Intersolar Europe restart 2021: solar power is becoming increasingly popular in Poland


solar power panel

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Poland Solar PV Boom drives record installations, rooftop and utility-scale growth, EU-aligned incentives, net metering, PPAs, and auctions, pushing capacity toward 8.3 GW by 2024 while prosumers, grid upgrades, and energy management expand.

 

Key Points

A rapid expansion of Poland's PV market, driven by incentives, PPAs, and prosumers across rooftop and utility-scale.

✅ 2.2 GW added in 2020, triple 2019, led by small-scale prosumers

✅ Incentives: My Current, Clean Air, Agroenergia, net metering

✅ Growth toward 8.3 GW by 2024; PPAs and auctions scale utility

 

Photovoltaics (PV) is booming in Poland. According to SolarPower Europe, 2.2 gigawatts (GW) of solar power was installed in the country in 2020 - nearly three times as much as the 823 megawatts (MW) installed in 2019. This places Poland fourth across Europe, behind Germany, where a solar power boost has been underway (4.8 GW added in 2020), the Netherlands (2.8 GW) and Spain (2.6 GW). So all eyes in the industry are on the up-and-coming Polish market. The solar industry will come together at Intersolar Europe Restart 2021, taking place from October 6 to 8 at Messe München. As part of The smarter E Europe Restart 2021, manufacturers, suppliers, distributors and service providers will all present their products and innovations at the world's leading exhibition for the solar industry.

All signs point to continued strong growth, with renewables on course to set records across markets. An intermediate, more conservative EU Market Outlook forecast from SolarPower Europe expects the Polish solar market to grow by 35 percent annually, meaning that it will have achieved a PV capacity of 8.3 GW by 2024 as solar reshapes Northern Europe's power prices over the medium term. "PV in Poland is booming at every level - from private and commercial PV rooftop systems to large free-standing installations," says Dr. Stanislaw Pietruszko, President of the Polish Society for Photovoltaics (PV Poland). According to the PV Poland, the number of registered small-scale systems - those under 50 kilowatts (kW) - with an average capacity of 6.5 kilowatts (kW) grew from 155,000 (992 MW) at the end of 2019 to 457,400 (3 GW) by the end of 2020. These small-scale systems account for 75 percent of all PV capacity installed in Poland. Larger PV projects with a capacity of 4 GW have already been approved for grid connection, further attesting to the forecast growth.

8,000 people employed in the PV industry
Andrzej Kazmierski, Deputy Director of the Department for Low-emission Economy within the Polish Ministry of Economic Development, Labour and Technology, explained in the Intersolar Europe webinar "A Rising Star: PV Market Poland" at the end of March 2021 that the PV market volume in Poland currently amounts to 2.2 billion euros, with 8,000 people employed in the industry. According to Kazmierski, the implementation of the Renewable Energy Directive (RED II) in the EU, intended to promote energy communities and collective prosumers as well as long-term power purchase agreements (PPAs), will be a critical challenge, and ongoing Berlin PV barriers debates highlight the importance of regulatory coordination. Renewable energy must be integrated with greater focus into the energy system, and energy management and the grids themselves must be significantly expanded as researchers work to improve solar and wind integration. The government seeks to create a framework for stable market growth as well as to strengthen local value creation.


Government incentive programs in Poland
In addition to drastically reduced PV costs, reinforced by China's rapid PV expansion, and growing environmental consciousness, the Polish PV market is being advanced by an array of government-funded incentive programs such as My Current (230 million euros) and Clean Air as well as thermo-modernization. The incentive program Agroenergia (50 million euros) is specifically geared toward farmers and offers low-interest loans or direct subsidies for the construction of solar installations with capacities between 50 kW and 1 MW. Incentive programs for net metering have been extended to small and medium enterprises to provide stronger support for prosumers. Solar installations producing less than 50 kW benefit from a lower value-added tax of just eight percent (compared to the typical 23 percent). The acquisition and installation costs can be offset against income, in turn reducing income tax.
Government-funded auctions are also used to finance large-scale facilities, where the government selects operators of systems running on renewable energy who offer the lowest electricity price and funds the construction of their facilities. The winner of an auction back in December was an investment project for the construction of a 200 MW solar park in the Pomeranian Voivodeship.


Companies turn to solar power for self-consumption
Furthermore, Poland is now playing host to larger solar projects that do not rely on subsidies, as Europe's demand lifts US equipment makers amid supply shifts, such as a 64 MW solar farm in Witnica being built on the border to Germany whose electricity will be sold to a cement factory via a multi-year power purchase agreement. A new factory in Konin (Wielkopolska Voivodeship) for battery cathode materials to be used in electric cars will be powered with 100-percent renewable electricity. Plus, large companies are increasingly turning to solar power for self-consumption. For example, a leading manufacturer of metal furniture in Suwalki (Podlaskie Voivodeship) in northeastern Poland has recently started meeting its demand using a 2 MW roof-mounted and free-standing installation on the company premises.

 

Related News

Related News

Michigan solar supporters make new push to eliminate rooftop solar caps

Michigan Distributed Energy Cap Repeal advances a bipartisan bill to boost rooftop solar and net metering, countering DTE and Consumers Energy claims, expanding energy freedom, jobs, and climate resilience across investor-owned utility territories.

 

Key Points

A Michigan bill to remove the 1% distributed energy cap, expanding rooftop solar, net metering, and clean energy jobs.

✅ Removes 1% distributed generation cap statewide

✅ Supports rooftop solar, net metering, and job growth

✅ Counters utility cost-shift claims with updated tariffs

 

A bipartisan group of Michigan lawmakers has introduced legislation to eliminate a 1% cap on distributed energy in the state’s investor-owned utility territories.

It’s the third time in recent years that such legislation has been introduced. Though utilities and their political allies have successfully blocked it to date, through tactics some critics say reflect utilities tilting the solar market by incumbents, advocates see an opportunity with a change in state Republican caucus leadership and Michigan’s burgeoning solar industry approaching the cap in some utility territories.

The bill also has support from a broad swath of legislators for reasons having to do with job creation, energy freedom and the environment, amid broader debates over states' push for renewables and affordability. Already the bill has received multiple hearings, even as DTE Energy and Consumers Energy, Michigan’s largest private utilities, are ramping up attacks in an effort to block the bill. 

“It’s going to be vehemently opposed by the utilities but there are only benefits to this if you are anybody but DTE,” said Democratic state Rep. Yousef Rabhi, who cosigned HB 4236 and has helped draft language in previous bills. “If we remove the cap, then we’re putting the public’s interest first, and we’re putting DTE’s interest first if we keep the cap in place.” 

The Michigan Legislature enacted the cap as part of a sweeping 2016 energy bill that clean energy advocates say included a number of provisions that have kneecapped the small-scale distributed energy industry, particularly home solar. The law caps distributed energy production at 1% of a utility’s average in-state peak load for the past five years. 

Republicans have controlled the Legislature and committees since the law was enacted, amid parallel moves such as the Wyoming clean energy bill in another state, and previous attempts to cut the language haven’t received House committee hearings. However, former Republican House leader Lee Chatfield has been replaced, and already the new bill, introduced by Republican state Rep. Gregory Markkanen, the energy committee’s vice chair, has had two hearings. 

Previous attempts to cut the language were also a part of a larger package of bills, and this time around the bill is a standalone. The legislation is also moving as Consumers and Upper Peninsula Power Co. have voluntarily doubled their cap to two percent, which advocates say highlights the need to repeal the cap . 

Rabhi said there’s bipartisan support because many conservatives and progressives view it as an infringement on customers’ energy freedom since the cap will eventually effectively prohibit new distributed energy generation. Legislators say the existing law kills jobs because it severely limits the clean energy industry’s growth, and Rabhi said he’s also strongly motivated by increasing renewable energy production to address climate change. 

In February, Michigan Public Service Commission Chairman Dan Scripps testified to the House committee, with observers also pointing to FERC action on aggregated DERs as relevant context, that the commission is “supportive in taking steps to ensure solar developers in Michigan are able to continue operating and thus support in concept the idea of lifting or eliminating the cap” in order to protect the home solar industry. 

The state’s solar industry has long criticized the cap, and removing it is a “no brainer,” said Dave Strenski, executive director of Solar Ypsi, which promotes rooftop solar in Ypsilanti. 

“If they have a cap and we reach that cap, then rooftop solar is shut down in Michigan,” he said. “The utilities don’t mind solar as long as they own it, and that’s what it boils down to.”  

The state’s utilities see the situation differently. Spokespeople for DTE and Consumers told the Energy News Network that lifting the cap would shift the cost burden of maintaining their territory-wide infrastructure from all customers to low income customers who can’t afford to install solar panels, often invoking reliability examples such as California's reliance on fossil generation to justify caution.

The bill “doesn’t address the subsidy certain customers are paid at the expense of those who cannot afford to put solar panels on their homes,” said Katie Carey, Consumers Energy’s spokesperson. 

However, clean energy advocates argue that studies have found that to be untrue. And even if it were true, Rabhi said, the utilities told lawmakers in 2016 that a new inflow/outflow tariff that the companies successfully pushed for to replace net metering dramatically reduced compensation for home solar users and would address that inequality. 

“DTE’s and Consumers’ own argument is that by making that change, distributed generation is no longer a ‘burden’ on low income customers, so now we have inflow/outflow and the problem should be solved,” Rabhi said. 

He added that claims that DTE and Consumers are looking out for low-income customers are disingenuous because they have repeatedly fought larger allowances for programs that help those customers, and refuse to “dip into their massive corporate profits and make sure poor people don’t have to pay as much for electricity.”

“I don’t want to hear a sob story from DTE about how putting solar panels on the house is going to hurt poor people,” he said. “That is entirely the definition of hypocrisy — that’s the utilities using poor people as a pawn and that’s why people are sick of these corporations.” 

The companies have already begun their public relations attack designed to help thwart the bill. DTE and Consumers spread money generously among Republicans and Democrats in the Legislature each cycle, and the two companies’ dark money nonprofits launched a round of ads targeting Democratic lawmakers, reflecting the broader solar wars playing out nationally. Several sit on the House Energy Committee, which must approve the bill before it can go in front of the full Legislature. 

The DTE-backed Alliance For Michigan Power and Consumers Energy-funded Citizens Energizing Michigan’s Economy have purchased dozens of Facebook ads alluding to action by the legislators, though there hasn’t been a vote. 

Facebook ads aren’t uncommon as they get “bang for their buck,” said Matt Kasper, research director with utility industry watchdog Energy And Policy Institute. Already hundreds of thousands of people have potentially viewed the ads and the groups have only spent thousands of dollars. The ads are likely designed to get Facebook users to interact with the legislators on the issue, Kasper said, even if there’s little information in the ad, and the info in the ad that does exist is highly misleading.

DTE and Consumers spokespersons declined to comment on the spending and directed questions to the dark money nonprofits. No one there could be reached for comment.

 

Related News

View more

Canada’s Clean Energy Sector Growth

Canada’s clean energy sector is expanding as Indigenous communities lead electricity transmission projects, drive sustainable growth, and strengthen energy independence through renewable power, community ownership, and grid connections across remote and regional areas of Canada.

 

What is Canada’s Clean Energy Sector?

Canada’s clean energy sector encompasses industries and initiatives that generate, transmit, and manage low-carbon electricity to meet the country's national climate goals. It emphasizes Indigenous participation, renewable innovation, and equitable economic growth.

✅ Expands renewable electricity generation and transmission

✅ Builds Indigenous-led ownership and partnerships

✅ Reduces emissions through sustainable energy transition

 

Canada’s clean energy sector is entering a pivotal era of transformation, with Indigenous communities emerging as leading partners in expanding electricity transmission and renewable infrastructure, including grid modernization projects that are underway nationwide. These communities are not only driving projects that connect remote regions to the grid but also redefining what energy leadership and equity look like in Canada.

At a recent webinar co-hosted by the Canadian Climate Institute and the Indigenous Power Coalition, panellists discussed the growing wave of Indigenous-led electricity transmission projects and the policies needed to strengthen Indigenous participation. The event, moderated by Frank Busch, featured Margaret Kenequanash, CEO of Wataynikaneyap Power; Kahsennenhawe Sky-Deer, Grand Chief of the Mohawk Council of Kahnawà:ke; and Blaise Fontaine, Co-Founder of ProACTIVE Planning Inc. and Indigenous Power Coalition.

The discussion comes at a crucial moment for Canada’s clean energy transition. As the country races to meet its climate commitments and zero-emissions electricity by 2035 targets, demand for clean power is rising rapidly. Historically, energy development in Canada occurred on Indigenous lands without consent or fair participation, but today, Indigenous communities collectively represent the largest clean energy asset owners outside Crown and private utilities.

“There is a genuine appetite for Indigenous communities to not just own transmission projects but to also lead,” said Fontaine. He noted that Indigenous communities are increasingly setting the terms of engagement, selecting partners, and shaping projects in line with their cultural and environmental values.

One of the strongest examples of this transformation is the Wataynikaneyap (Watay) Power Project in northern Ontario, a 1,800-kilometre transmission line connecting 17 remote First Nations communities to the provincial grid. “Communities must fully understand what they are getting into, since it is their homelands that will be impacted,” said Kenequanash. She emphasized that the project’s success came from five years of inter-community meetings to agree on shared principles before any external engagement.

The panel also highlighted the Hertel–New York Interconnection Line, co-owned by Hydro-Québec and the Mohawk Council of Kahnawà:ke, as another milestone in Indigenous energy leadership. Sky-Deer noted that the project’s co-ownership model required Quebec’s National Assembly to pass Bill 13, a first-of-its-kind legal framework. “That was a breakthrough,” she said, “but it also shows that true partnership still depends on one-off exceptions rather than standard policy.”

Panellists agreed that Canada’s regulatory systems have not kept pace with Indigenous leadership. Fontaine called on governments to “think outside the box to avoid staying stuck in the status quo,” emphasizing the need for enabling policies that align with an electric, connected and clean vision for Canada while making Indigenous-led ownership the norm rather than the exception.

Financial readiness is another key factor driving Indigenous participation. Communities are now accessing capital through partnerships with financial institutions and government loan programs, and growing evidence that a 2035 zero-emissions grid is practical and profitable is strengthening investor confidence. The collaboration between the Mohawk Council of Kahnawà:ke and the Caisse de dépôt et placement du Québec exemplifies tailored financing and long-term investment that supports community ownership and sustainable growth.

True equity, however, goes beyond financial participation. “It’s not just about having a percentage stake,” Fontaine explained. “True equity means meaningful decision-making power and control.” Indigenous leaders are insisting on co-governance structures that align with their worldviews, prioritizing environmental protection, cultural respect, and intergenerational stewardship.

The benefits of this approach extend far beyond project economics. Communities involved in ownership experience tangible local benefits, including employment and training opportunities, as well as new investments in education and culture. Hydro-Québec’s $10 million contribution to the Kahnawà:ke Cultural Arts Center is one example of how partnerships can support cultural renewal and community development.

As Canada looks to build east–west electricity interties and expand renewable energy generation, including solar where Canada has lagged in deployment nationwide, Indigenous leadership is becoming increasingly central to national energy policy. Fontaine noted that this shift offers “even greater opportunities for Indigenous-led transmission as Canada connects its provinces rather than just exporting power south.”

In particular, Alberta's energy profile highlights both rapid growth in renewables and ongoing fossil fuel strength, informing intertie planning and market design.

On the National Truth and Reconciliation Day, panellists urged reflection on both the barriers that remain and the opportunities ahead. Indigenous leadership in Canada’s clean energy sector is proving that reconciliation can take tangible form, through ownership, partnership, and shared prosperity.

This transformation represents more than an energy transition; it’s a rebalancing of power, respect, and responsibility, carried out “in a good way,” as the panellists emphasized, and essential to building a clean, inclusive energy future for all Canadians while strengthening the global electricity market position of the country.

 

Related Articles

 

View more

DOE Announces $5 Million to Launch Lithium-Battery Workforce Initiative

DOE Battery Workforce Strategy advances lithium battery manufacturing with DOE, DOL, and AFL-CIO partnerships, pilot training programs, EV supply chain skills, and industry-labor credentials to strengthen clean energy jobs and domestic competitiveness.

 

Key Points

An initiative to fund pilot training and labor-industry partnerships to scale domestic lithium battery manufacturing.

✅ $5M for up to five pilot training programs.

✅ Builds industry-labor credentials across the battery supply chain.

✅ Targets EV manufacturing, recycling, and materials refining.

 

The U.S. Department of Energy (DOE), in coordination with the U.S. Department of Labor and the AFL-CIO, today announced the launch of a national workforce development strategy for lithium-battery manufacturing. As part of a $5 million investment, DOE will support up to five pilot training programs in energy and automotive communities and advance workforce partnerships between industry and labor for the domestic lithium battery supply chain. Lithium batteries power everything from electric vehicles, where U.S. automakers' battery strategies are rapidly evolving, to consumer electronics and are a critical component of President Biden’s whole-of-government decarbonization strategy. This workforce initiative will support the nation’s global competitiveness within battery manufacturing while strengthening the domestic economy and clean energy supply chains. 

“American leadership in the global battery supply chain, as the U.S. works with allies on EV metals to strengthen access, will be based not only on our innovative edge, but also on our skilled workforce of engineers, designers, scientists, and production workers,” said U.S. Secretary of Energy Jennifer M. Granholm, “President Biden has a vision for achieving net zero emissions while creating millions of good paying, union jobs — and DOE’s battery partnerships with labor and industry are key to making that vision a reality.” 

“President Biden has made the creation of good union jobs a cornerstone of his climate strategy,” said AFL-CIO President Liz Shuler. “We applaud DOE for being proactive in pulling labor and management together as the domestic battery industry is being established, and as Canada accelerates EV assembly nearby, we look forward to working with DOE and DOL to develop high-road training standards for the entire battery supply chain.” 

“I am glad to see the Department of Energy collaborating with our industry partners to invest in the next generation of our clean energy workforce,” said U.S. Senator Joe Manchin (D-WV), Chairman of the Senate Energy and Natural Resources Committee. “While I remain concerned about our dependence on China and other foreign countries for key parts of the lithium-ion battery supply chain, and recent lithium supply risks highlight the urgency, engaging our strong and capable workforce to manufacture batteries domestically is a critical step toward reducing our reliance on other countries and ensuring we are able to maintain our energy security. I look forward to seeing this initiative grow, and we will continue to work closely together to ensure we can onshore the rest of the battery supply chain.” 

The pilot training programs will bring together manufacturing companies, organized labor, and training providers to lay the foundation for the development of a broad national workforce strategy. The pilots will support industry-labor cooperation, as major North American projects like the B.C. battery plant advance, and will provide sites for job task analyses and documenting worker competencies. Insights gained will support the development of national industry-recognized credentials and inform the development of broader training programs to support the overall battery supply chain. 

This initiative comes as part of suite of announcements from President Biden’s Interagency Working Group (IWG) on Coal and Power Plant Communities and Economic Revitalization—a partnership among the White House and nearly a dozen federal agencies committed to pursuing near- and long-term actions to support coal, oil and gas, and power plant communities as the nation transitions to a clean energy economy. 

This announcement follows DOE’s recent release of two Notices of Intent authorized by the Bipartisan Infrastructure Law to provide $3 billion to support projects that bolster domestic battery manufacturing and battery recycling for a circular economy efforts nationwide. The funding, which will be made available in the coming months, will support battery-materials refining, which will bolster domestic refining capacity of minerals such as lithium, as well as production plants, battery cell and pack manufacturing facilities, and recycling facilities. 

It also builds on progress the Biden-Harris Administration and DOE have driven to secure a sustainable, reliable domestic supply of critical minerals and materials necessary for clean energy supply chains, including lithium, with emerging sources like Alberta's lithium-rich oil fields underscoring regional potential. This includes $44 million in funding through the DOE Mining Innovations for Negative Emissions Resource Recovery (MINER) program to fund the technology research that increases the mineral yield while decreasing the required energy, and subsequent emissions, to mine and extract critical minerals such as lithium, copper, nickel, and cobalt. 

 

Related News

View more

France Hits Record: 20% Of Market Buys Electric Cars

France Plug-In Electric Car Sales September 2023 show rapid EV adoption: 45,872 plug-ins, 30% market share, BEV 19.6%, PHEV 10.2%, with Tesla Model Y leading registrations amid sustained year-over-year growth.

 

Key Points

France registered 45,872 plug-ins in September 2023, a 30% share, with BEVs at 19.6% and PHEVs at 10.2%.

✅ Tesla Model Y led BEVs with 5,035 registrations in September

✅ YTD plug-in share 25%; BEV 15.9%, PHEV 9.1% across passenger cars

✅ Total market up 9% YoY to 153,916; plug-ins up 35% YoY

 

New passenger car registrations in France increased in September by nine percent year-over-year to 153,916, mirroring global EV market growth trends, taking the year-to-date total to 1,286,247 (up 16 percent year-over-year).

The market has been expanding every month this year (recovering slightly from the 2020-2022 collapse and the period when EU EV share grew during lockdowns across the bloc) and also is becoming more and more electrifying thanks to increasing plug-in electric car sales.

According to L’Avere-France, last month 45,872 new passenger plug-in electric cars were registered in France (35 percent more than a year ago), which represented almost 30 percent of the market, aligning with the view that the age of electric cars is arriving ahead of schedule. That's a new record share for rechargeable cars and a noticeable jump compared to just over 24 percent a year ago.

What's even more impressive is that passenger all-electric car registrations increased to over 30,000 (up 34 percent year-over-year), taking a record share of 19.6 percent of the market. That's basically one in five new cars sold, and in the U.S., plug-ins logged 19 billion electric miles in 2021 as a benchmark.

Plug-in hybrids are also growing (up 35% year-over-year), and with 15,699 units sold, accounted for 10.2 percent of the market (a near record value).


Plug-in car sales in France – September 2023

So far this year, more than 341,000 new plug-in electric vehicles have been registered in France, including over 321,000 passenger plug-in cars (25 percent of the market), while in the U.S., EV sales are soaring into 2024 as well.

Plug-in car registrations year-to-date (YOY change):

  • Passenger BEVs: 204,616 (up 45%) and 15.9% market share
  • Passenger PHEVs: 116,446 (up 31%) and 9.1% market share
  • Total passenger plug-ins: 321,062 (up 40%) and 25% market share
  • Light commercial BEVs: 20,292 (up 111%)
  • Light commercial PHEVs: 281 (down 38%)
  • Total plug-ins: 341,635 (up 43%)

For reference, in 2022, more than 346,000 new plug-in electric vehicles were registered in France (including almost 330,000 passenger cars, which was 21.5 percent of the market).

We can already tell that the year 2023 will be very positive for electrification in France, with a potential to reach 450,000 units or so, though new EV incentive rules could reshape the competitive landscape.


Models
In terms of individual models, the Tesla Model Y again was the most registered BEV with 5,035 new registrations in September. This spectacular result enabled the Model Y to become the fifth best-selling model in the country last month (Tesla, as a brand, was seventh).

The other best-selling models are usually small city cars - Peugeot e-208 (3,924), Dacia Spring (2,514), Fiat 500 electric (2,296), and MG4 (1,945), amid measures discouraging Chinese EVs in France. Meanwhile, the best-selling electric Renault - the Megane-e - was outside the top five BEVs, which reveals to us how much has changed since the Renault Zoe times.

After the first nine months of the year, the top three BEVs are the Tesla Model Y (27,458), Dacia Spring (21,103), and Peugeot e-208 (19,074), slightly ahead of the Fiat 500 electric (17,441).

 

Related News

View more

Electric vehicles can fight climate change, but they’re not a silver bullet: U of T study

EV Adoption Limits highlight that electric vehicles alone cannot meet emissions targets; life cycle assessment, carbon budgets, clean grids, public transit, and battery materials constraints demand broader decarbonization strategies, city redesign, and active travel.

 

Key Points

EV Adoption Limits show EVs alone cannot hit climate targets; modal shift, clean grids, and travel demand are essential.

✅ 350M EVs by 2050 still miss 2 C goals without major mode shift

✅ Grid demand rises 41%, requiring clean power and smart charging

✅ Battery materials constraints need recycling, supply diversification

 

Today there are more than seven million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago. It’s a massive change – but according to a group of researchers at the University of Toronto’s Faculty of Applied Science & Engineering, it won’t be nearly enough to address the global climate crisis. 

“A lot of people think that a large-scale shift to EVs will mostly solve our climate problems in the passenger vehicle sector,” says Alexandre Milovanoff, a PhD student and lead author of a new paper published in Nature Climate Change. 

“I think a better way to look at it is this: EVs are necessary, but on their own, they are not sufficient.” 

Around the world, many governments are already going all-in on EVs. In Norway, for example, where EVs already account for half of new vehicle sales, the government has said it plans to eliminate sales of new internal combustion vehicles by 2025. The Netherlands aims to follow suit by 2030, with France and Canada's EV goals aiming to follow by 2040. Just last week, California announced plans to ban sales of new internal combustion vehicles by 2035.

Milovanoff and his supervisors in the department of civil and mineral engineering – Assistant Professor Daniel Posen and Professor Heather MacLean – are experts in life cycle assessment, which involves modelling the impacts of technological changes across a range of environmental factors. 

They decided to run a detailed analysis of what a large-scale shift to EVs would mean in terms of emissions and related impacts. As a test market, they chose the United States, which is second only to China in terms of passenger vehicle sales. 

“We picked the U.S. because they have large, heavy vehicles, as well as high vehicle ownership per capita and high rate of travel per capita,” says Milovanoff. “There is also lots of high-quality data available, so we felt it would give us the clearest answers.” 

The team built computer models to estimate how many electric vehicles would be needed to keep the increase in global average temperatures to less than 2 C above pre-industrial levels by the year 2100, a target often cited by climate researchers. 

“We came up with a novel method to convert this target into a carbon budget for U.S. passenger vehicles, and then determined how many EVs would be needed to stay within that budget,” says Posen. “It turns out to be a lot.” 

Based on the scenarios modelled by the team, the U.S. would need to have about 350 million EVs on the road by 2050 in order to meet the target emissions reductions. That works out to about 90 per cent of the total vehicles estimated to be in operation at that time. 

“To put that in perspective, right now the total proportion of EVs on the road in the U.S. is about 0.3 per cent,” says Milovanoff. 

“It’s true that sales are growing fast, but even the most optimistic projections of an electric-car revolution suggest that by 2050, the U.S. fleet will only be at about 50 per cent EVs.” 

The team says that, in addition to the barriers of consumer preferences for EV deployment, there are technological barriers such as the strain that EVs would place on the country’s electricity infrastructure, though proper grid management can ease integration. 

According to the paper, a fleet of 350 million EVs would increase annual electricity demand by 1,730 terawatt hours, or about 41 per cent of current levels. This would require massive investment in infrastructure and new power plants, some of which would almost certainly run on fossil fuels in some regions. 

The shift could also impact what’s known as the demand curve – the way that demand for electricity rises and falls at different times of day – which would make managing the national electrical grid more complex, though vehicle-to-grid strategies could help smooth peaks. Finally, there are technical challenges stemming from the supply of critical materials for batteries, including lithium, cobalt and manganese. 

The team concludes that getting to 90 per cent EV ownership by 2050 is an unrealistic scenario. Instead, what they recommend is a mix of policies, rather than relying solely on a 2035 EV sales mandate as a singular lever, including many designed to shift people out of personal passenger vehicles in favour of other modes of transportation. 

These could include massive investment in public transit – subways, commuter trains, buses – as well as the redesign of cities to allow for more trips to be taken via active modes such as bicycles or on foot. They could also include strategies such as telecommuting, a shift already spotlighted by the COVID-19 pandemic. 

“EVs really do reduce emissions, which are linked to fewer asthma-related ER visits in local studies, but they don’t get us out of having to do the things we already know we need to do,” says MacLean. “We need to rethink our behaviours, the design of our cities, and even aspects of our culture. Everybody has to take responsibility for this.” 

The research received support from the Hatch Graduate Scholarship for Sustainable Energy Research and the Natural Sciences and Engineering Research Council of Canada.

 

Related News

View more

Ontario Launches Hydrogen Innovation Fund

Ontario Hydrogen Innovation Fund accelerates clean electricity integration, hydrogen storage, grid balancing, and electrolyzer pilot projects, supporting EV production, green steelmaking, and clean manufacturing under Ontario's Low-Carbon Hydrogen Strategy via IESO-administered funding.

 

Key Points

A $15M program funding hydrogen storage, grid pilots to integrate low-carbon hydrogen into Ontario's power system.

✅ Administered by IESO; applications opened April 2023.

✅ Supports existing, new, and research hydrogen projects.

✅ Backs grid storage, capacity, demand management pilots.

 

The Ontario government is establishing a Hydrogen Innovation Fund that will invest $15 million over the next three years to kickstart and develop opportunities for hydrogen to be integrated into Ontario’s clean electricity system, including hydrogen electricity storage. This launch marks another milestone in the implementation of the province’s Low-Carbon Hydrogen Strategy, supporting a growing hydrogen economy across the province, positioning Ontario as a clean manufacturing hub.

“When energy is reliable, affordable and clean our whole province wins,” said Todd Smith, Minister of Energy. “The Hydrogen Innovation Fund will help to lay the groundwork for hydrogen to contribute to our diverse energy supply, supporting game-changing investments in electric vehicle production and charging infrastructure across the province, green steelmaking and clean manufacturing that will create good paying jobs, grow our economy and reduce emissions.”

Hydrogen Innovation Fund projects would support electricity supply, capacity, battery storage and demand management, and support growth in Ontario’s hydrogen economy. The Fund will support projects across three streams:

Existing facilities already built or operational and ready to evaluate how hydrogen can support Ontario’s clean grid amid an energy storage crunch in Ontario.
New hydrogen facilities not yet constructed but could be in-service by a specified date to demonstrate how hydrogen can support Ontario’s clean grid.
Research studies investigating the feasibility of novel applications of hydrogen or support future hydrogen project decision making.

The Hydrogen Innovation Fund will be administered by the Independent Electricity System Operator, which is opening applications for the fund in April 2023. Natural Resources Canada modelling shows that hydrogen could make up about 30 per cent of the country's fuels and feedstock by 2050, as provinces advance initiatives like a British Columbia hydrogen project demonstrating scale and ambition, and create 100,000 jobs in Ontario. By making investments early to explore applications for hydrogen in our clean electricity sector we are paving the way for the growth of our own hydrogen economy.

“As a fuel that can be produced and used with little to no greenhouse gas emissions, hydrogen has tremendous potential to help us meet our long-term economic and environmental goals,” said David Piccini, Minister of the Environment, Conservation and Parks. “Our government will continue to support innovation and investment in clean technologies that will position Ontario as the clean manufacturing and transportation hub of the future while leading Canada in greenhouse gas emission reductions.”

The province is also advancing work to develop the Niagara Hydrogen Centre, led by Atura Power, which would increase the amount of low-carbon hydrogen produced in Ontario by eight-fold. This innovative project would help balance the electricity grid while using previously unutilized water at the Sir Adam Beck generating station to produce electricity for a hydrogen electrolyzer, reflecting broader electrolyzer investment trends in Canada. To support the implementation of the project, the IESO entered into a contract for grid regulation services at the Sir Adam Beck station starting in 2024, which will support low-carbon hydrogen production at the Niagara Hydrogen Centre.

These investments build on Ontario’s clean energy advantage, which also includes the largest battery storage project planned in southwestern Ontario, as our government makes progress on the Low-Carbon Hydrogen Strategy that laid out eight concrete actions to make Ontario a leader in the latest frontier of energy innovation – the hydrogen economy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.