European Commission plans for deregulation

By International Herald Tribune


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Consumers in Europe could face sharply higher electricity prices as the European Union presses ahead with the full liberalization of its energy markets.

Proposals from the EU's executive Commission aim to bring new competition to the sector, challenging entrenched, traditionally state-controlled, and often jealously protected monopolies. But there are fears that the reforms could backfire, contributing to higher prices, at least initially.

Since July this year, EU citizens have had a theoretical right to choose their electricity and gas suppliers.

Following a wide-ranging inquiry last year that highlighted serious shortcomings in energy markets that previous liberalization efforts failed to resolve, the commission hopes to have additional steps adopted by the Council of Ministers next year, to improve access to transmission networks, market transparency and the independence and powers of regulators.

Real, rather than theoretical, freedom of choice is the overriding commission objective. The EU must "ensure that all its citizens can choose their own supplier and be sure that they are getting the best deal," Energy Commissioner Andris Piebalgs said, in September, introducing his plan.

The most controversial proposal is for a complete "unbundling," which would separate control of electricity and gas production and supply from control of the transmission networks. The commission says that a single company should no longer be able to own and control all these activities.

"It's high time to do this"' Ferran Tarradellas, the commission's energy spokesman, said. "Conditions make it absolutely necessary that we do this as soon as possible."

Tarradellas said there were several examples of successful unbundling.

In the liberalized British market, prices are lower than in other EU member states, while in Spain unbundling has led to an investment boom, he said. "Investment has increased in a dramatic way in unbundled markets."

Liberalization has already provided substantial benefits in Nordic countries - Denmark, Finland, Norway and Sweden - and in other liberalized markets including Australia, New Zealand and some parts of the United States, the commission says.

But in the short term customers will have to adjust to tough open-market realities, and the timing of the project may turn out to be unfortunate.

Rising fuel prices and the growing costs of stricter environmental regulations are already putting upward pressure on prices, which traditional government controls could, at least in the short term, help to contain.

Also, many power plants, transmission cables and pipelines will soon reach the end of their lifetime and will have to be either updated or replaced. This will require large investments, the cost of which will almost inevitably be passed on to consumers.

"We think it was a mistake to promise lower prices," said Ulrik Stridbaek, senior policy adviser for electricity markets at the International Energy Agency in Paris, commenting on the commission's marketing of its plan. "It is more important to put the emphasis on efficiency improvements.

"Of course in the long run prices should be lower, but liberalization is not an event, it's a long process," he said.

During that process prices may rise, as they have recently, for reasons that have nothing to so with deregulation, he noted.

"Liberalization did not create higher fuel and oil prices; it did not create the need for new investment," Stridbaek said. "Customers cannot run away from these realities."

"The whole concept of liberalization is to get the price right where it reflects real cost," he said.

In the past, retail pricing "was something thought up by governments, regulators and utilities," he said. "In a liberalized market it's competition that will decide what the fair price is. In competitive markets a fair price is something that reflects the real risks."

The experience of liberalization in the United States provides a cautionary tale. Critics say that prices are higher and rising faster in all states that have deregulated markets compared to those that have kept a regulated system. Real choice has remained elusive for most customers, they say.

Public Citizen, a U.S. nonprofit organization that represents consumer interests, says the impact of deregulation has been dramatic.

The average price of electricity in 14 deregulated states was 52 percent higher than the average price in 36 regulated states by January 2007, according to a report published in May by Tyson Slocum, director of Public Citizen's energy program.

Stridbaek, however, said U.S. price comparisons were distorted by special factors: "There were rate freezes for customers during transitional periods and of course when these come to an end it creates a big shock."

Still, a 2005 study of electricity restructuring from Carnegie Mellon University said that, contrary to arguments put forward for deregulation, research showed no evidence that restructuring and deregulation had "produced any measurable benefit to consumers or to the systems that have restructured."

The study said prices for industrial customers, who were expected to be the main beneficiaries, were not significantly different between deregulated and regulated states.

"Retail competition for residential customers has all but disappeared," it added. "Except where regulated or subsidized, residential supplier switching is at very low levels and alternative suppliers have exited formerly active retail markets."

"Blind faith is unlikely to produce a free market that is competitive," the study concluded. Faith, nonetheless, seems to underpin EU Commission views of deregulation, despite evidence that countries with strong state-controlled energy monopolies, like France, remain determined to protect perceived national interests.

Effective competition will ensure the plan's success, Tarradellas said.

"All network-based systems are more complex, that's why it needs more regulation than other markets," he said. "But the key element of liberalization in energy is that the competitive part of the market, which is generation and supplies, is separated from the transmission, which is the network."

Recent mergers in the European energy industry "are a sign that companies realize what we're trying to do, and we are seeing small companies moving into gaps in the market." The competition authority would keep a close watch on these developments to make sure that competition was not harmed, he said.

Tarradellas said that unbundling and the emergence of a competitive market would provide the basis for improved security of supply by increasing the incentives for investment in power plants and transmission networks, thereby helping to avoid interruptions in power or gas supplies and price surges.

Efficiency gains should also help to protect the environment and result in lower carbon dioxide emissions, he said.

But all these benefits will take time to come through. "The U.S. and Australia have succeeded in setting up a good system but they are still struggling with investment in the transmission grid," said the Stridbaek. "In Europe, investment is not coming forward as it should, especially on the retail side and in cross-border trade."

The commission is addressing that concern by proposing to set up a European Network for Transmission System Operators to increase cross-border cooperation - including cooperation on technical and security standards - and to help co-ordinate future EU-wide network investments.

Energy companies, whether private or controlled, wield enormous power and influence. With that in mind, the commission plan also includes measures to ensure national regulators are truly independent of government and business and have more powers to monitor and ensure market transparency, and to prevent and punish uncompetitive behavior.

The plan also calls for a new agency to be created to fill what the commission sees as a "regulatory gap" caused by weak coordination between regulators in member states. The agency would handle cooperation between national regulators, aiming mainly to lower barriers to cross-border trade. It will be neither a substitute for national regulators nor a European regulator, the commission says.

Will it be enough to guarantee an open market and fair prices for Europe's customers? Only the future will tell.

"It's like in any other market, like bread," said Tarradellas. "The market will decide what is a fair price for electricity."

Related News

How Energy Use Has Evolved Throughout U.S. History

U.S. Energy Transition traces the shift from coal and oil to natural gas, nuclear power, and renewables like wind and solar, driven by efficiency, grid modernization, climate goals, and economic innovation.

 

Key Points

The U.S. Energy Transition is the shift from fossil fuels to cleaner power, driven by tech, policy, and markets.

✅ Shift from coal and oil to gas, nuclear, wind, and solar

✅ Enabled by grid modernization, storage, and efficiency

✅ Aims to cut emissions while ensuring reliability and affordability

 

The evolution of energy use in the United States is a dynamic narrative that reflects technological advancements, economic shifts, environmental awareness, and societal changes over time. From the nation's early reliance on wood and coal to the modern era dominated by oil, natural gas, and renewable sources, the story of energy consumption in the U.S. is a testament to innovation and adaptation.

Early Energy Sources: Wood and Coal

In the early days of U.S. history, energy needs were primarily met through renewable resources such as wood for heating and cooking. As industrialization took hold in the 19th century, coal emerged as a dominant energy source, fueling steam engines and powering factories, railways, and urban growth. The widespread availability of coal spurred economic development and shaped the nation's infrastructure.

The Rise of Petroleum and Natural Gas

The discovery and commercialization of petroleum in the late 19th century transformed the energy landscape once again. Oil quickly became a cornerstone of the U.S. economy, powering transportation, industry, and residential heating, and informing debates about U.S. energy security in policy circles. Concurrently, natural gas emerged as a significant energy source, particularly for heating and electricity generation, as pipelines expanded across the country.

Electricity Revolution

The 20th century witnessed a revolution in electricity generation and consumption, and understanding where electricity comes from helps contextualize how systems evolved. The development of hydroelectric power, spurred by projects like the Hoover Dam and Tennessee Valley Authority, provided clean and renewable energy to millions of Americans. The widespread electrification of rural areas and the proliferation of appliances in homes and businesses transformed daily life and spurred economic growth.

Nuclear Power and Energy Diversification

In the mid-20th century, nuclear power emerged as a promising alternative to fossil fuels, promising abundant energy with minimal greenhouse gas emissions. Despite concerns about safety and waste disposal, nuclear power plants became a significant part of the U.S. energy mix, providing a stable base load of electricity, even as the aging U.S. power grid complicates integration of variable renewables.

Renewable Energy Revolution

In recent decades, the U.S. has seen a growing emphasis on renewable energy sources such as wind, solar, and geothermal power, yet market shocks and high fuel prices alone have not guaranteed a rapid green revolution, prompting broader policy and investment responses. Advances in technology, declining costs, and environmental concerns have driven investments in clean energy infrastructure and policies promoting renewable energy adoption. States like California and Texas lead the nation in wind and solar energy production, demonstrating the feasibility and benefits of transitioning to sustainable energy sources.

Energy Efficiency and Conservation

Alongside shifts in energy sources, improvements in energy efficiency and conservation have played a crucial role in reducing per capita energy consumption and greenhouse gas emissions. Energy-efficient appliances, building codes, and transportation innovations have helped mitigate the environmental impact of energy use while reducing costs for consumers and businesses, and weather and economic factors also influence demand; for example, U.S. power demand fell in 2023 on milder weather, underscoring the interplay between efficiency and usage.

Challenges and Opportunities

Looking ahead, the U.S. faces both challenges and opportunities in its energy future, as recent energy crisis effects ripple across electricity, gas, and EVs alike. Addressing climate change requires further investments in renewable energy, grid modernization, and energy storage technologies. Balancing energy security, affordability, and environmental sustainability remains a complex task that requires collaboration between government, industry, and society.

Conclusion

The evolution of energy use throughout U.S. history reflects a continuous quest for innovation, economic growth, and environmental stewardship. From wood and coal to nuclear power and renewables, each era has brought new challenges and opportunities in meeting the nation's energy needs. As the U.S. transitions towards a cleaner and more sustainable energy future, leveraging technological advancements and embracing policy solutions, amid debates over U.S. energy dominance, will be essential in shaping the next chapter of America's energy story.

 

Related News

View more

Idaho Power Settlement Could Close Coal Plant, Raise Rates

Idaho Power Valmy Settlement outlines early closure of the North Valmy coal-fired plant in Nevada, accelerated depreciation recovery, a 1.17% base-rate increase, and impacts for customers, NV Energy co-ownership, and Idaho Public Utilities Commission review.

 

Key Points

A proposed agreement to close North Valmy early, recover costs via a 1.17% rate hike, and seek PUC approval.

✅ Unit 1 closes 2019; Unit 2 closes 2025 in Nevada.

✅ 1.17% base-rate hike; about $1.20 per 1,000 kWh monthly bill.

✅ Idaho PUC comment deadline May 25; NV Energy co-owner.

 

State regulators have set a May 25 deadline for public comment on a proposed settlement related to the early closure of a coal-fired plant co-owned by Idaho Power, even as some utilities plan to keep a U.S. coal plant running indefinitely in other jurisdictions.

The settlement calls for shuttering Unit 1 of the North Valmy Power Plant in Nevada in 2019, with Unit 2 closing in 2025, amid regional coal unit retirements debates. The units had been slated for closure in 2031 and 2035, respectively.

If approved by the Idaho Public Utilities Commission, the settlement would increase base rates by approximately $13.3 million, or 1.17 percent, in order to allow the company to recover its investment in the plant on an accelerated basis.

That equates to an additional $1.20 on the monthly bill of the typical residential customer using 1,000 kilowatt-hours of energy per month.

Idaho Power, which co-owns the plant with NV Energy, maintains that closing Valmy early rather than continuing to operate it until it is fully depreciated in 2035, will ultimately save customers $103 million in today's dollars.

The company said a significant decrease in market prices for electricity has made it uneconomic to operate the plant except during extremely cold or hot weather, when the demand for energy peaks, a trend underscored by transactions involving the San Juan Generating Station deal elsewhere. The company also said plant balances have increased by approximately $70 million since its last general rate case in 2011, due to routine maintenance and repairs, as well as investments required to meet environmental regulations.

The proposed settlement reflects a number of changes to Idaho Power's original proposal regarding Valmy, and comes in the wake of discussions with interested parties in February and April, against the backdrop of a broader energy debate over plant closures and reliability.

In its initial application, filed in October, Idaho Power proposed closing both units in 2025. The original proposal would have increased base rates by $28.5 million, or about 2.5 percent, in order to allow the company to recover its costs associated with the plant's accelerated depreciation, decommissioning and anticipated investments, with cautionary examples such as the Kemper power plant costs illustrating potential risks.

Concurrently, Idaho Power asked for commission approval to adjust depreciation rates for its other plants and equipment based on the result of a study it conducts every five years, as outlined in Case IPC-E-16-23. The adjustment would have led to a $6.7 million increase to base rates.

The two requests filed in October would have increased customer costs by a total of $35.2 million or 3.1 percent, leading to a $3.08 increase on the bills of the typical residential customer who uses 1,000 kilowatt-hours per month.

The proposed settlement submitted to the Commission on May 4 calls for $13,285,285 to be recovered from all customer classes through base rates until 2028, all related to the Valmy shutdown. That is an increase of 1.17 percent and would result in a $1.20 increase on the bills of the typical residential customer who uses 1,000 kilowatt-hours per month.

 

Related News

View more

Hydro One shares jump 5.7 per cent after U.S. regulators reject $6.7B takeover

Hydro One Avista takeover rejection signals Washington regulators blocking a utility acquisition over governance risk, EPS dilution, and balance sheet impact, as investors applaud share price gains and a potential US$103M break fee.

 

Key Points

A regulator-led block of Hydro One's Avista bid, citing EPS dilution, balance sheet risk, and governance concerns.

✅ Washington denies approval; Idaho, Oregon decisions pending.

✅ EPS dilution avoided; balance sheet strength preserved.

✅ Shares rise 5.7%; US$103M break fee if deal collapses.

 

Opposition politicians may not like it but investors are applauding the rejection of Hydro One Ltd.'s $6.7-billion Avista takeover of U.S.-based utility Avista Corp.

Shares in the power company controlled by the Ontario government, which has also proposed a bill redesign to simplify statements, closed at $21.53, up $1.16 or 5.7 per cent, on the Toronto Stock Exchange on Thursday.

On Wednesday, Washington State regulators said they would not allow Ontario's largest utility to buy Avista over concerns about political risk that the provincial government, which owns 47 per cent of Hydro One's shares, might meddle in Avista's operations.

Financial analysts had predicted investors would welcome the news because the deal, announced in July 2017, would have eroded earnings per share and weakened Hydro One's balance sheet.

"The Washington regulator's denial of Avista is a positive development for the shares, in our opinion," said analyst Ben Pham of BMO Capital Markets in a report on Wednesday.

"While this may sound odd, we note that the Avista deal is expected to be EPS dilutive and result in a weaker balance sheet for (Hydro One). Not acquiring Avista and refocusing its attention on its core Ontario franchise ... along with related interprovincial arrangements such as the Ontario-Quebec electricity deal under discussion would likely be viewed positively if the deal ultimately breaks."

Decisions are yet to come from Idaho and Oregon state regulators, but Washington was probably the most important as the state contains customers making up about 60 per cent of Avista's rate base, Pham said.

He pointed out that a US$103-million break fee is to be paid to Avista if the deal collapses due to a failure to obtain regulatory approval.

CIBC analyst Robert Catellier raised his 12-month Hydro One target price by 25 cents and said many shareholders will feel "relieved" that the deal had failed.

He warned that the company's earnings power could deteriorate as the province seeks to reduce power bills by 12 per cent, despite an Ontario-Quebec hydro deal that may not lower costs.

 

Related News

View more

U.S. Electric Vehicle Market Share Dips in Q1 2024

U.S. EV Market Share Dip Q1 2024 reflects slower BEV adoption, rising PHEV demand, affordability concerns, charging infrastructure gaps, tax credit shifts, range anxiety, and automaker strategy adjustments across the electric vehicle market.

 

Key Points

Q1 2024 EV and hybrid share slipped as BEV sales lag, PHEVs rise, and affordability and charging concerns temper demand.

✅ BEV share fell to 7.0% as affordable models remain limited

✅ PHEV sales rose 50% YoY, easing range anxiety concerns

✅ Policy shifts and charging gaps weigh on consumer adoption

 

The U.S. electric vehicle (EV) market, once a beacon of unbridled growth, appears to be experiencing a course correction. Data from the U.S. Energy Information Administration (EIA) reveals that the combined market share of electric vehicles (battery electric vehicles, or BEVs) and hybrids dipped slightly in the first quarter of 2024, marking the first decline since the onset of the COVID-19 pandemic, even as EU EV share rose during lockdowns in 2020.

This news comes as a surprise to many analysts who predicted continued exponential growth for the EV market. While overall sales of electric vehicles surged into 2024 and did increase by 7% compared to Q1 2023, this growth wasn't enough to keep pace with the overall rise in vehicle sales. The result: a decline in market share from 18.8% in Q4 2023 to 18.0% in Q1 2024.

Several factors may be contributing to this shift. One potential culprit is a slowdown in battery electric vehicle sales. BEVs saw their share of the market dip from 8.1% to 7.0% in the same period. This could be attributed to a lack of readily available affordable options, with many popular EV models still commanding premium prices and concerns that EV supply may miss demand in the near term.

Another factor could be the rising interest in plug-in hybrid electric vehicles (PHEVs). PHEV sales witnessed a significant jump of 50% year-over-year, reflecting how gas-electric hybrids are getting a boost from major automakers, potentially indicating a consumer preference for vehicles that offer both electric and gasoline powertrain options, addressing concerns about range anxiety often associated with BEVs.

Industry experts offer mixed interpretations of this data. Some downplay the significance of the dip, attributing it to a temporary blip, even though EVs remain behind gas cars in total sales. They point to the ongoing commitment from major automakers to invest in EV production and the potential for new, more affordable models to hit the market soon.

Others express more concern, citing Europe's recent EV slump and suggesting this might be a sign of maturing consumer preferences. They argue that simply increasing the number of EVs on the market might not be enough. Automakers need to address issues like affordability, charging infrastructure, and range anxiety to maintain momentum.

The role of government incentives also remains a question mark. The federal tax credit for electric vehicles is currently set to phase out gradually, potentially impacting consumer purchasing decisions in the future. Continued government support, through incentives or infrastructure development, could be crucial in maintaining consumer interest.

The coming quarters will be crucial in determining the long-term trajectory of the U.S. EV market, especially after the global electric car market's rapid expansion in recent years. Whether this is a temporary setback or a more lasting trend remains to be seen. Addressing consumer concerns, ensuring a diverse range of affordable EV options, and continued government support will all be essential in ensuring the continued growth of this critical sector.

This development also presents an opportunity for traditional automakers. By capitalizing on the growing PHEV market and addressing consumer concerns about affordability and range anxiety, they can carve out a strong position in the evolving automotive landscape.

 

Related News

View more

Coronavirus impacts dismantling of Germany's Philippsburg nuclear plant

Philippsburg Demolition Delay: EnBW postpones controlled cooling-tower blasts amid the coronavirus pandemic, affecting decommissioning timelines in Baden-Wurttemberg and grid expansion for a transformer station to route renewable power and secure supply in southern Germany.

 

Key Points

EnBW's COVID-19 delay of Philippsburg cooling-tower blasts, affecting decommissioning and grid plans.

✅ Controlled detonation shifted to mid-May at earliest

✅ Demolition links to transformer station for north-south grid

✅ Supports security of supply in southern Germany

 

German energy company EnBW said the coronavirus outbreak has impacted plans to dismantle its Philippsburg nuclear power plant in Baden-Wurttemberg, southwest Germany, amid plans to phase out coal and nuclear nationally.

The controlled detonation of Phillipsburg's cooling towers will now take place in mid-May at the earliest, subject to coordination as Germany debates whether to reconsider its nuclear phaseout in light of supply needs.

However, EnBW said the exact demolition date depends on many factors - including the further development in the coronavirus pandemic and ongoing climate policy debates about energy choices.

Philippsburg 2, a 1402MWe pressurised water reactor unit permanently shut down on 31 December 2019, as part of Germany's broader effort to shut down its remaining reactors over time.

At the end of 2019, the Ministry of the Environment gave basic approval for decommissioning and dismantling of unit 2 of the Philippsburg nuclear power plant, inluding explosive demolition of the colling towers. Since then EnBW has worked intensively on getting all the necessary formal steps on the way and performing technical and logistical preparatory work, even as discussions about a potential nuclear resurgence continue nationwide.

“The demolition of the cooling towers is directly related to future security of supply in southern Germany. We therefore feel obliged to drive this project forward," said Jörg Michels head of the EnBW nuclear power division.

The timely removal of the cooling towers is important as the area currently occupied by nuclear plant components is needed for a transformer station for long-distance power lines, an issue underscored during the energy crisis when Germany temporarily extended nuclear power to bolster supply. These will transport electricity from renewable sources in the north to industrial centres in the south.

As of early 2020, there six nuclear reactors in operation in Germany, even as the country turned its back on nuclear in subsequent years. According to research institute Fraunhofer ISE, nuclear power provided about 14% of Germany's net electricity in 2019, less than half of the figure for 2000.

 

Related News

View more

Crucial step towards completing nuclear plant achieved in Abu Dhabi

Barakah Unit 4 Cold Hydrostatic Testing validates reactor coolant system integrity at the Barakah Nuclear Energy Plant in Abu Dhabi, UAE, confirming safety, quality, and commissioning readiness under ENEC and KEPCO oversight.

 

Key Points

Pressure test of Unit 4's reactor coolant system, confirming integrity and safety for commissioning at Barakah.

✅ 25% above normal operating pressure verified.

✅ Welds, joints, and high-pressure components inspected.

✅ Supports safe, reliable, emissions-free baseload power.

 

The Emirates Nuclear Energy Corporation (ENEC) has successfully completed Cold Hydrostatic Testing (CHT) at Unit 4 of the Barakah Nuclear Energy Plant, the Arab world’s first nuclear energy plant being built in the Al Dhafra region of Abu Dhabi, UAE. The testing incorporated the lessons learned from the previous three units and is a crucial step towards the completion of Unit 4, the final unit of the Barakah plant.

As a part of CHT, the pressure inside Unit 4’s systems was increased to 25 per cent above what will be the normal operating pressure, demonstrating, as seen across global nuclear projects, the quality and robust nature of the Unit’s construction. Prior to the commencement of CHT, Unit 4’s Nuclear Steam Supply Systems were flushed with demineralised water, and the Reactor Pressure Vessel Head and Reactor Coolant Pump Seals were installed. During the Cold Hydrostatic Testing, the welds, joints, pipes and components of the reactor coolant system and associated high-pressure systems were verified.

Mohammed Al Hammadi, Chief Executive Officer of ENEC said: “I am proud of the continued progress being made at Barakah despite the circumstances we have all faced in relation to COVID-19. The UAE leadership’s decisive and proactive response to the pandemic supported us in taking timely, safety-led actions to protect the health and safety of our workforce and our plant. These actions, alongside the efforts of our talented and dedicated workforce, have enabled the successful completion of CHT at Unit 4, which was completed in adherence to the highest standards of safety, quality, and security.

“With this accomplishment, we move another step closer to achieving our goal of supplying up to a quarter of our nation’s electricity needs through the national grid and powering its future growth with safe, reliable, and emissions-free electricity,” he added.

By the end of 2019, ENEC and Korea Electric Power Corporation (KEPCO), working with Korea Hydro & Nuclear Power (KHNP) on the project, had successfully completed all major construction work including major concrete pouring, installation of the Turbine Generator, and the internal components of the Reactor Pressure Vessel (RPV) of Unit 4, which paved the way for the commencement of testing and commissioning.

The testing at Unit 4 represents a significant achievement in the development of the UAE Peaceful Nuclear Energy Program, following the successful completion of fuel assembly loading into Unit 1 in March 2020, confirming that the UAE has officially become a peaceful nuclear energy operating nation. Preparations are now in the final stages for the safe start-up of Unit 1, which subsequently reached 100% power ahead of commercial operations, in the coming months.

ENEC is currently in the final stages of construction of units 2, 3 and 4 of the Barakah Nuclear Energy Plant, as China’s nuclear program continues its steady development globally. The overall construction of the four units is more than 94% complete. Unit 4 is more than 84 per cent, Unit 3 is more than 92 per cent and Unit 2 is more than 95 per cent. The four units at Barakah will generate up to 25 per cent of the UAE’s electricity demand by producing 5,600 MW of clean baseload electricity, as projects such as new reactors in Georgia take shape, and preventing the release of 21 million tons of carbon emissions each year – the equivalent of removing 3.2 million cars off the roads annually.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.