Centrica acquires battery storage project that could "unlock North Sea wind energy potential"


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Centrica Dyce Battery Storage will deliver 30MW 2hr capacity in Aberdeenshire, capturing North Sea offshore wind to reduce curtailment, enhance grid flexibility, and strengthen UK energy independence with reliable renewable energy balancing.

 

Key Points

A 30MW 2hr battery in Dyce, Aberdeenshire, storing North Sea wind to cut curtailment and ease UK grid constraints.

✅ 30MW 2hr system near North Sea offshore wind connection

✅ Cuts curtailment and boosts grid flexibility and reliability

✅ Can power 70,000 homes for an hour with daily cycles

 

CENTRICA Business Solutions has secured the development rights for a fully consented 30MW 2hr battery storage plant in Aberdeenshire that will help maximise the use of renewable energy in the Scottish North Sea.

The site in Dyce, near Aberdeen is located near a connection for North Sea UK offshore wind farms and will contribute towards managing network constraints – by storing electricity when it is abundant for times when it is not, helping improve the energy independence of the UK and reduce our reliance on fossil fuels. 

Last year, the National Grid paid £244million to wind farm operators to shut down turbines, as they risked overloading the Scottish grid, a process known as curtailment. Battery storage is one method of helping to utilise that wasted energy resource, ensuring fewer green electrons are curtailed. 

Once built, the 30MW 2hr Dyce battery storage plant will store enough energy to power 70,000 homes for an hour. This discharge happens up to four hours per day, as seen in other large-scale deployments like France's largest battery platform that optimise grid balancing.

The project was developed by Cragside Energy Limited, backed by Omni Partners LLP, and obtained planning consent in November 2021. The go-live date for the project is mid-2024, construction should last eight months and will be aligned with the grid connection date.

“Battery storage can play a strategic role in helping to transition away from fossil fuels, by smoothing out the peak demand and troughs associated with renewable energy generation,” said Bill Rees, Director of Centrica Energy Assets. “We should treat renewable energy like a precious resource and projects like this can help to maximise its efficacy.” 

The project forms part of Centrica Energy Assets’ plan to deliver 900MW of solar and battery storage assets by 2026, increasingly paired with solar in global deployments. Centrica already owns and operates the 49MW fast response battery at Roosecote, Cumbria. 

Centrica Business Solutions Managing Director Greg McKenna, said: “Improving the energy independence of the UK is essential to help manage energy costs and move away from fossil fuels. The Government has set a target of a green electricity grid by 2035 – that’s only achievable if we build out the level of flexibility in the system, to help manage supply and demand.”

Centrica Energy Assets will work with Cragside Energy to identify new opportunities in the energy storage space. Cragside Energy’s growing pipeline exceeds 200MW, and focuses on low carbon and flexible assets, including energy storage, solar and peaking plant schemes, supported by falling battery costs across the sector.

Ben Coulston, Director of Cragside Energy, added: “Targeted investment into a complementary mix of diverse energy sources and infrastructure is crucial if the UK is to fully harness its renewable energy potential. Battery storage, such as the project in Dyce, will contribute to the upkeep of a stable and resilient network and we have enjoyed partnering with Centrica as the project transitions into the next phase”.

Related News

YVR welcomes government funding for new Electric Vehicle Chargers

YVR EV Charging Infrastructure Funding backs new charging stations at Vancouver International Airport via ZEVIP and CleanBC Go Electric, supporting Net Zero 2030 with Level 2 and DC fast charging across Sea Island.

 

Key Points

A federal and provincial effort to expand EV charging at YVR, accelerating airport electrification toward Net Zero 2030.

✅ Up to 74 new EV charging outlets across Sea Island by 2025

✅ Funded through ZEVIP and CleanBC Go Electric programs

✅ Supports passengers, partners, and YVR fleet electrification

 

Vancouver International Airport (YVR) welcomes today’s announcement from the Government of Canada, which confirms new federal funding under Natural Resource Canada’s Zero Emission Vehicle Infrastructure Program (ZEVIP) and broader zero-emission vehicle incentives for essential infrastructure at the airport that will further enable YVR to achieve its climate targets.

This federal funding, combined with funding through the Government of British Columbia’s CleanBC Go Electric program, which includes EV charger rebates, will support the installation of up to 74 additional Electric Vehicle (EV) Charging outlets across Sea Island over the next three years. EV charging infrastructure is identified as a key priority in the airport’s Roadmap to Net Zero 2030. It is also an important part of its purpose in being a Gateway to the New Economy.

“We know that our passengers’ needs and expectations are changing as EV adaptation increases across our region and policies like the City’s EV-ready requirements take hold, we are always working hard to anticipate and exceed these expectations and provide world-class amenities at our airport,” said Tamara Vrooman, President & CEO, Vancouver Airport Authority.

This airport initiative is among 26 projects receiving $19 million under ZEVIP, which assists organizations as they adapt to the Government of Canada’s mandatory target for all new light-duty cars and passenger trucks to be zero-emission by 2035, and to provincial momentum such as B.C.'s EV charging expansion across the network.

“We are grateful to have found partners at all levels of government as we take bold action to become the world’s greenest airport. Not only will this critical funding support us as we work to the complete electrification of our airport operations, and as regional innovations like Harbour Air’s electric aircraft demonstrate what’s possible, but it will help us in our role supporting the mutual needs of our business partners related to climate action,” Vrooman continued.

These new EV Charging stations are planned to be installed by 2025, and will provide electricity to the YVR fleet, commercial and business partners’ vehicles, as well as passengers and the public, complementing BC Hydro’s expanding charging network in southern B.C. Currently, YVR provides 12 free electric vehicle charging stalls (Level Two) at its parking facilities, as well as one DC fast-charging stall.

This exciting announcement comes on the heels of the Province of BC’s Integrated Marketplace Initiative (IMI) pilot program in November 2022, a partnership between YVR and the Province of British Columbia to invest up to 11.5 million to develop made-in-BC clean-tech solutions for use at the airport, and related programs offering home and workplace charging rebates are accelerating adoption.

 

Related News

View more

Why the Texas grid causes the High Plains to turn off its wind turbines

Texas High Plains Wind Energy faces ERCOT transmission congestion, limiting turbines in the Panhandle from stabilizing the grid as gas prices surge, while battery storage and solar could enhance reliability and lower power bills statewide.

 

Key Points

A major Panhandle wind resource constrained by ERCOT transmission, impacting grid reliability and electricity rates.

✅ Over 11,000 turbines can power 9M homes in peak conditions

✅ Transmission congestion prevents flow to major load centers

✅ Storage and solar can bolster reliability and reduce bills

 

Texas’s High Plains region, which covers 41 counties in the Texas Panhandle and West Texas, is home to more than 11,000 wind turbines — the most in any area of the state.

The region could generate enough wind energy to power at least 9 million homes. Experts say the additional energy could help provide much-needed stability to the electric grid during high energy-demand summers like this one, and even lower the power bills of Texans in other parts of the state.

But a significant portion of the electricity produced in the High Plains stays there for a simple reason: It can’t be moved elsewhere. Despite the growing development of wind energy production in Texas, the state’s transmission network, reflecting broader grid integration challenges across the U.S., would need significant infrastructure upgrades to ship out the energy produced in the region.

“We’re at a moment when wind is at its peak production profile, but we see a lot of wind energy being curtailed or congested and not able to flow through to some of the higher-population areas,” said John Hensley, vice president for research and analytics at the American Clean Power Association. “Which is a loss for ratepayers and a loss for those energy consumers that now have to either face conserving energy or paying more for the energy they do use because they don’t have access to that lower-cost wind resource.”

And when the rest of the state is asked to conserve energy to help stabilize the grid, the High Plains has to turn off turbines to limit wind production it doesn’t need.

“Because there’s not enough transmission to move it where it’s needed, ERCOT has to throttle back the [wind] generators,” energy lawyer Michael Jewell said. “They actually tell the wind generators to stop generating electricity. It gets to the point where [wind farm operators] literally have to disengage the generators entirely and stop them from doing anything.”

Texans have already had a few energy scares this year amid scorching temperatures and high energy demand to keep homes cool. The Electric Reliability Council of Texas, which operates the state’s electrical grid, warned about drops in energy production twice last month and asked people across the state to lower their consumption to avoid an electricity emergency.

The energy supply issues have hit Texans’ wallets as well. Nearly half of Texas’ electricity is generated at power plants that run on the state’s most dominant energy source, natural gas, and its price has increased more than 200% since late February, causing elevated home utility bills.

Meanwhile, wind farms across the state account for nearly 21% of the state’s power generation. Combined with wind production near the Gulf of Mexico, Texas produced more than one-fourth of the nation’s wind-powered electric generation last year.

Wind energy is one of the lowest-priced energy sources because it is sold at fixed prices, turbines do not need fuel to run and the federal government provides subsidies. Texans who get their energy from wind farms in the High Plains region usually pay less for electricity than people in other areas of the state. But with the price of natural gas increasing from inflation, Jewell said areas where wind energy is not accessible have to depend on electricity that costs more.

“Other generation resources are more expensive than what [customers] would have gotten from the wind generators if they could move it,” Jewell said. “That is the definition of transmission congestion. Because you can’t move the cheaper electricity through the grid.”

A 2021 ERCOT report shows there have been increases in stability constraints for wind energy in recent years in both West and South Texas that have limited the long-distance transfer of power.

“The transmission constraints are such that energy can’t make it to the load centers. [High Plains wind power] might be able to make it to Lubbock, but it may not be able to make it to Dallas, Fort Worth, Houston or Austin,” Jewell said. “This is not an insignificant problem — it is costing Texans a lot of money.”

Some wind farms in the High Plains foresaw there would be a need for transmission. The Trent Wind Farm was one of the first in the region. Beginning operations in 2001, the wind farm is between Abilene and Sweetwater in West Texas and has about 100 wind turbines, which can supply power to 35,000 homes. Energy company American Electric Power built the site near a power transmission network and built a short transmission line, so the power generated there does go into the ERCOT system.

But Jewell said high energy demand and costs this summer show there’s a need to build additional transmission lines to move more wind energy produced in the High Plains to other areas of the state.

Jewell said the Public Utility Commission, which oversees the grid, is conducting tests to determine the economic benefits of adding transmission lines from the High Plains to the more than 52,000 miles of lines that already connect to the grid across the state. As of now, however, there is no official proposal to build new lines.

“It does take a lot of time to figure it out — you’re talking about a transmission line that’s going to be in service for 40 or 50 years, and it’s going to cost hundreds of millions of dollars,” Jewell said. “You want to be sure that the savings outweigh the costs, so it is a longer process. But we need more transmission in order to be able to move more energy. This state is growing by leaps and bounds.”

A report by the American Society of Civil Engineers released after the February 2021 winter storm stated that Texas has substantial and growing reliability and resilience problems with its electric system.

The report concluded that “the failures that caused overwhelming human and economic suffering during February will increase in frequency and duration due to legacy market design shortcomings, growing infrastructure interdependence, economic and population growth drivers, and aging equipment even if the frequency and severity of weather events remains unchanged.”

The report also stated that while transmission upgrades across the state have generally been made in a timely manner, it’s been challenging to add infrastructure where there has been rapid growth, like in the High Plains.

Despite some Texas lawmakers’ vocal opposition against wind and other forms of renewable energy, and policy shifts like a potential solar ITC extension can influence the wind market, the state has prime real estate for harnessing wind power because of its open plains, and farmers can put turbines on their land for financial relief.

This has led to a boom in wind farms, even with transmission issues, and nationwide renewable electricity surpassed coal in 2022 as deployment accelerated. Since 2010, wind energy generation in Texas has increased by 15%. This month, the Biden administration announced the Gulf of Mexico’s first offshore wind farms will be developed off the coasts of Texas and Louisiana and will produce enough energy to power around 3 million homes.

“Texas really does sort of stand head and shoulders above all other states when it comes to the actual amount of wind, solar and battery storage projects that are on the system,” Hensley said.

One of the issues often brought up with wind and solar farms is that they may not be able to produce as much energy as the state needs all of the time, though scientists are pursuing improvements to solar and wind to address variability. Earlier this month, when ERCOT asked consumers to conserve electricity, the agency listed low wind generation and cloud coverage in West Texas as factors contributing to a tight energy supply.

Hensley said this is where battery storage stations can help. According to the U.S. Energy Information Administration, utility-scale batteries tripled in capacity in 2021 and can now store up to 4.6 gigawatts of energy. Texas has been quickly developing storage projects, spurred by cheaper solar batteries, and in 2011, Texas had only 5 megawatts of battery storage capacity; by 2020, that had ballooned to 323.1 megawatts.

“Storage is the real game-changer because it can really help to mediate and control a lot of the intermittency issues that a lot of folks worry about when they think about wind and solar technology,” Hensley said. “So being able to capture a lot of that solar that comes right around noon to [1 p.m.] and move it to those evening periods when demand is at its highest, or even move strong wind resources from overnight to the early morning or afternoon hours.”

Storage technology can help, but Hensley said transmission is still the big factor to consider.

Solar is another resource that could help stabilize the grid. According to the Solar Energy Industries Association, Texas has about 13,947 megawatts of solar installed and more than 161,000 installations. That’s enough to power more than 1.6 million homes.

This month, the PUC formed a task force to develop a pilot program next year that would create a pathway for solar panels and batteries on small-scale systems, like homes and businesses, to add that energy to the grid, similar to a recent virtual power plant in Texas rollout. The program would make solar and batteries more accessible and affordable for customers, and it would pay customers to share their stored energy to the grid as well.

Hensley said Texas has the most clean-energy projects in the works that will likely continue to put the region above the rest when it comes to wind generation.

“So they’re already ahead, and it looks like they’re going to be even farther ahead six months or a year down the road,” he said.

 

Related News

View more

The Single Biggest Threat To The Electric Vehicle Boom

EV Boom Aftershock highlights electric vehicles straining grid capacity as policy accelerates adoption, requiring charging infrastructure, renewable energy storage, and transition models from Tesla, NIO, Toyota, GM, Blink Charging, and Facedrive's Steer subscription.

 

Key Points

EV Boom Aftershock is the grid and industry strain from rapid EV adoption requiring charging and storage upgrades.

✅ Policy push: fleet electrification, 550k chargers planned

✅ Grid capacity, storage, and charging infrastructure are critical

✅ Bridge models: subscriptions, rideshare, and logistics electrification

 

2020 ushered in the start of the EV boom, but it could have a frightening aftershock. The world is already seeing some of the incredible triple-digit gains in EV companies like Tesla and Workhorse. And this EV wave is only expected to grow bigger in the days ahead under the Biden administration.  Mentioned in today's commentary includes:  Tesla, Inc., NIO Limited, Toyota Motor Corporation, General Motors Company, Blink Charging Co.

Just a week after inauguration, President Biden reported he plans to replace the entire government fleet with electric vehicles. That's up to 643,000 vehicles turning electric on the government's dime. But Toyota's president, Akio Toyoda, had an ominous prediction for what could lie ahead.

He stated that if EVs are adopted too quickly, we may not have the energy to support them at this point. In fact, he predicted Japan would run out of electricity by summer if they banned all gas-powered vehicles now. He even went as far as to say that if we rush the process of transitioning to EVs all at once, "the current business model of the auto industry is going to collapse."

While the buzz for electric vehicles has only grown over the last year, many often miss this key piece in making such a drastic shift in such a short period. And although it's expected to create plenty of demand for solar, wind, nuclear, and geothermal energy sources…

At this point in the game, they are still too expensive and lack the storage capacity we'd need for those to be the final solution. That's why companies bridging the gap to the EV world are thriving.

Facedrive, a company known for its "people and planet first" approach, has seen incredible success over the last year, for example. They recently acquired EV subscription company, Steer, from the largest clean energy producer in the United States. Steer's subscription model for EV cars is putting a major twist on the traditional car ownership model. So instead of everyone going out and buying their own EV, they can borrow one as-needed instead.

With Facedrive's acquisition of Steer, customers pay a simple monthly fee like with Netflix, and they get access to a fleet of EVs at their disposal.

Over the last year, big moves like this have helped Facedrive sign a number of important partnerships and deals including government agencies, A-list celebrities, and major multinational corporations. And they've even managed to grow their business throughout the United States and Canada during a time when ridesharing as an industry suffered during global lockdowns.

Smartest in the World Making Bold Predictions

While Toyota's president made a dark prediction about where we could be headed, he's not alone in being concerned. Elon Musk expressed his own concerns about the issue recently as well.

In an interview in December, he said that the world's electricity consumption would likely double once EVs become the norm. And that's only accounting for this mass adoption in electric vehicles.

The situation could become even more pressing as the rest of our lives grow increasingly digital too, sucking up more electricity in the process. With the "internet of things" creating smart cities and smart homes, the demand for electricity will only go up as everything from Peloton bikes to Nest thermostats are now connected by the internet.

With thousands of cars on the roads during morning and evening commutes, it's not hard to imagine times where we simply wouldn't have enough grid capacity to charge all EVs that need it at once.

But in the meantime, Facedrive's moves are putting them squarely in position to smooth out the transition. And in addition to the monthly membership model used with Steer, they're helping keep the number of cars on the road down through their signature ridesharing service.

Their model is simple. When customers hail a ride, they have the choice to ride in an electric vehicle or a standard gas-powered car. After they get to their destination, the Facedrive algorithm sets aside a portion of the fare to plant trees, offsetting the carbon footprint from the ride. In other words, customers ride, they plant a tree.

Through next-gen technology and partnerships, they're giving their customers the option to make a more eco-friendly choice if they choose. Plus, Facedrive has added a booming food delivery service, which has expanded at a record pace while folks were stuck at home during global lockdowns.

They're now delivering over 4,100 orders per day on average. And after growing to 19 major cities, they plan to expand to more cities throughout the U.S. and Canada soon. It's this kind of innovative thinking that has many so optimistic about the opportunities that lie ahead.

Who Will Win In The EV Boom?

Elon Musk warned that, like with the boom in smartphones, we're not likely to see the EV revolution all happen at once, and industry leaders still see mainstream hurdles ahead for broad adoption. Because just like with smartphones, you can't replace them all at once. But it's undeniable that the movement is growing at a remarkable pace, with many arguing it has reached an inflection point already in several segments today.

Even under an administration that was not supportive of climate change and green initiatives, the EV markets have soared throughout 2020, and U.S. EV sales are surging into 2024 as well across segments.

Tesla was one of the biggest market stories of the year, locking in over 700% gains on its way to becoming one of the largest companies on the S&P 500. And experts are expecting to see massive spending on the infrastructure needed for EVs under the Biden administration too.

In addition to his vow to spend more on clean energy research, President Biden also reported plans to build out 550,000 EV charging stations across the country. With the growth we've seen in this area already, it's also caused shares for companies like Plug Power to soar over 1,000% in 2020. And Facedrive has been sharing in this success too, with incredible gains of 834% over the last year.

Facedrive hasn't been the only company riding the EV wave, however.  Tesla (TSLA) was among the biggest market stories of 2020 with incredible gains of over 700%. This helped them become one of the highest-valued stocks in the United States with other Big Tech giants. It is now the most valuable car maker "of all time". It is now worth almost $800 billion.

After a much-touted Battery Day event and expectations of Musk developing a "Million Mile Battery" in the near future, Tesla recently joined the S&P 500.

Billionaire Elon Musk had his eye on this trend far before the hype started building. He released the first Tesla Roadster back in 2008, making electric vehicles cool when people were still snubbing their noses at the first-generation EVs. Since then, Tesla's stock has skyrocketed by over 14,000%. But while Tesla's EV threat to the industry is clear, the competition is heating up in China's EV market right now as rivals scale.

Nio (NIO) is Tesla's biggest competitor, dominating the Chinese EV markets. After going public in 2018, it's been on a tear, producing vehicles with record-breaking range. They recently unveiled their first electric sedan with a longer range battery, which sent shares surging in early January.

Nio's current performance is a far cry from just one year ago In fact, many shareholders were ready to write off their losses and give up on the company. But China's answer to Tesla's dominance powered on, eclipsed estimates, and most importantly, kept its balance sheet in line. And it's paid off. In a big way. The company has seen its share price soar from $3.24 at the start of 2020 to a high of $61 this month, representing a massive 1600% returns for investors who held strong. 

By NIO's fourth quarter report in October, the company announced that its sales had more-than doubled, projecting even greater sales in 2021. The EV up-and-comer has shocked investors and pulled itself back after its rumored potential bankruptcy in 2019, and if this year shows investors anything, it's that its CEO William Li is as skilled and ambitious as anyone in the business.

Toyota Motors (TM) is a massive international car producer who hasn't ignored the transition to greener transportation. In fact, the Toyota Prius was one of the first hybrids to hit the road in a big way. While the legacy hybrid vehicle has been the butt of many jokes throughout the years, the car has been a major success, and more importantly, it helped spur the adoption of greener vehicles for years to come.

And just because its Prius hasn't exactly aged as well as some green competitors, Toyota hasn't left the green power race yet. Just a few days ago, actually, the giant automaker announced that three new electric vehicles will be coming to United States markets soon.

Toyota has a major hold over U.S. markets at the moment. In fact, it maintains a 75% share of total fuel cell vehicles and a 64% share in hybrid and plug-in vehicles. And now it's looking to capture a greater share of electric vehicles, as well.

General Motors (GM) is one of the legacy automakers benefiting from a shift from gas-powered to EV technology. Even with the downfall of Detroit, GM has persisted, and that's due in large part to its ability to adapt. In fact, GM's dive into alternative fuels began way back in 1966 when it produced the world's first ever hydrogen-powered van for testing. And it has not stopped innovating, either.

With the news of GM's new business unit, BrightDrop, they plan to sell electric vans and services to commercial delivery companies, disrupting the market for delivery logistics. This is a huge move as delivery sales have absolutely exploded during the COVID-19 pandemic, and are projected to grow even further over the coming years.

And in January 2021, the giant automaker announced that it will discontinue production of all gas-powered vehicles, including hybrids, by 2035. This is a key factor in its commitment to become carbon-net zero by 2040.  The move will likely sit well with shareholders which are increasingly pushing for companies to clean up their act.

Blink Charging (BLNK) is building an EV charging network that may be small right now, but it's got explosive growth potential that is as big as the EV market itself. This stock is on a major tear and all that cash flowing into it right now gives Blink the superpower to acquire and expand. 

A wave of new deals, including a collaboration with EnerSys and another with Envoy Technologies to deploy electric vehicles and charging stations adds further support to the bullish case for Blink.

Michael D. Farkas, Founder, CEO and Executive Chairman of Blink noted, "This is an exciting collaboration with EnerSys because it combines the industry-leading technologies of our two companies to provide user-friendly, high powered, next-generation charging alternatives. We are continuously innovating our product offerings to provide more efficient and convenient charging options to the growing community of EV drivers."

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

US Crosses the Electric-Car Tipping Point for Mass Adoption

EV Tipping Point signals the S-curve shift to mainstream adoption as new car sales pass 5%, with the US joining Europe and China; charging infrastructure, costs, and supply align to accelerate electric car market penetration.

 

Key Points

The EV tipping point is when fully electric cars reach about 5% of new sales, triggering rapid S-curve adoption.

✅ 5% of new car sales marks start of mass adoption

✅ Follows S-curve seen in phones, LEDs, internet

✅ Barriers ease: charging, cost declines, model availability

 

Many people of a certain age can recall the first time they held a smartphone. The devices were weird and expensive and novel enough to draw a crowd at parties. Then, less than a decade later, it became unusual not to own one.

That same society-altering shift is happening now with electric vehicles, according to a Bloomberg analysis of adoption rates around the world. The US is the latest country to pass what’s become a critical EV tipping point: an EV inflection point when 5% of new car sales are powered only by electricity. This threshold signals the start of mass EV adoption, the period when technological preferences rapidly flip, according to the analysis.

For the past six months, the US joined Europe and China — collectively the three largest car markets — in moving beyond the 5% tipping point, as recent U.S. EV sales indicate. If the US follows the trend established by 18 countries that came before it, a quarter of new car sales could be electric by the end of 2025. That would be a year or two ahead of most major forecasts.

How Fast Is the Switch to Electric Cars?
19 countries have reached the 5% tipping point, and an earlier-than-expected shift is underway—then everything changes

Why is 5% so important? 
Most successful new technologies — electricity, televisions, mobile phones, the internet, even LED lightbulbs — follow an S-shaped adoption curve, with EVs going from zero to 2 million in five years according to market data. Sales move at a crawl in the early-adopter phase, then surprisingly quickly once things go mainstream. (The top of the S curve represents the last holdouts who refuse to give up their old flip phones.)

Electric cars inline tout
In the case of electric vehicles, 5% seems to be the point when early adopters are overtaken by mainstream demand. Before then, sales tend to be slow and unpredictable, and still behind gas cars in most markets. Afterward, rapidly accelerating demand ensues.

It makes sense that countries around the world would follow similar patterns of EV adoption. Most impediments are universal: there aren’t enough public chargers, grid capacity concerns linger, the cars are expensive and in limited supply, buyers don’t know much about them. Once the road has been paved for the first 5%, the masses soon follow.

Thus the adoption curve followed by South Korea starting in 2021 ends up looking a lot like the one taken by China in 2018, which is similar to Norway after its first 5% quarter in 2013. The next major car markets approaching the tipping point this year include Canada, Australia, and Spain, suggesting that within a decade many drivers could be in EVs worldwide. 

 

Related News

View more

Ontario Launches Hydrogen Innovation Fund

Ontario Hydrogen Innovation Fund accelerates clean electricity integration, hydrogen storage, grid balancing, and electrolyzer pilot projects, supporting EV production, green steelmaking, and clean manufacturing under Ontario's Low-Carbon Hydrogen Strategy via IESO-administered funding.

 

Key Points

A $15M program funding hydrogen storage, grid pilots to integrate low-carbon hydrogen into Ontario's power system.

✅ Administered by IESO; applications opened April 2023.

✅ Supports existing, new, and research hydrogen projects.

✅ Backs grid storage, capacity, demand management pilots.

 

The Ontario government is establishing a Hydrogen Innovation Fund that will invest $15 million over the next three years to kickstart and develop opportunities for hydrogen to be integrated into Ontario’s clean electricity system, including hydrogen electricity storage. This launch marks another milestone in the implementation of the province’s Low-Carbon Hydrogen Strategy, supporting a growing hydrogen economy across the province, positioning Ontario as a clean manufacturing hub.

“When energy is reliable, affordable and clean our whole province wins,” said Todd Smith, Minister of Energy. “The Hydrogen Innovation Fund will help to lay the groundwork for hydrogen to contribute to our diverse energy supply, supporting game-changing investments in electric vehicle production and charging infrastructure across the province, green steelmaking and clean manufacturing that will create good paying jobs, grow our economy and reduce emissions.”

Hydrogen Innovation Fund projects would support electricity supply, capacity, battery storage and demand management, and support growth in Ontario’s hydrogen economy. The Fund will support projects across three streams:

Existing facilities already built or operational and ready to evaluate how hydrogen can support Ontario’s clean grid amid an energy storage crunch in Ontario.
New hydrogen facilities not yet constructed but could be in-service by a specified date to demonstrate how hydrogen can support Ontario’s clean grid.
Research studies investigating the feasibility of novel applications of hydrogen or support future hydrogen project decision making.

The Hydrogen Innovation Fund will be administered by the Independent Electricity System Operator, which is opening applications for the fund in April 2023. Natural Resources Canada modelling shows that hydrogen could make up about 30 per cent of the country's fuels and feedstock by 2050, as provinces advance initiatives like a British Columbia hydrogen project demonstrating scale and ambition, and create 100,000 jobs in Ontario. By making investments early to explore applications for hydrogen in our clean electricity sector we are paving the way for the growth of our own hydrogen economy.

“As a fuel that can be produced and used with little to no greenhouse gas emissions, hydrogen has tremendous potential to help us meet our long-term economic and environmental goals,” said David Piccini, Minister of the Environment, Conservation and Parks. “Our government will continue to support innovation and investment in clean technologies that will position Ontario as the clean manufacturing and transportation hub of the future while leading Canada in greenhouse gas emission reductions.”

The province is also advancing work to develop the Niagara Hydrogen Centre, led by Atura Power, which would increase the amount of low-carbon hydrogen produced in Ontario by eight-fold. This innovative project would help balance the electricity grid while using previously unutilized water at the Sir Adam Beck generating station to produce electricity for a hydrogen electrolyzer, reflecting broader electrolyzer investment trends in Canada. To support the implementation of the project, the IESO entered into a contract for grid regulation services at the Sir Adam Beck station starting in 2024, which will support low-carbon hydrogen production at the Niagara Hydrogen Centre.

These investments build on Ontario’s clean energy advantage, which also includes the largest battery storage project planned in southwestern Ontario, as our government makes progress on the Low-Carbon Hydrogen Strategy that laid out eight concrete actions to make Ontario a leader in the latest frontier of energy innovation – the hydrogen economy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified