Centrica acquires battery storage project that could "unlock North Sea wind energy potential"


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Centrica Dyce Battery Storage will deliver 30MW 2hr capacity in Aberdeenshire, capturing North Sea offshore wind to reduce curtailment, enhance grid flexibility, and strengthen UK energy independence with reliable renewable energy balancing.

 

Key Points

A 30MW 2hr battery in Dyce, Aberdeenshire, storing North Sea wind to cut curtailment and ease UK grid constraints.

✅ 30MW 2hr system near North Sea offshore wind connection

✅ Cuts curtailment and boosts grid flexibility and reliability

✅ Can power 70,000 homes for an hour with daily cycles

 

CENTRICA Business Solutions has secured the development rights for a fully consented 30MW 2hr battery storage plant in Aberdeenshire that will help maximise the use of renewable energy in the Scottish North Sea.

The site in Dyce, near Aberdeen is located near a connection for North Sea UK offshore wind farms and will contribute towards managing network constraints – by storing electricity when it is abundant for times when it is not, helping improve the energy independence of the UK and reduce our reliance on fossil fuels. 

Last year, the National Grid paid £244million to wind farm operators to shut down turbines, as they risked overloading the Scottish grid, a process known as curtailment. Battery storage is one method of helping to utilise that wasted energy resource, ensuring fewer green electrons are curtailed. 

Once built, the 30MW 2hr Dyce battery storage plant will store enough energy to power 70,000 homes for an hour. This discharge happens up to four hours per day, as seen in other large-scale deployments like France's largest battery platform that optimise grid balancing.

The project was developed by Cragside Energy Limited, backed by Omni Partners LLP, and obtained planning consent in November 2021. The go-live date for the project is mid-2024, construction should last eight months and will be aligned with the grid connection date.

“Battery storage can play a strategic role in helping to transition away from fossil fuels, by smoothing out the peak demand and troughs associated with renewable energy generation,” said Bill Rees, Director of Centrica Energy Assets. “We should treat renewable energy like a precious resource and projects like this can help to maximise its efficacy.” 

The project forms part of Centrica Energy Assets’ plan to deliver 900MW of solar and battery storage assets by 2026, increasingly paired with solar in global deployments. Centrica already owns and operates the 49MW fast response battery at Roosecote, Cumbria. 

Centrica Business Solutions Managing Director Greg McKenna, said: “Improving the energy independence of the UK is essential to help manage energy costs and move away from fossil fuels. The Government has set a target of a green electricity grid by 2035 – that’s only achievable if we build out the level of flexibility in the system, to help manage supply and demand.”

Centrica Energy Assets will work with Cragside Energy to identify new opportunities in the energy storage space. Cragside Energy’s growing pipeline exceeds 200MW, and focuses on low carbon and flexible assets, including energy storage, solar and peaking plant schemes, supported by falling battery costs across the sector.

Ben Coulston, Director of Cragside Energy, added: “Targeted investment into a complementary mix of diverse energy sources and infrastructure is crucial if the UK is to fully harness its renewable energy potential. Battery storage, such as the project in Dyce, will contribute to the upkeep of a stable and resilient network and we have enjoyed partnering with Centrica as the project transitions into the next phase”.

Related News

There's Room For Canada-U.S. Collaboration As Companies Turn To Electric Cars

Canada EV Supply Chain aligns electric vehicle manufacturing, batteries, and autonomous tech with cross-border trade, leveraging lithium, cobalt, and rare earths as GM, Ford, and Project Arrow scale zero-emissions innovation and domestic sourcing.

 

Key Points

Canada's integrated resources, battery tech, and manufacturing network supporting EV production and cross-border trade.

✅ Leverages lithium, cobalt, and rare earths for battery supply

✅ Integrates GM, Ford, and Project Arrow manufacturing hubs

✅ Aligns with autonomous tech, hydrogen, and zero-emissions goals

 

The storied North American automotive industry, the ultimate showcase of Canada’s high-tensile trade ties with the United States, is about to navigate a dramatic hairpin turn.

But as the Big Three veer into the all-electric, autonomous era, some Canadians want to seize the moment to capitalize on the U.S. pivot and take the wheel.

“There’s a long shadow between the promise and the execution, but all the pieces are there,” says Flavio Volpe, president of the Automotive Parts Manufacturers’ Association.

“We went from a marriage on the rocks to one that both partners are committed to. It could be the best second chapter ever.”

Volpe is referring specifically to GM, which announced late last month an ambitious plan to convert its entire portfolio of vehicles to an all-electric platform by 2035, even as a 2035 EV mandate debate unfolds.

But that decision is just part of a market inflection point across the industry, with existential ramifications for one of the most tightly integrated cross-border manufacturing and supply-chain relationships in the world.

China is already working hard to become the “source of a new way” to power vehicles, President Joe Biden warned last week.

“We just have to step up.”

Canada has both the resources and expertise to do the same, says Volpe, whose ambitious Project Arrow concept — a homegrown zero-emissions vehicle named for the 1950s-era Avro interceptor jet — is designed to showcase exactly that.

“We’re going to prove to the market, we’re going to prove to the (manufacturers) around the planet, that everything that goes into your zero-emission vehicle can be made or sourced here in Canada,” he says.

“If somebody wants to bring what we did over the line and make 100,000 of them a year, I’ll hand it to them.”

GM earned the ire of Canadian auto workers in 2018 by announcing the closure of its assembly plant in Oshawa, Ont. It later resurrected the facility with a $170-million investment to retool it for autonomous vehicles.

“It was, ‘You closed Oshawa, how dare you?’ And I was one of the ‘How dare you’ people,” Volpe says.

“Well, now that they’ve reopened Oshawa, you sit there and you open your eyes to the commitment that General Motors made.”

Ford, too, has entered the fray, promising $1.8 billion to retool its sprawling landmark facility in Oakville, Ont., to build EVs, as EV assembly deals help put Canada in the race.

‘Range anxiety’
It’s a leap of faith of sorts, considering what market experts say is ongoing consumer doubt about EVs, including shortages and wait times that persist.

“Range anxiety” — the persistent fear of a depleted battery at the side of the road — remains a major concern, even though it’s less of a problem than most people think.

Consulting firm Deloitte Canada, which has been tracking automotive consumer trends for more than a decade, found three-quarters of future EV buyers it surveyed planned to charge their vehicles at home overnight.

“The difference between what is a perceived issue in a consumer’s mind and what is an actual issue is actually quite negligible,” Ryan Robinson, Deloitte’s automotive research leader, says in an interview.

“It’s still an issue, full stop, and that’s something that the industry is going to have to contend with.”

So, too, is price, especially with the end of the COVID-19 pandemic still a long way off. Deloitte’s latest survey, released last month, found 45 per cent of future buyers in Canada hope to spend less than $35,000 — a tall order when most base electric-vehicle models hover between $40,000 and $45,000.

“You put all of that together and there’s still some major challenges that a lot of stakeholders that touch the automotive industry face,” Robinson says.

“It’s not just government, it’s not just automakers, but there are a variety of stakeholders that have a role to play in making sure that Canadians are ready to make the transition over to electric mobility.”

With protectionism no longer a dirty word in the United States and Biden promising to prioritize American workers and suppliers, the Canadian government’s job remains the same as it ever was: making sure the U.S. understands Canada’s mission-critical role in its own economic priorities.

“We’re both going to be better off on both sides of the border, as we have been in the past, if we orient ourselves toward this global competition as one force,” says Gerald Butts, vice-chairman of the political-risk consultancy Eurasia Group and a former principal secretary to Prime Minister Justin Trudeau.

“It served us extraordinarily well in the past ... and I have no reason to believe it won’t serve us well in the future.”

EV battery industry
Last month, GM announced a billion-dollar plan to build its new all-electric BrightDrop EV600 van in Ingersoll, Ont., at Canada’s first large-scale EV manufacturing plant for delivery vehicles.

That investment, Volpe says, assumes Canada will take the steps necessary to help build a homegrown battery industry out of the country’s rare-earth resources like lithium and cobalt that are waiting to be extracted in northern Ontario, Quebec and elsewhere, including projects such as a $1.6B battery plant in Niagara that signal momentum.

Given that the EV industry is still in his infancy, the free market alone won’t be enough to ensure those resources can be extracted and developed, he says.

“General Motors made a billion-dollar bet on Canada because it’s going to assume that the Canadian government — this one or the next one — is going to commit” to building that business.

Such an investment would pay dividends well beyond the auto sector, considering the federal Liberal government’s commitment to lowering greenhouse gas-emissions and meeting targets set out in the Paris climate accord.

“If you make investments in renewable energy and energy storage in Ontario using battery technology, you can build an industry at scale that the auto industry can borrow,” Volpe says.

Major manufacturing, retail and office facilities would be able to use that technology to help “shave the peak” off Canada’s GHG emissions and achieve those targets, all the while paving the way for a self-sufficient electric-vehicle industry.

“You’d be investing in the exact same technology you’d use in a car.”

There’s one problem, says Robinson: the lithium-ion batteries on roads right now might not be where the industry ultimately lands.

“We’re not done with with battery technology,” Robinson says. “What you don’t want to do is invest in a technology that is that is rapidly evolving, and could potentially become obsolete going forward.”

Fuel cells — energy-efficient, hydrogen-powered units that work like batteries, but without the need for constant recharging — continue to be part of the conversation, he adds.

“The amount of investment is huge, and you want to be sure that you’re making the right decision, so you don’t find yourself behind the curve just as all that capacity is coming online.”

 

Related News

View more

UK leads G20 for share of electricity sourced from wind

UK Wind Power Leadership in 2020 highlights record renewable energy growth, G20-leading wind share, rapid coal phase-out, and rising solar integration, advancing decarbonization targets under the Paris Agreement and momentum ahead of COP26.

 

Key Points

The UK led the G20 in wind power share in 2020, displacing coal, expanding solar, and cutting power-sector emissions.

✅ G20-leading wind share; second for combined wind and solar

✅ Fastest coal decline among G20 from 2015 to 2020

✅ Emissions risk rising as post-pandemic demand returns

 

Nearly a quarter of the UK’s electricity came from wind turbines in 2020 – making the country the leader among the G20 for share of power sourced from the renewable energy, a new analysis finds.

The UK also moved away from coal power at a faster rate than any other G20 country from 2015 to 2020, according to the results.

And it ranked second in the G20, behind Germany, for the proportion of electricity sourced from both wind and solar in 2020, after first surpassing coal in 2016.

“It’s crazy how much wind power has grown in the UK and how much it has offset coal, and how it’s starting to eat at gas,” Dave Jones, Ember’s global lead analyst, told The Independent.

But it is important to bear in mind that “we’re only doing a great job by the standards of the rest of the world”, he added, noting that low-carbon generation stalled in 2019 in the UK.

Ember’s Global Electricity Review notes that the world’s power sector emissions were two per cent higher in 2020 than in 2015 – the year that countries agreed to slash their greenhouse gas pollution as part of the Paris Agreement.

Power generated from coal fell by a record amount from 2019 to 2020, the analysis finds. However, this decline was greatly facilitated by lockdowns introduced to stop the spread of Covid-19, as global electricity demand was temporarily stifled before rebounding, the analysts say.

Coal is the most polluting of the fossil fuels. The UK government hopes to convince all countries to stop building new coal-fired power stations at Cop26, a climate conference that is to be held in Glasgow later this year.

UN chief Antonio Guterres has also called for all countries to end their “deadly addiction to coal”.

At a summit held earlier this month, he described ending the use of coal in electricity generation as the “single most important step” to meeting the Paris Agreement’s goal of limiting global warming to well below 2C above pre-industrial levels by 2100.

“There is definitely a concern that, in the pandemic year of 2020, coal hasn’t fallen as fast as it needed to,” said Mr Jones, even as the UK set coal-free power records recently.

“There is concern that, once electricity demand returns, we won’t be seeing that decline in coal anymore.”

 

Related News

View more

N.W.T. will encourage more residents to drive electric vehicles

Northwest Territories EV Charging Corridor aims to link the Alberta boundary to Yellowknife with Level 3 fast chargers and Level 2 stations, boosting electric vehicle adoption in cold climates, cutting GHG emissions, supporting zero-emission targets.

 

Key Points

A planned corridor of Level 3 and Level 2 chargers linking Alberta and Yellowknife to boost EV uptake and cut GHGs.

✅ Level 3 fast charger funded for Behchoko by spring 2024.

✅ Up to 72 Level 2 chargers funded across N.W.T. communities.

✅ Supports Canada ZEV targets and reduces fuel use and CO2e.

 

Electric vehicles are a rare sight in Canada's North, with challenges such as frigid winter temperatures and limited infrastructure across remote regions.

The Northwest Territories is hoping to change that.

The territorial government plans to develop a vehicle-charging corridor between the Alberta boundary and Yellowknife to encourage more residents to buy electric vehicles to reduce their carbon footprint.

"There will soon be a time in which not having electric charging stations along the highway will be equivalent to not having gas stations," said Robert Sexton, director of energy with the territory’s Department of Infrastructure.

"Even though it does seem right now that there’s limited uptake of electric vehicles and some of the barriers seem sort of insurmountable, we have to plan to start doing this, because in five years' time, it’ll be too late."

The federal government has committed to a mandatory 100 per cent zero-emission vehicle sales target by 2035 for all new light-duty vehicles, though in Manitoba reaching EV targets is not smooth so progress may vary. It has set interim targets for at least 20 per cent of sales by 2026 and 60 per cent by 2030.

A study commissioned by the N.W.T. government forecasts electric vehicles could account for 2.9 to 11.3 per cent of all annual car and small truck sales in the territory in 2030.

The study estimates the planned charging corridor, alongside electric vehicle purchasing incentives, could reduce greenhouse gas emissions by between 260 and 1,016 tonnes of carbon dioxide equivalent in that year.

Sexton said it will likely take a few years before the charging corridor is complete. As a start, the territory recently awarded up to $480,000 to the Northwest Territories Power Corporation to install a Level 3 electric vehicle charger in Behchoko.

The N.W.T. government projects the charging station will reduce gasoline use by 61,000 litres and decrease carbon dioxide equivalent by up to 140 tonnes per year. It is scheduled to be complete by the spring of 2024.

The federal government earlier this month announced $414,000, along with $56,000 in territorial funding, to install up to 72 primarily Level 2 electric vehicle charges in public places, streets, multi-unit residential buildings, workplaces, and facilities with light-duty vehicle fleets in the N.W.T. by March 2024, while in New Brunswick new fast-charging stations are planned on the Trans-Canada.

In Yukon, the territory has pledged to develop electric vehicle infrastructure in all road-accessible communities by 2027. It has already installed 12 electric vehicle chargers with seven more planned, and in N.L. a fast-charging network signals early progress as well.

Just a few people in the N.W.T. currently own electric vehicles, and in Atlantic Canada EV adoption lags as well.

Patricia and Ken Wray in Hay River have owned a Tesla Model 3 for three years. Comparing added electricity costs with savings on gasoline, Patricia estimates they spend 60 per cent less to keep the Tesla running compared to a gas-powered vehicle.

“I don’t mind driving past the gas station,” she said.

Despite some initial hesitation about how the car would perform in the winter, Wray said she hasn’t had any issues with her Tesla when it’s -40 C, although it does take longer to charge. She added it “really hugs the road” in snowy and icy conditions.

“People in the North need to understand these cars are marvellous in the winter,” she said.

Wray said while she and her husband drive their Tesla regularly, it’s not feasible to drive long distances across the territory. As the number of electric vehicle charge stations increases across the N.W.T., however, that could change.

“I’m just very, very happy to hear that charging infrastructure is now starting to be put in place," she said.

Andrew Robinson with the YK Care Share Co-op is more skeptical about the potential success of a long-distance charging corridor. He said while government support for electric vehicles is positive, he believes there's a more immediate need to focus on uptake within N.W.T. communities. He pointed to local taxi services as an example.

"It’s a long stretch," he said of the drive from Alberta, where EVs are a hot topic, to Yellowknife. "It’s 17 hours of hardcore driving and when you throw in having to recharge, anything that makes that longer, people are not going to be really into that.”

The car sharing service, which has a 2016 Chevy Spark dubbed “Sparky,” states on its website that a Level 2 charger can usually recharge a vehicle within six to eight hours while a Level 3 charger takes approximately half an hour, as faster charging options roll out in B.C. and beyond.

 

Related News

View more

Biden seen better for Canada’s energy sector

Biden Impact on Canadian Energy Exports highlights shifts in trade policy, tariffs, carbon pricing, and Keystone XL, with implications for aluminum, softwood lumber, electricity trade, fracking limits, and small modular nuclear reactors.

 

Key Points

How Biden-era trade, climate rules, and tariffs may reshape Canadian energy and exports.

✅ Reduced tariff volatility and friendlier trade policy toward allies

✅ Climate alignment: carbon pricing, clean power, cross-border electricity

✅ Potential gains for oil, gas, aluminum, and softwood lumber exporters

 

There is little doubt among industry associations, the Conference Board of Canada and C.D. Howe Institute that a Joe Biden White House will be better for Canadian resource and energy exporters – even Alberta’s beleaguered oil industry, despite Biden’s promise to kill the Keystone XL pipeline.

The consensus among industry observers in the lead-up to the November 3 U.S. presidential election was that a re-elected Donald Trump would become even more pugnacious on trade and protectionism, putting electricity exports at risk for Canadian utilities, which would be bad for Canadian exporters. The Justin Trudeau government would likely come under increased pressure to lower Canadian business taxes to compete with Trump’s low-tax climate.

“A Joe Biden victory would likely lead to higher taxes for both corporations and wealthy Americans to help pay down the gigantic fiscal deficit that is currently running at plus-US$5 trillion,” the conference board concluded in a recent analysis.

On trade and tariffs, the conference board said: “Many but not all of these ongoing trade disputes would wither away under a Joe Biden administration. He would likely run a broad trade policy favouring strategic allies like Canada.

While Canadian industries like forestry and aluminum smelting benefited from strong demand and prices in the U.S. under Trump, the forced renegotiation of the North American Free Trade Agreement failed end tariffs and duties on things like softwood lumber and aluminum ingots, even as Canadians backed tariffs on energy and minerals during the dispute.

The uncertainty over trade issues, and Trump’s tax cuts, which made Canada’s tax regime less competitive, have contributed to a period of low business investment in Canada during Trump's presidency.

“For Canada, we’ve seen a period, since this administration has been in power, where investment has eroded steadily,” conference board chief economist Pedro Antunes said. “We are not doing well at all, in terms of private capital investment in Canada.”

Alberta’s oil industry has been hit particularly hard, with a slew of divestments by big energy giants, and cancellations of major projects, like the $20 billion Frontier oilsands project, scrubbed by Teck Resources.

While domestic policies and global market forces are partly to blame for falling investments in Canada’s oil and gas sector, up until the pandemic hit, investment in oil and gas increased significantly in the U.S., while declining in Canada, during Trump’s first term.

Biden is also expected to level the playing field with respect to climate change policies. Canadian industries pay carbon taxes and face regulations that their counterparts in the U.S. don’t. That has disadvantaged energy-intensive, trade-exposed industries like mines and pulp mills in Canada.

“With Biden in office, Canada will once again have a partner at the federal level in the states in the transition to a decarbonized economy,” said Josha MacNab, national policy director for the Pembina Institute.

Biden’s policies might also favour importing aluminum, cross-laminated timber, fuel cells and other lower-carbon products and commodities from Canada.

At least one observer believes that Canada’s oil and gas sector might benefit more from a Biden White House, despite Biden’s pledge to kill the Keystone XL pipeline.

“I think Joe Biden could be very good for Alberta,” Christopher Sands, director of the Wilson International Center’s Canada Institute, said in a recent discussion hosted by the C.D. Howe Institute.

Sands added that the presidential permit Biden has promised to tear up on the Keystone XL pipeline project is a construction permit, not an operating permit.

“The segment of that pipeline that crosses the U.S.-Canada border, which is the only place that the presidential permit applies, has been built,” Sands said. “So I think that’s somewhat of an empty threat.”

He added that, if Biden bans fracking on federal lands, as he has promised, and implements other restrictions that make it more costly for American oil and gas producers, it might increase the demand for Canadian oil and gas in the U.S. The demand would be highest in the U.S. Midwest, which depends largely on Marcellus Shale production, notably in Pennsylvania, and Western Canada for its oil and gas.

One of the Canadian industries directly affected by the Trump administration was aluminum smelting, which is relevant for B.C. because Rio Tinto plc’s Kitimat smelter exports aluminum to the U.S.

Jean Simard, president of the Aluminum Association of Canada, said one of Trump’s legacies was the reactivation of a little-used mechanism – Section 232 of the Trade Expansion Act – to hit Canada and other countries, notably China, with import tariffs.

The 10 per cent tariffs on aluminum cost Canadian aluminum producers US$15 million in the month of August alone, Simard said.

The Trump administration eventually exempted Canadian aluminum exports from the tariffs, then reintroduced them, and then, one week before the election, exempted them again.

These on-again, off-again tariff threats create tremendous uncertainty, not just for Canadian producers, but also for U.S. buyers. That kind of uncertainty is likely to ease under a Biden presidency.

Simard said Biden’s track record suggests he is well-disposed towards Canada and less confrontational with allies and trade partners in general, and some in Washington have called for a stronger U.S.-Canada energy partnership as well.

Meanwhile, softwood lumber tariffs have been imposed by Democrats and Republicans alike. But there are compelling reasons for ending the Canada-U.S. softwood lumber war.

Home renovation and repair in the United States has done surprisingly well during the pandemic.

As a result of sawmill curtailments in the U.S. due to pandemic restrictions and high demand for lumber in the U.S. housing sector, North American lumbers prices broke records this summer, soaring as high as US$900 per thousand board feet.

“It shows that there’s very strong demand for our product,” said Susan Yurkovich, president of the Council of Forest Industries.

Ultimately, the duties Canadian lumber exporters pay are passed on to U.S. consumers.

Sands said Biden’s climate action pledges, including a clean electricity standard, could increase opportunities for trading electricity between Canada in the U.S., as the U.S. increasingly looks to Canada for green power, and could also be good for Canadian nuclear power technology.

Strong climate change policies necessarily result in an increased demand for low-carbon electricity, and advancing clean grids, which Canada has in abundance, thanks to both hydro and nuclear power.

“[Biden] does share the desire to act on climate change, but unlike some of his fellow party members who are more signed on to a Green New Deal, he’s open to pragmatic solutions that might get the job done quickly and efficiently,” Sands said.

“This is a huge opportunity for small, modular nuclear reactors, and Atomic Energy Canada has some great designs. There’s a real opportunity for a nuclear revival.” 

 

Related News

View more

New Brunswick announces rebate program for electric vehicles

New Brunswick EV Rebates deliver stackable provincial and federal incentives for electric vehicles, used EVs, and home chargers, supporting NB Power infrastructure, lower GHG emissions, and climate goals with fast chargers across the province.

 

Key Points

Stackable provincial and federal incentives up to $10,000 for EV purchases, plus support for home charging.

✅ $5,000 new EVs; $2,500 used; stackable with federal $5,000

✅ 50% home charger rebate up to $750 through NB Power

✅ Supports GHG cuts, charging network growth, climate targets

 

New Brunswickers looking for an electric vehicle (EV) can now claim up to $10,000 in rebates from the provincial and federal governments.

The three-year provincial program was announced Thursday and will give rebates of $5,000 on new EVs and $2,500 on used ones. It closely mirrors the federal program and is stackable, meaning new owners will be able to claim up to $5,000 from the feds as well.

Minister of Environment and Climate Change Gary Crossman said the move is hoped to kickstart the province’s push toward a target of having 20,000 EVs on the road by 2030.

“This incentive has to make a positive difference,” Crossman said.

“I truly believe people have been waiting for it, they’ve been asking about it, and this will make a difference from today moving forward to put new or used cars in their hands.”

The first year of the program will cost $1.95 million, which will come from the $36 million in the Climate Change Fund and will be run by NB Power, whose public charging network has been expanding across the province. The department says if the full amount is used this year it could represent a reduction of 850 tonnes of greenhouse gasses (GHGs) annually.

Both the Liberal and Green parties welcomed the move calling it long overdue, but Green MLA Kevin Arseneau said it’s not a “miracle solution.”

“Yes, we need to electrify cars, but this kind of initiative without proper funding of public transportation, urban planning for biking … without this kind of global approach this is just another swipe of a sword in water,” he said.

Liberal environment critic Francine Landry says she hopes this will make the difference for those considering the purchase of an EV and says the government should consider further methods of incentivization like waiving registration fees.

The province’s adoption of EVs has not been overly successful so far, reflecting broader Atlantic EV buying interest trends across the region. At the end of 2020, there were 646 EVs registered in the province, far short of the 2,500 target set out in the Climate Action Plan. That was up significantly from the 437 at the end of 2019, but still a long way from the goal.

New Brunswick has a fairly expansive network of charging stations across the province, claiming to be the first “fully-connected province” in the country, and had hoped that the available infrastructure, including plans for new fast-charging stations on the Trans-Canada, would push adoption of non-emitting vehicles.

“In 2017 we had 11 chargers in the province, so we’ve come a long way from an infrastructure standpoint which I think is critical to promoting or having an electric vehicle network, or a number of electric vehicles operating in the province, and neighbouring N.L.’s fast-charging network shows similar progress,” said Deputy Minister of Natural Resources Tom Macfarlane at a meeting of the standing committee on climate change and environmental stewardship in January of 2020.

There are now 172 level two chargers and 83 fast chargers, while Labrador’s EV infrastructure still lags in neighbouring N.L. today. Level two chargers take between six and eight hours to charge a vehicle, while the fast chargers take about half an hour to get to 80 per cent charge.

The newly announced program will also cover 50 per cent of costs for a home charging station up to $750, similar to B.C. charger rebates that support home infrastructure, to further address infrastructure needs.

The New Brunswick Lung Association is applauding the rebate plan.

President and CEO Melanie Langille said about 15,000 Canadians, including 40 people from New Brunswick, die prematurely each year from air pollution. She said vehicle emissions account for about 30 per cent of the province’s air pollution.

“Electric vehicles are critical to reducing our greenhouse gas emissions,” said Langille. “New Brunswick has one of the highest per capita GHG emissions in Canada. But, because our electricity source in New Brunswick is primarily from non-emitting sources and regional initiatives like Nova Scotia’s vehicle-to-grid pilot are advancing grid integration, switching to an EV is an effective way for New Brunswickers to lower their GHG emissions.”

Langille said the lung association has been part of an electric vehicles advisory group in the province since 2014 and its research has shown this type of program is needed.

“The major barrier that is standing in the way of New Brunswickers adopting electric vehicles is the upfront costs,” Langille said. “So today’s announcement, and that it can be stacked on top of the existing federal rebates, is a huge step forward for us.”

 

Related News

View more

Renewable Electricity Is Coming on Strong

Cascadia electrification accelerates renewable energy with wind and solar, EVs, heat pumps, and grid upgrades across British Columbia, Washington, and Oregon to decarbonize power, buildings, and transport at lower cost while creating jobs.

 

Key Points

Cascadia electrification is the shift to renewable grids, EVs, and heat pumps replacing fossil fuels.

✅ Wind and solar scale fast; gas and coal phase down

✅ EVs and heat pumps cut fuel costs and emissions

✅ Requires grid upgrades, policy, and social acceptance

 

Fifty years ago, a gasoline company’s TV ads showed an aging wooden windmill. As the wind died, it slowed to stillness. The ad asked: “But what do you do when the wind stops?” For the next several decades, fossil fuel providers and big utilities continued to denigrate renewable energy. Even the U.S. Energy Department deemed renewables “too rare, too diffuse, too distant, too uncertain and too ill-timed” to meaningfully contribute, as a top agency analyst put it in 2005.

Today we know that’s not true, especially in British Columbia, Washington and Oregon.

New research shows we could be collectively poised to pioneer a climate-friendly energy future for the globe — that renewable electricity can not only move Cascadia off of fossil fuels, but do so at an affordable price while creating some jobs along the way.

After decades of disinformation, this may sound like a wishful vision. But building a cleaner and more equitable economy — and doing so in just a few decades to head off the worst effects of climate change — is backed by a growing body of regional and international research.

Getting off fossil fuels is “feasible, necessary… and not very expensive” when compared to the earnings of the overall economy, said Jeffrey Sachs, an economist and global development expert at Columbia University.

Much of the confidence about the price tag comes down to this: Innovation and mass production have made wind and solar power installations cheaper than most fossil-fuelled power plants and today’s fastest-growing source of energy worldwide. The key to moving Cascadia’s economies away from fossil fuels, according to the latest research, is building more, prompting power companies to invest in carbon-free electricity as our go-to “fuel.”

However, doing that in time to help head off a cascading climatic crisis by mid-century means the region must take major steps in the next decade to speed the transition, researchers say. And that will require social buy-in.

The new research highlights three mutually supporting strategies that squeeze out fossil fuels:

Chefs and foodies are well-known fans of natural gas. Why, “Cooking with gas” is an expression for a reason. But one trendy Seattle restaurant-bar is getting by just fine with a climate-friendly alternative: electric induction cooktops.

Induction “burners” are just as controllable as gas burners and even faster to heat and cool, but produce less excess heat and zero air pollution. That made a huge difference to chef Stuart Lane’s predecessors when they launched Seattle cocktail bar Artusi 10 years ago.

Using induction meant they could squeeze more tables into the tight space available next door to Cascina Spinasse — their popular Italian restaurant in Seattle’s vibrant Capitol Hill neighborhood — and lowered the cost of expanding.

Rather than igniting a fossil fuel to roast the surface of pots and pans, induction burners generate a magnetic field that heats metal cookware from inside. For people at home, forgoing gas eliminates combustion by-products, which means fewer asthma attacks and other health impacts.

For Artusi, it eliminated the need for a pricey hood and fans to continuously pump fumes and heat out and pull fresh air in. That made induction the cheaper way to go, even though induction cooktops cost more than conventional gas ranges.

Over the years, they’ve expanded the menu because even guests who come for the signature Amari cocktails often stay for the handmade pasta, meatballs and seasonal sauces. So the initial pair of induction burners has multiplied to nine. Yet Artusi retains a cleaner, quieter and more intimate atmosphere. Yet thanks largely to the smaller fans, “it’s not as chaotic,” said Lane.

And Lane adds, it feels good to be cooking on electricity — which in Seattle proper is about 90 per cent renewable — rather than on a fossil fuel that produces climate-warming greenhouse gases. “You feel like you’re doing something right,” he said.

Lane says he wouldn’t be surprised if induction is the new normal for chefs entering the trade 10 years from now. “They probably would cook with gas and say, ‘Damn it’s hot in here!’” — Peter Fairley

This story is supported in part by a grant from the Fund for Investigative Journalism.

increasing energy efficiency to trim the amount of power we need,

boosting renewable energy to make it possible to turn off climate-wrecking fossil-fuel plants, and

plugging as much stuff as possible into the electrical grid.
Recent studies in B.C. and Washington state, and underway for Oregon, point to efficiency and electrification as the most cost-effective route to slashing emissions while maintaining lifestyles and maximizing jobs. A recent National Academies of Science study reached the same conclusion, calling electrification the core strategy for an equitable and economically advantageous energy transition, while abroad New Zealand's electrification push is asking whether electricity can replace fossil fuels in time.

However, technologies don’t emerge in a vacuum. The social and economic adjustments required by the wholesale shift from fossil fuels that belch climate-warming carbon emissions to renewable power can still make or break decarbonization, according to Jim Williams, a University of San Francisco energy expert whose simulation software tools have guided many national and regional energy plans, including two new U.S.-wide studies, a December 2020 analysis for Washington state and another in process for Oregon.

Williams points to vital actions that are liable to rile up those who lose money in the deal. Steps like letting trees grow many decades older before they are cut down, so they can suck up more carbon dioxide — which means forgoing quicker profits from selling timber. Or convincing rural communities and conservationists that they should accept power-transmission lines crossing farms and forests.

“It’s those kinds of policy questions and social acceptance questions that are the big challenges,” said Williams.

Washington, Oregon and B.C. already mandate growing supplies of renewable power and help cover the added cost of some electric equipment, and across the border efforts at cleaning up Canada's electricity are critical to meeting climate pledges. These include battery-powered cars, SUVs and pickups on the road. Heat pumps — air conditioners that run in reverse to push heat into a building — can replace furnaces. And, at industrial sites, electric machines can take the place of older mechanical systems, cutting costs and boosting reliability.

As these options drop in price they are weakening reliance on fossil fuels — even among professional chefs who’ve long sworn by cooking with gas (see sidebar: Cooking quick, clean and carbon-free).

“For each of the things that we enjoy and we need, there’s a pathway to do that without producing any greenhouse gas emissions,” said Jotham Peters, managing partner for Vancouver-based energy analysis firm Navius Research, whose clients include the B.C. government.


What the modelling tells us

Key to decarbonization planning for Cascadia are computer simulations of future conditions known as models. These projections take electrification and other options and run with them. Researchers run dozens of simulated potential future energy scenarios for a given region, tinkering with different variables: How much will energy demand grow? What happens if we can get 80 per cent of people into electric cars? What if it’s only 50 per cent? And so on.

Accelerating the transition requires large investments, this modelling shows. Plugging in millions of vehicles and heat pumps demands both brawnier and more flexible power systems, including more power lines and other infrastructure such as bridging the Alberta-B.C. electricity gap that communities often oppose. That demands both stronger policies and public acceptance. It means training and apprenticeships for the trades that must retrofit homes, and ensuring that all communities benefit — especially those disproportionately suffering from energy-related pollution in the fossil fuel era.

Consensus is imperative, but the new studies are bound to spark controversy. Because, while affordable, decarbonization is not free.

The Meikle Wind Project in BC’s Peace River region, the province’s largest, with 61 turbines producing 184.6 MW of electricity, went online in 2017. Photo: Pattern Development.
Projections for British Columbia and Washington suggest that decarbonizing Cascadia will spur extra job-stimulating growth. But the benefits and relatively low net cost mask a large swing in spending that will create winners and losers, and without policies to protect disadvantaged communities from potential energy cost increases, could leave some behind.

By 2030, the path to decarbonization shows Washingtonians buying about $5 billion less worth of natural gas, coal and petroleum products, while putting even more dollars toward cleaner vehicles and homes. No surprise then that oil and gas interests are attacking the new research.

And the research shows a likely economic speed bump around 2030. Economic growth would slow due to increased energy costs as economies race to make a sharp turn toward pollution reductions after nearly a decade of rising greenhouse gas emissions.

“Meeting that 2030 target is tough and I think it took everybody a little bit by surprise,” said Nancy Hirsh, executive director of the Seattle-based NW Energy Coalition, and co-chair of a state panel that shaped Washington’s recent energy supply planning.

But that’s not cause to ease up. Wait longer, says Hirsh, and the price will only rise.


Charging up

What most drives Cascadia’s energy models toward electrification is the dropping cost of renewable electricity.

Take solar energy. In 2010, no large power system in the world got more than three per cent of its electricity from solar. But over the past decade, solar energy’s cost fell more than 80 per cent, and by last year it was delivering over nine per cent of Germany’s electricity and over 19 per cent of California’s.

Government mandates and incentives helped get the trend started, and Canada's electricity progress underscores how costs continue to fall. Once prohibitively expensive, solar’s price now beats nuclear, coal and gas-fired power, and it’s expected to keep getting cheaper. The same goes for wind power, whose jumbo jet-sized composite blades bear no resemblance to the rickety machines once mocked by Big Oil.

In contrast, cleaning up gas- or coal-fired power plants by equipping them to capture their carbon pollution remains expensive even after decades of research and development and government incentives. Cost overruns and mechanical failures recently shuttered the world’s largest “low-carbon” coal-fired power plant in Texas after less than four years of operation.

Retrofits enabled this coal-fired plant in Texas to capture some of its carbon dioxide pollution, which was then injected into aging oil wells to revive production. But problems made the plant’s coal-fired power — which is being priced out by renewable energy — even less competitive and it was shut down after three years in 2020. Photo by NRG Energy.
Innovation and incentives are also making equipment that plugs into the grid cheaper. Electric options are good and getting better with a push from governments and a self-reinforcing cycle of performance improvement, mass production and increased demand.

Battery advances and cost cuts over the past decade have made owning an electric car cheaper, fuel included, than conventional cars. Electric heat pumps may be the next electric wave. They’re three to four times more efficient than electric baseboard heaters, save money over natural gas in most new homes, and work in Cascadia’s coldest zones.

Merran Smith, executive director of the Vancouver-based non-profit Clean Energy Canada, says that — as with electric cars five years ago — people don’t realize how much heat pumps have improved. “Heat pumps used to be big huge noisy things,” said Smith. “Now they’re a fraction of the size, they’re quiet and efficient.”

Electrifying certain industrial processes can also cut greenhouse gases at low cost. Surprisingly, even oil and gas drilling rigs and pipeline compressors can be converted to electric. Provincial utility BC Hydro is building new transmission lines to meet anticipated power demand from electrification of the fracking fields in northeastern British Columbia that supply much of Cascadia’s natural gas.


Simulating low-carbon living

The computer simulation tools guiding energy and climate strategies, unlike previous models that looked at individual sectors, take an economy-wide view. Planners can repeatedly run scenarios through sophisticated software, tinkering with their assumptions each time to answer cross-cutting questions such as: Should the limited supply of waste wood from forestry that can be sustainably removed from forests be burned in power plants? Or is it more valuable converted to biofuel for airplanes that can’t plug into the grid?

Evolved Energy Research, a San Francisco-based firm, analyzed the situation in Washington. Its algorithms are tuned using data about energy production and use today — down to the number and types of furnaces, stovetops or vehicles. It has expert assessments of future costs for equipment and fuels. And it knows the state’s mandated emissions targets.

Researchers run the model myriad times, simulating decisions about equipment and fuel purchases — such as whether restaurants stick with gas or switch to electric induction “burners” as their gas stoves wear out. The model finds the most cost-effective choices by homes and businesses that meet the state’s climate goals.

For Seattle wine bar Artusi, going with electric induction cooktops meant they could squeeze more tables into a tight, comfortable space. Standard burners cost less but would have required noisy, pricey fume hoods and fans to suck out the pollutants. For more, see sidebar. Photo: InvestigateWest.
Rather than accepting that optimal scenario and calling it a day, modellers account for uncertainty in their estimates of future costs by throwing in various additional constraints and rerunning the model.

That probing shows that longer reliance on climate-warming natural gas and petroleum fuels increases costs. In fact, all of the climate-protecting scenarios achieve Washington’s goals at relatively low cost, compared to the state’s historic spending on energy.

The end result of these scenarios are net-zero carbon emissions in 2050, echoing Canada's race to net-zero and the growing role of renewable energy, in which a small amount of emissions remaining are offset by rebounding forests or equipment that scrubs CO2 from the air.

But the seeds of that transformation must be sown by 2030. The scenarios identify common strategies that the state can pursue with low risk of future regrets.

One no brainer is to rapidly add wind and solar power to wring out CO2 emissions from Washington’s power sector. The projections end coal-fired power by 2025, as required by law, but also show that, with grid upgrades, gas-fired power plants that produce greenhouse gas emissions can stay turned off most of the time. That delivers about 16.2 million of the 44.8 million metric tons of CO2 emissions cut required by 2030 under state law.

All of the Washington scenarios also jack up electricity consumption to power cars and heating. By 2050, Washington homes and businesses would draw more than twice as much power from the grid as they did last year, meaning climate-friendly electricity is displacing climate-unfriendly gasoline, diesel fuel and natural gas. In the optimal case, electricity meets 98 per cent of transport energy in 2050, and over 80 per cent of building energy use.

By 2050, the high-electrification scenarios would create over 60,000 extra jobs across the state, as replacing old and inefficient equipment and construction of renewable power plants stimulates economic growth, according to projections from Washington, D.C.-based FTI Consulting. Scenarios with less electrification require more low-carbon fuels that cut emissions at higher cost, and thus create 15,000 to 35,000 fewer jobs.

Much of the new employment comes in middle-class positions — including about half of the total in construction — leading to big boosts in employment income. Washingtonians earn over $7 billion more in 2050 under the high-electrification scenarios, compared to a little over $5 billion if buildings stick with gas heating through 2050 and less than $2 billion with extra transportation fuels.


Rocketing to 2030

Evolved Energy’s electrification-heavy decarbonization pathways for Washington dovetail with a growing body of international research, such as that National Academy of Sciences report and a major U.S. decarbonization study led by Princeton University, and in Canada debates like Elizabeth May's 2030 renewable grid goal are testing feasibility. (See Grist’s 100 per cent Clean Energy video for a popularized view of similar pathways to slash U.S. carbon emissions, informed by Princeton modeller Jesse Jenkins.)

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified