Intersolar Europe restart 2021: solar power is becoming increasingly popular in Poland


solar power panel

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Poland Solar PV Boom drives record installations, rooftop and utility-scale growth, EU-aligned incentives, net metering, PPAs, and auctions, pushing capacity toward 8.3 GW by 2024 while prosumers, grid upgrades, and energy management expand.

 

Key Points

A rapid expansion of Poland's PV market, driven by incentives, PPAs, and prosumers across rooftop and utility-scale.

✅ 2.2 GW added in 2020, triple 2019, led by small-scale prosumers

✅ Incentives: My Current, Clean Air, Agroenergia, net metering

✅ Growth toward 8.3 GW by 2024; PPAs and auctions scale utility

 

Photovoltaics (PV) is booming in Poland. According to SolarPower Europe, 2.2 gigawatts (GW) of solar power was installed in the country in 2020 - nearly three times as much as the 823 megawatts (MW) installed in 2019. This places Poland fourth across Europe, behind Germany, where a solar power boost has been underway (4.8 GW added in 2020), the Netherlands (2.8 GW) and Spain (2.6 GW). So all eyes in the industry are on the up-and-coming Polish market. The solar industry will come together at Intersolar Europe Restart 2021, taking place from October 6 to 8 at Messe München. As part of The smarter E Europe Restart 2021, manufacturers, suppliers, distributors and service providers will all present their products and innovations at the world's leading exhibition for the solar industry.

All signs point to continued strong growth, with renewables on course to set records across markets. An intermediate, more conservative EU Market Outlook forecast from SolarPower Europe expects the Polish solar market to grow by 35 percent annually, meaning that it will have achieved a PV capacity of 8.3 GW by 2024 as solar reshapes Northern Europe's power prices over the medium term. "PV in Poland is booming at every level - from private and commercial PV rooftop systems to large free-standing installations," says Dr. Stanislaw Pietruszko, President of the Polish Society for Photovoltaics (PV Poland). According to the PV Poland, the number of registered small-scale systems - those under 50 kilowatts (kW) - with an average capacity of 6.5 kilowatts (kW) grew from 155,000 (992 MW) at the end of 2019 to 457,400 (3 GW) by the end of 2020. These small-scale systems account for 75 percent of all PV capacity installed in Poland. Larger PV projects with a capacity of 4 GW have already been approved for grid connection, further attesting to the forecast growth.

8,000 people employed in the PV industry
Andrzej Kazmierski, Deputy Director of the Department for Low-emission Economy within the Polish Ministry of Economic Development, Labour and Technology, explained in the Intersolar Europe webinar "A Rising Star: PV Market Poland" at the end of March 2021 that the PV market volume in Poland currently amounts to 2.2 billion euros, with 8,000 people employed in the industry. According to Kazmierski, the implementation of the Renewable Energy Directive (RED II) in the EU, intended to promote energy communities and collective prosumers as well as long-term power purchase agreements (PPAs), will be a critical challenge, and ongoing Berlin PV barriers debates highlight the importance of regulatory coordination. Renewable energy must be integrated with greater focus into the energy system, and energy management and the grids themselves must be significantly expanded as researchers work to improve solar and wind integration. The government seeks to create a framework for stable market growth as well as to strengthen local value creation.


Government incentive programs in Poland
In addition to drastically reduced PV costs, reinforced by China's rapid PV expansion, and growing environmental consciousness, the Polish PV market is being advanced by an array of government-funded incentive programs such as My Current (230 million euros) and Clean Air as well as thermo-modernization. The incentive program Agroenergia (50 million euros) is specifically geared toward farmers and offers low-interest loans or direct subsidies for the construction of solar installations with capacities between 50 kW and 1 MW. Incentive programs for net metering have been extended to small and medium enterprises to provide stronger support for prosumers. Solar installations producing less than 50 kW benefit from a lower value-added tax of just eight percent (compared to the typical 23 percent). The acquisition and installation costs can be offset against income, in turn reducing income tax.
Government-funded auctions are also used to finance large-scale facilities, where the government selects operators of systems running on renewable energy who offer the lowest electricity price and funds the construction of their facilities. The winner of an auction back in December was an investment project for the construction of a 200 MW solar park in the Pomeranian Voivodeship.


Companies turn to solar power for self-consumption
Furthermore, Poland is now playing host to larger solar projects that do not rely on subsidies, as Europe's demand lifts US equipment makers amid supply shifts, such as a 64 MW solar farm in Witnica being built on the border to Germany whose electricity will be sold to a cement factory via a multi-year power purchase agreement. A new factory in Konin (Wielkopolska Voivodeship) for battery cathode materials to be used in electric cars will be powered with 100-percent renewable electricity. Plus, large companies are increasingly turning to solar power for self-consumption. For example, a leading manufacturer of metal furniture in Suwalki (Podlaskie Voivodeship) in northeastern Poland has recently started meeting its demand using a 2 MW roof-mounted and free-standing installation on the company premises.

 

Related News

Related News

Electric vehicles can now power your home for three days

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

View more

Solar and wind power curtailments are rising in California

CAISO Renewable Curtailments reflect grid balancing under transmission congestion and oversupply, reducing solar and wind output while leveraging WEIM trading, battery storage, and transmission expansion to integrate renewables and stabilize demand-supply.

 

Key Points

CAISO renewable curtailments are reductions in wind and solar output to balance grid amid congestion or oversupply.

✅ Driven mainly by transmission congestion, less by oversupply.

✅ Peaks in spring when demand is low and solar output is high.

✅ Mitigated by WEIM trades, new lines, and battery storage growth.

 

The California Independent System Operator (CAISO), the grid operator for most of the state, is increasingly curtailing solar- and wind-powered electricity generation, as reported in rising curtailments, as it balances supply and demand during the rapid growth of wind and solar power in California.

Grid operators must balance supply and demand to maintain a stable electric system as advances in solar and wind continue to scale. The output of wind and solar generators are reduced either through price signals or rarely, through an order to reduce output, during periods of:

Congestion, when power lines don’t have enough capacity to deliver available energy
Oversupply, when generation exceeds customer electricity demand

In CAISO, curtailment is largely a result of congestion. Congestion-related curtailments have increased significantly since 2019 because California's solar boom has been outpacing upgrades in transmission capacity.

In 2022, CAISO curtailed 2.4 million megawatthours (MWh) of utility-scale wind and solar output, a 63% increase from the amount of electricity curtailed in 2021. As of September, CAISO has curtailed more than 2.3 million MWh of wind and solar output so far this year, even as the US project pipeline is dominated by wind, solar, and batteries.

Solar accounts for almost all of the energy curtailed in CAISO—95% in 2022 and 94% in the first seven months of 2023. CAISO tends to curtail the most solar in the spring when electricity demand is relatively low (because moderate spring temperatures mean less demand for space heating or air conditioning) and solar output is relatively high, although wildfire smoke impacts can reduce available generation during fire season as well.

CAISO has increasingly curtailed renewable generation as renewable capacity has grown in California, and the state has even experienced a near-100% renewables moment on the grid in recent years. In 2014, a combined 9.0 gigawatts (GW) of wind and solar capacity had been built in California. As of July 2023, that number had grown to 17.6 GW. Developers plan to add another 3.0 GW by the end of 2024.

CAISO is exploring and implementing various solutions to its increasing curtailment of renewables, including:

The Western Energy Imbalance Market (WEIM) is a real-time market that allows participants outside of CAISO to buy and sell energy to balance demand and supply. In 2022, more than 10% of total possible curtailments were avoided by trading within the WEIM. A day ahead market is expected to be operational in Spring 2025.

CAISO is expanding transmission capacity to reduce congestion. CAISO’s 2022–23 Transmission Planning Process includes 45 transmission projects to accommodate load growth and a larger share of generation from renewable energy sources.

CAISO is promoting the development of flexible resources that can quickly respond to sudden increases and decreases in demand such as battery storage technologies that are rapidly becoming more affordable. California has 4.9 GW of battery storage, and developers plan to add another 7.6 GW by the end of 2024, according to our survey of recent and planned capacity changes. Renewable generators can charge these batteries with electricity that would otherwise have been curtailed.

 

Related News

View more

Winds of Change: Vineyard Wind Ushers in a New Era for Clean Energy

Vineyard Wind Offshore Wind Farm delivers clean power to Massachusetts near Martha's Vineyard, with 62 turbines and 800 MW capacity, advancing renewable energy, cutting carbon, lowering costs, and driving net-zero emissions and green jobs.

 

Key Points

An 800 MW Massachusetts offshore project of 62 turbines supplying clean power to 400,000+ homes and cutting emissions.

✅ 800 MW powering 400,000+ MA homes and businesses

✅ 62 turbines, 13 MW each, 15 miles from Martha's Vineyard

✅ Cuts 1.6M tons CO2 annually; boosts jobs and port infrastructure

 

The crisp Atlantic air off the coast of Martha's Vineyard carried a new melody on February 2nd, 2024. Five colossal turbines, each taller than the Statue of Liberty, began their graceful rotations, marking the historic moment power began flowing from Vineyard Wind, the first large-scale offshore wind farm in the United States, enabled by Interior Department approval earlier in the project timeline. This momentous occasion signifies a seismic shift in Massachusetts' energy landscape, one that promises cleaner air, lower energy costs, and a more sustainable future for generations to come.

Nestled 15 miles southeast of Martha's Vineyard and Nantucket, Vineyard Wind is a colossal undertaking. The project, a joint venture between Avangrid Renewables and Copenhagen Infrastructure Partners, will ultimately encompass 62 turbines, each capable of generating a staggering 13 megawatts. Upon full completion later this year, Vineyard Wind will power over 400,000 homes and businesses across Massachusetts, contributing a remarkable 800 megawatts to the state's energy grid.

But the impact of Vineyard Wind extends far beyond mere numbers. This trailblazing project holds immense environmental significance. By harnessing the clean and inexhaustible power of the wind, Vineyard Wind is projected to annually reduce carbon emissions by a staggering 1.6 million metric tons – equivalent to taking 325,000 cars off the road. This translates to cleaner air, improved public health, and a crucial step towards mitigating the climate crisis.

Governor Maura Healey hailed the project as a "turning point" in Massachusetts' clean energy journey. "Across the Commonwealth, homes and businesses will now be powered by clean, affordable energy, contributing to cleaner air, lower energy costs, and pushing us closer to achieving net-zero emissions," she declared.

Vineyard Wind's impact isn't limited to the environment; it's also creating a wave of economic opportunity. Since its inception in 2017, the project has generated nearly 2,000 jobs, with close to 1,000 positions filled by union workers thanks to a dedicated Project Labor Agreement. Construction has also breathed new life into the New Bedford Marine Commerce Terminal, with South Coast construction activity accelerating around the port, transforming it into the nation's first port facility specifically designed for offshore wind, showcasing the project's commitment to local infrastructure development.

"Every milestone on Vineyard Wind 1 is special, but powering up these first turbines stands apart," emphasized Pedro Azagra, CEO of Avangrid Renewables. "This accomplishment reflects the years of dedication and collaboration that have defined this pioneering project. Each blade rotation and megawatt flowing to Massachusetts homes is a testament to the collective effort that brought offshore wind power to the United States."

Vineyard Wind isn't just a project; it's a catalyst for change. It perfectly aligns with Massachusetts' ambitious clean energy goals, which include achieving net-zero emissions by 2050 and procuring 3,200 megawatts of offshore wind by 2028, while BOEM lease requests in the Northeast continue to expand the development pipeline across the region. As Energy and Environmental Affairs Secretary Rebecca Tepper stated, "Standing up a new industry is no easy feat, but we're committed to forging ahead and growing this sector to lower energy costs, create good jobs, and build a cleaner, healthier Commonwealth."

The launch of Vineyard Wind transcends Massachusetts, serving as a beacon for the entire U.S. offshore wind industry, as New York's biggest offshore wind farm moves forward to amplify regional momentum. This demonstration of large-scale development paves the way for further investment and growth in this critical clean energy source. However, the journey isn't without its challenges, and questions persist about reaching 1 GW on the grid nationwide as stakeholders navigate timelines. Concerns regarding potential impacts on marine life and visual aesthetics remain, requiring careful consideration and ongoing community engagement.

Despite these challenges, Vineyard Wind stands as a powerful symbol of hope and progress. It represents a significant step towards a cleaner, more sustainable future, powered by renewable energy sources at a time when U.S. offshore wind is about to soar according to industry outlooks. It's a testament to the collaborative effort of policymakers, businesses, and communities working together to tackle the climate crisis. As the turbines continue their majestic rotations, they carry a message of hope, reminding us that a brighter, more sustainable future is within reach, powered by the wind of change.

Additional Considerations:

  • The project boasts a dedicated Fisheries Innovation Fund, fostering collaboration between the fishing and offshore wind industries to ensure sustainable coexistence.
  • Vineyard Wind has invested in education and training programs, preparing local residents for careers in the burgeoning wind energy sector.
  • The project's success opens doors for further offshore wind development in the U.S., such as Long Island proposals gaining attention, paving the way for a clean energy revolution.

 

Related News

View more

Scores more wind turbines proposed for Long Island’s South Shore

New York Offshore Wind Expansion adds Equinor's Empire Wind 2 and Beacon Wind, boosting megawatts, turbines, and grid connections for Long Island and Queens, with jobs, assembly at South Brooklyn Marine Terminal, and clean energy.

 

Key Points

A statewide initiative proposing new Equinor and partner projects to scale offshore wind capacity, jobs, and grid links.

✅ Adds 2,490 MW via Empire Wind 2 and Beacon Wind

✅ Connects to Nassau County and Queens grids for reliability

✅ Creates 3,000+ NY jobs with South Brooklyn Marine Terminal work

 

Scores more 600-foot tall wind turbines would be built off Jones Beach under a new proposal.

Norwegian energy conglomerate Equinor has bid to create another 2,500 megawatts of offshore wind power for New York state and Long Island, where offshore wind sites are being evaluated, with two projects. One, which would connect to the local electric grid in Nassau County, would more than double the number of turbines off Long Island to some 200. A second would be built around 50 miles from Montauk Point and connect to the state grid in Queens. The plan would also include conducting assembly work in Brooklyn.

In disclosures Tuesday in response to a state request for proposals, Equinor said it would bolster its already state-awarded, 819-megawatt Empire Wind project off Long Island’s South Shore with another called Empire Wind 2 that will add 1,260 megawatts. Turbines of at least 10 megawatts each would mean that the prior project’s 80 or so turbines could be joined by another 120. Equinor’s federally approved lease area off Long Island encompasses some 80,000 acres, starting 15 miles due south of Long Beach and extending east and south.

Equinor on Tuesday also submitted plans to offer a second project called Beacon Wind that would be built 50 miles from Montauk Point, off the Massachusetts South Coast area. It would be 1,230 megawatts and connect through Long Island Sound to Queens.

Equinor said its latest energy projects would generate more than 3,000 New York jobs, including use of the South Brooklyn Marine Terminal for “construction activities” and an operations and maintenance base.

The new proposals came in response to a New York State Energy Research and Development Authority bid request for renewable projects in the state. In a statement, Siri Espedal Kindem, president of Equinor Wind U.S., said the company’s plans would include “significant new benefits for New York – from workforce training, economic development, and community benefits – alongside a tremendous amount of homegrown, renewable energy.”

Meanwhile, Denmark-based Orsted, working with New England power company Eversource, has also submitted plans for a new offshore wind project called Sunrise Wind 2, a proposal that includes “multiple bids” that would create “hundreds of new jobs, and infrastructure investment,” according to a company statement. Con Edison Transmission will also work to develop transmission facilities for that project, the companies said.

Orsted and Eversource already have contracts to develop a 130-megawatt wind farm for LIPA to serve the South Fork, and an 880-megawatt wind farm for the state. All of its hundreds of turbines would be based in a lease area off the coast of Massachusetts and Rhode Island, where Vineyard Wind has progressed as a key project.

“Sunrise Wind 2 will create good-paying jobs for New York, support economic growth, and further reduce emissions while delivering affordable clean energy to Long Island and the rest of New York,” Joe Nolan, executive vice president for Eversource, said in a statement.

 

Related News

View more

EV owners can access more rebates for home, workplace charging

CleanBC Go Electric EV Charger Rebate empowers British Columbia condos, apartments, and workplaces with Level 2 charging infrastructure, ZEV adoption support, and stackable rebates aligned with the CleanBC Roadmap 2030 and municipal top-up incentives.

 

Key Points

A provincial program funding up to 50% of EV charger costs for condos, apartments, and workplaces across B.C.

✅ Up to 50% back, max $2,000 per eligible Level 2 charger

✅ EV Ready plans fund building upgrades for future charging

✅ Free advisor support: up to 5 hours for condos and workplaces

 

British Columbians wanting to charge their electric vehicles (EVs) at their condominium building or their place of work can access further funding through EV charger rebates to help buy and install EV chargers through CleanBC’s Go Electric EV Charger Rebate program.

“To better support British Columbians living in condominiums and apartments, we’re offering rebates to make more buildings EV ready,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With the highest uptake rates of EV adoption in North America, we want to make sure that more people supporting our transition to a low-carbon economy have easy access to charging infrastructure.”

The Province’s CleanBC Go Electric EV Charger Rebate program is receiving $10 million as part of Budget 2021 to help with the upfront costs that come with EVs. Condominiums, apartments and workplaces that purchase and install eligible EV chargers can receive a rebate up to 50% of costs to a maximum of $2,000 per charger. Customers who take advantage of the EV Charger Rebate may have access to top up rebates through participating municipalities and local governments.

“People in British Columbia are switching to electric vehicles in record numbers as part of the transition to a cleaner, better transportation system,” said George Heyman, Minister of Environment and Climate Change Strategy. “We are building on that progress and accelerating positive change through the CleanBC Roadmap. We’re making it more affordable to own an electric vehicle and charging station, with incentives for zero-emission vehicles, so people can improve their driving experience with no air and climate pollution, and lower fuel and maintenance costs overall.”

The strata council for a condo building in Vancouver’s Olympic Village neighbourhood made use of the EV Ready program, as well as new legislation easing strata EV installs and federal support to upgrade their building’s electrical infrastructure. The strata council worked together to first determine, through a load review, if there was enough incoming power to support a level 2 charger for every owner. Once this was determined, the strata’s chosen electrical contractor went to work with the base installation, as well as individual chargers for owners who ordered them. The strata council also ensured a charger was installed in the guest parking.

“The majority of owners in our building came together and gave our strata council approval to make the necessary updates to the building’s infrastructure to support electric vehicle charging where we live,” said Jim Bayles, vice-president of strata council. “While upgrading the electrical and installing the EV chargers was something we were going ahead with anyway, we were pleased to receive quick support from the Province through their CleanBC program as well as from the federal government.”

CleanBC’s EV Ready option supports the adoption of EV infrastructure at apartment and condominium buildings. EV Ready provides rebates for the development of EV Ready plans, a strategy for buildings supported by professionals to retrofit a condo with chargers and make at least one parking space per unit EV ready, and the installation of electrical modifications and upgrades needed to support widespread future access to EV charging for residents.

Up to five hours of free support services from an EV charging station adviser are available through the EV Charger Rebate program for condominiums, apartments and workplaces that need help moving from idea to installation.

Single-family homes, including duplexes and townhouses, can get a rebate of up to 50% of purchase and installation costs of an eligible EV charger to a maximum of $350 through the EV Charger Rebate program.

The Province is providing a range of rebates through its CleanBC Go Electric programs and building out the fast-charging network to ensure the increasing demand for EVs is supported. B.C. has one of the largest public-charging networks in Canada, including the BC's Electric Highway initiative, with more than 2,500 public charging stations throughout the province.

The CleanBC Go Electric EV Charger Rebate program aligns with the recently released CleanBC Roadmap to 2030. Announced on Oct. 25, 2021, the CleanBC Roadmap to 2030 details a range of expanded actions to expand EV charging and accelerate the transition to a net-zero future and achieve B.C.’s legislated greenhouse gas emissions targets.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy for everyone.

Quick Facts:

  • The CleanBC Go Electric EV Charger Rebate program provides a convenient single point of service for provincial and any local government rebates.
  • EV adviser services for multi-unit residential buildings and workplaces are available through Plug In BC.
  • British Columbia is leading the country in transitioning to EVs, even as a B.C. Hydro 'bottleneck' forecast highlights infrastructure needs, with more than 60,000 light-duty EVs on the road.
  • British Columbia was the first place in the world to have a 100% ZEV law and is leading North America in uptake rates of EVs at nearly 10% of new sales in 2020 – five years ahead of the original target.
  • The CleanBC Roadmap to 2030 commits B.C. to adjusting its ZEV Act to require automakers to meet an escalating annual percentage of new light-duty ZEV sales and leases, reaching 26% of light-duty vehicle sales by 2026, 90% by 2030 and 100% by 2035.

 

Learn More:

To learn more about home and workplace EV charging station rebates, eligibility and application processes, including the EV Ready program, visit: https://goelectricbc.gov.bc.ca/

To learn more about EV advisor services, visit: https://pluginbc.ca/ev-advisor-service/

To learn more about the suite of CleanBC Go Electric programming, visit: www.gov.bc.ca/zeroemissionvehicles

To learn more about the CleanBC Roadmap to 2030, visit: https://cleanbc.gov.bc.ca/

 

Related News

View more

BESS: A Clean Energy Solution NY Needs

New York BESS advance renewable energy storage, boosting grid reliability and resilience with utility-scale projects, strict safety oversight, and NYPA leadership to meet 6,000 MW by 2030 and 1,500 MW by 2035 targets.

 

Key Points

New York BESS are battery storage projects that balance the grid, enable renewables, and meet strict safety rules.

✅ State targets: 6,000 MW by 2030; 1,500 MW by 2035.

✅ NYPA 20-MW project eases congestion, boosts reliability.

✅ FDNY, NYC DOB, and state agencies enforce stringent safety rules.

 

In the evolving landscape of renewable energy, New York State is making significant advancements through the deployment of Battery Energy Storage Systems (BESS), a trend mirrored by Ontario's plan to rely on battery storage to meet rising demand today. These systems are becoming a crucial component in the shift towards a more sustainable and clean energy future, by providing a solution to one of renewable energy's most significant challenges: storage.

BESS plays a critical role in bridging the gap between energy generation and consumption, and many utilities see benefits in energy storage across their systems today, too. During periods of surplus generation, such as sunny or windy conditions conducive to solar and wind power production, BESS captures and stores excess electricity. This stored energy can then be released back into the grid during times of high demand or when generation is low, ensuring a consistent and reliable energy supply.

Governor Kathy Hochul's administration has been proactive in harnessing this technology. In a landmark move, the state inaugurated its first state-owned, utility-scale BESS facility in Franklin County's Chateaugay, and similar utility procurements, such as SDG&E's Emerald Storage solution, underscore market momentum, signifying a major step towards bolstering New York's BESS infrastructure. This facility, featuring five large enclosures each housing over 19,500 batteries, signifies the beginning of New York's ambitious journey towards expanding its BESS capabilities.

Environmental advocates, including the New York League of Conservation Voters, have lauded these developments, viewing them as essential to meeting New York's climate goals, and they point to community-scale deployments such as a Brooklyn low-income housing microgrid as tangible examples of equitable resilience, too. Currently, New York's BESS capacity stands at approximately 291 megawatts. However, Governor Hochul has set forth bold targets to escalate this capacity to 1,500 megawatts by 2035 and even more ambitiously, to 6,000 megawatts by 2030. Achieving these targets would enable the powering of 1.2 million homes with clean, renewable energy.

"Battery storage is pivotal for the reliability of our electric grid and for the phasing out of pollutive power plants that harm our communities," remarked Pat McClellan, NYLCV’s Policy Director. The implementation of BESS is deemed vital for New York to attain its statutory climate mandates, including achieving 70 percent renewable energy by 2030 and 100 percent clean energy by 2040.

Safety and regulatory oversight are paramount in the proliferation of BESS facilities, especially in densely populated areas like New York City. The state has introduced stringent regulations, overseen by both the NYC Fire Department and the NYC Buildings Department, with state and federal governments also playing a crucial role in ensuring the safe deployment of these technologies, and best practices from jurisdictions focused on enabling storage in Ontario's electricity system can inform ongoing refinements as well.

In a significant announcement last August, Governor Hochul underscored the necessity of state oversight on BESS safety issues. She announced the formation of a new Inter-Agency Fire Safety Working Group tasked with examining energy storage facility fires and safety standards. This group, comprising six state agencies, recently unveiled its findings and recommendations, which will undergo public review.

Governor Hochul emphasized, "The battery energy storage industry is pivotal for communities across New York to transition to a clean energy future, and comprehensive safety standards are critical." The state's proactive stance on adopting these recommendations aims to safeguard New York’s transition to clean energy.

The completion of the Northern New York Energy Storage Project, a 20-MW facility operated by the New York Power Authority, marks a significant milestone in New York's clean energy journey. This project, aimed at alleviating transmission congestion and enhancing grid reliability, serves as a model for integrating clean energy, especially during peak demand periods, as other regions, such as Ontario, are plunging into energy storage to address looming supply crunches.

Located in a region where over 80% of electricity is generated from renewable sources, this project not only supports the state's clean energy grid but also accelerates New York's energy storage and climate objectives. Governor Hochul expressed, “Deploying energy storage technologies enhances our power supply's reliability and resilience, further enabling New York to construct a robust clean energy grid.”

As New York State advances towards its ambitious energy storage and climate goals, the development and deployment of BESS are critical. These systems not only enhance grid reliability and resilience but also support the broader transition to renewable energy sources, including emerging long-duration storage projects that expand flexibility, marking an essential step in New York's commitment to a sustainable and clean energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified