amidst the ongoing war's devastation, a remarkable green fightback is taking shape, driven by a vision of a self-sufficient, climate-conscious future.

Energy Independence, Forged in Conflict:

Ukraine's decision to unplug from Russia's grid in 2022 was both a strategic move and a forced necessity, aligning with a wider pushback from Russian oil and gas across the continent. While it solidified energy independence aspirations, the full-scale invasion pushed the country into "island mode," highlighting vulnerabilities of centralized infrastructure.

Today, Ukraine remains deeply intertwined with Europe, inching towards EU accession and receiving global support, as Europe's green surge in clean energy gathers pace. This aligns perfectly with the country's commitment to environmental responsibility, further bolstered by the EU's own "REPowerEU" plan to ditch fossil fuels.

Rebuilding with Renewables:

The war's impact on energy infrastructure has been significant, with nearly half damaged or destroyed. Large-scale renewables have borne the brunt, with 30% of solar and 90% of wind farms facing disruption.

Yet, the spirit of resilience prevails. Surplus electricity generated by solar plants is exported to Poland, showcasing the potential of renewable sources and mirroring Germany's solar power boost across the region. Ambitious projects are underway, like the Tyligulska wind farm, Ukraine's first built in a conflict zone, already supplying clean energy to thousands.

The government's vision is bold: 50% renewable energy share by 2035, a significant leap from 2021's 15%, and informed by the fact that over 30% of global electricity already comes from renewables. This ambition is echoed by civil society groups who urge even higher targets, with calls for 100% renewable energy worldwide continuing to grow.

Community-Driven Green Initiatives:

Beyond large-scale projects, community-driven efforts are flourishing. Villages like Horenka and Irpin, scarred by the war, are rebuilding hospitals and schools with solar panels, ensuring energy security and educational continuity.

These "bright examples," as Svitlana Romanko, founder of Razom We Stand, calls them, pave the way for a broader green wave. Research suggests replacing all coal plants with renewables would cost a manageable $17 billion, paving the way for a future free from dependence on fossil fuels, with calls for a fossil fuel lockdown gaining traction.

Environmental Cost of War:

The war's ecological footprint is immense, with damages exceeding €56.7 billion. The Ministry of Environmental Protection and Natural Resources is meticulously documenting this damage, not just for accountability but for post-war restoration.

Their efforts extend beyond documentation. Ukraine's "EcoZagroza" app allows citizens to report environmental damage and monitor pollution levels, fostering a collaborative approach to environmental protection.

Striving for a Greener Future:

President Zelenskyy's peace plan highlights ecocide prevention and environmental restoration. The ministry itself is undergoing a digitalization push, tackling corruption and implementing EU-aligned reforms.

While the European Commission's recent progress report acknowledges Ukraine's strides, set against a Europe where renewable power has surpassed fossil fuels for the first time, the "crazy rhythm" of change, as Ecoaction's Anna Ackermann describes it, reflects the urgency of the situation. Finding the right balance between war efforts and green initiatives remains a crucial challenge.

Conclusion:

Ukraine's green fightback is a testament to its unwavering spirit. Amidst the darkness of war, hope shines through in the form of renewable energy projects and community-driven initiatives. By embracing a green future, Ukraine not only rebuilds but sets an example for the world, demonstrating that even in the face of adversity, sustainability can prevail.

 

Related News

View more

New Kind of 'Solar' Cell Shows We Can Generate Electricity Even at Night

Thermoradiative Diode Power leverages infrared radiation and night-sky cooling to harvest waste heat. Using MCT (mercury cadmium telluride) detectors with photovoltaics, it extends renewable energy generation after sunset, exploiting radiative cooling and low-power density.

 

Key Points

Technology using MCT infrared diodes to turn radiative Earth-to-space heat loss into electricity, aiding solar at night.

✅ MCT diodes radiate to cold sky, generating tiny current at 20 C

✅ Complements photovoltaics by harvesting post-sunset infrared flux

✅ Potential up to one-tenth solar output with further efficiency gains

 

Conventional solar technology soaks up rays of incoming sunlight to bump out a voltage. Strange as it seems, some materials are capable of running in reverse, producing power as they radiate heat back into the cold night sky environment.

A team of engineers in Australia has now demonstrated the theory in action, using the kind of technology commonly found in night-vision goggles to generate power, while other research explores electricity from thin air concepts under ambient humidity.

So far, the prototype only generates a small amount of power, and is probably unlikely to become a competitive source of renewable power on its own – but coupled with existing photovoltaics technology and thermal energy into electricity approaches, it could harness the small amount of energy provided by solar cells cooling after a long, hot day's work.

"Photovoltaics, the direct conversion of sunlight into electricity, is an artificial process that humans have developed in order to convert the solar energy into power," says Phoebe Pearce, a physicist from the University of New South Wales.

"In that sense, the thermoradiative process is similar; we are diverting energy flowing in the infrared from a warm Earth into the cold Universe."

By setting atoms in any material jiggling with heat, you're forcing their electrons to generate low-energy ripples of electromagnetic radiation in the form of infrared light, a principle also explored with carbon nanotube energy harvesters in ambient conditions.

As lackluster as this electron-shimmy might be, it still has the potential to kick off a slow current of electricity. All that's needed is a one-way electron traffic signal called a diode.

Made of the right combination of elements, a diode can shuffle electrons down the street as it slowly loses its heat to a cooler environment.

In this case, the diode is made of mercury cadmium telluride (MCT). Already used in devices that detect infrared light, MCT's ability to absorb mid-and long-range infrared light and turn it into a current is well understood.

What hasn't been entirely clear is how this particular trick might be used efficiently as an actual power source.

Warmed to around 20 degrees Celsius (nearly 70 degrees Fahrenheit), one of the tested MCT photovoltaic detectors generated a power density of 2.26 milliwatts per square meter.

Granted, it's not exactly enough to boil a jug of water for your morning coffee. You'd probably need enough MCT panels to cover a few city blocks for that small task.

But that's not really the point, either, given it's still very early days in the field, and there's potential for the technology to develop significantly further in the future.

"Right now, the demonstration we have with the thermoradiative diode is relatively very low power. One of the challenges was actually detecting it," says the study's lead researcher, Ned Ekins-Daukes.

"But the theory says it is possible for this technology to ultimately produce about 1/10th of the power of a solar cell."

At those kinds of efficiencies, it might be worth the effort weaving MCT diodes into more typical photovoltaic networks alongside thin-film waste heat solutions so that they continue to top up batteries long after the Sun sets.

To be clear, the idea of using the planet's cooling as a source of low-energy radiation is one engineers have been entertaining for a while now. Different methods have seen different results, all with their own costs and benefits, with low-cost heat-to-electricity materials also advancing in parallel.

Yet by testing the limits of each and fine-tuning their abilities to soak up more of the infrared bandwidth, we can come up with a suite of technologies and thermoelectric materials capable of wringing every drop of power out of just about any kind of waste heat.

"Down the line, this technology could potentially harvest that energy and remove the need for batteries in certain devices – or help to recharge them," says Ekins-Daukes.

"That isn't something where conventional solar power would necessarily be a viable option."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.