Electric Utilities Plot Bullish Course for EV Charging Infrastructure


ev charging station

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

EV Charging Infrastructure Incentives are expanding as utilities fund public chargers, Level 2 networks, DC fast charging, grid-managed off-peak programs, and equitable access across Ohio, New Jersey, and Florida to accelerate clean transportation.

 

Key Points

Utility-backed programs funding Level 2 and DC fast chargers, managing grid demand, and expanding EV equity.

✅ Incentives for Level 2 and DC fast public charging stations.

✅ Grid-friendly off-peak charging to balance demand.

✅ Equity targets place chargers in low-income communities.

 

Electric providers in Florida, Ohio and New Jersey recently announced plans to expand electric vehicle charging networks and infrastructure through various incentive programs that could add thousands of new public chargers in the next several years.

Elsewhere, utilities are advancing similar efforts, with Michigan EV programs proposing more than $20 million for charging infrastructure to accelerate adoption.

American Electric Power in Ohio will offer nearly $10 million in incentives toward the build out of 375 EV charging stations throughout the company's service territory, which largely includes Columbus.

Meanwhile, the Public Service Electric and Gas Company (PSE&G), an electric utility provider in New Jersey, has proposed a six-year plan to support the development of nearly 40,000 electric vehicle chargers across a wide range of customers and sectors, said Francis Sullivan, a spokesperson for PSE&G.

And Duke Energy in Florida is installing up to 530 EV charging stations across its service area, as part of its Park and Plug pilot program, which will be making the charging ports available in multifamily housing complexes, workplaces and other high traffic areas.

"We are bringing cleaner energy to Florida through 700 megawatts of new universal solar, and we are helping our customers to bring clean transportation to the state as well," Catherine Stempien, Duke Energy Florida president, said in a statement. "We are committed to providing smarter, cleaner energy alternatives for all our customers."

The project in Ohio is making incentive funding available to government organizations, multifamily housing developments and workplaces, covering from 50 percent to all of the costs. The plan, to be rolled out in the next four years, aims to incentivize the development of 300 level-two chargers and 75 "fast chargers" capable of charging a car's battery in minutes rather than hours.

"I think what's interesting about what we're seeing now in the industry is that electric vehicles and electric vehicle charging are expanding beyond California, and like other Pacific Coast states," said Scott Fisher, vice president of marketing at Greenlots, maker of car chargers and software. Greenlots has been selected as one of the companies to provide the chargers for the AEP project.

California has occupied the lion's share of the electric vehicle market, making up about 5 percent of the cars on the state's highways. The U.S. market sits at about 1.5 percent. However, indications show the EV boom may be set to take off as more models are being rolled out, and prices are making the electric cars more competitive with their gas-powered counterparts. The group Securing America's Future Energy (SAFE) announced the one-millionth electric vehicle is on course to be sold in the United States this month.

In a statement, Ben Prochazka, vice president of the Electrification Coalition, an EV advocacy group, called this "a major milestone and brings us one step closer to reducing our transportation system's dependence on oil. This is a direct result of the tireless efforts by communities and advocates throughout the 'EV ecosystem.'"

In New Jersey, PSE&G's efforts -- which are part of the company's proposed Clean Energy Future program -- will not only focus on building out the charging infrastructure, but structure car recharging to control charging and encourage residents to charge their cars during off-peak times.

"For now, with a modest number of charging stations in the market, it's not a huge problem. But over time, as you're putting in many thousands of these stations, what you want to make sure is that those stations are operating in sync with state power grids, where you don't have people all charging at the same time at like 5 p.m. on a hot summer day," said Fisher.

PSE&G also plans to offer incentives to encourage the development of level-two chargers and DC fast-chargers, as well as "provide grants and incentives for 100 electric school buses and EV charging infrastructure at school districts in PSE&G's service territory," said Sullivan.

"PSE&G will also help fund electrification projects at customer locations such as ports, airports and transit facilities," Sullivan added, via email.

Utilities and transportation planners are also keeping the concept of equity in mind -- to ensure EVs are adopted by more than just the Tesla owner -- and will also focus on placing infrastructure in low-income areas.

"Ten percent of the stations will be in low income areas, defined by census blocks," said Scott Blake, a communications consultant at AEP in Columbus.

Duke Energy also announced 10 percent of the chargers it is installing in Florida will be in "income-qualified communities," according to a company press release.

 

Related News

Related News

Kaspersky Lab Discovers Russian Hacker Infrastructure

Crouching Yeti APT targets energy infrastructure with watering-hole attacks, compromising servers to steal credentials and stage intrusions; Kaspersky Lab links the Energetic Bear group to ICS threats across Russia, US, Europe, and Turkey.

 

Key Points

Crouching Yeti APT, aka Energetic Bear, is a threat group that targets energy firms using watering-hole attacks.

✅ Targets energy infrastructure via watering-hole compromises

✅ Uses open-source tools and backdoored sshd for persistence

✅ Scans global servers to stage intrusions and steal credentials

 

A hacker collective known for attacking industrial companies around the world have had some of their infrastructure identified by Russian security specialists.

Kaspersky Lab said that it has discovered a number of servers compromised by the group, belonging to different organisations based in Russia, the US, and Turkey, as well as European countries.

The Russian-speaking hackers, known as Crouching Yeti or Energetic Bear, mostly focus on energy facilities, as seen in reports of infiltration of the U.S. power grid targeting critical infrastructure, for the main purpose of stealing valuable data from victim systems.

 

Hacked servers

Crouching Yeti is described as an advanced persistent threat (APT) group that Kaspersky Lab has been tracking since 2010.

#google#

Kaspersky Lab said that the servers it has compromised are not just limited to industrial companies. The servers were hit in 2016 and 2017 with different intentions. Some were compromised to gain access to other resources or to be used as intermediaries to conduct attacks on other resources.

Others, including those hosting Russian websites, were used as watering holes.

It is a common tactic for Crouching Yeti to utilise watering hole attacks where the attackers inject websites with a link redirecting visitors to a malicious server.

“In the process of analysing infected servers, researchers identified numerous websites and servers used by organisations in Russia, US, Europe, Asia and Latin America that the attackers had scanned with various tools, possibly to find a server that could be used to establish a foothold for hosting the attackers’ tools and to subsequently develop an attack,” said the security specialists in a blog posting.

“The range of websites and servers that captured the attention of the intruders is extensive,” the firm said. “Kaspersky Lab researchers found that the attackers had scanned numerous websites of different types, including online stores and services, public organisations, NGOs, manufacturing, etc.

Kaspersky Lab said that the hackers used publicly available malicious tools, designed for analysing servers, and for seeking out and collecting information. The researchers also found a modified sshd file with a preinstalled backdoor. This was used to replace the original file and could be authorised with a ‘master password’.

“Crouching Yeti is a notorious Russian-speaking group that has been active for many years and is still successfully targeting industrial organisations through watering hole attacks, among other techniques,” explained Vladimir Dashchenko, head of vulnerability research group at Kaspersky Lab ICS CERT.

 

Russian government?

“Our findings show that the group compromised servers not only for establishing watering holes, but also for further scanning, and they actively used open-sourced tools that made it much harder to identify them afterwards,” he said.

“The group’s activities, such as initial data collection, the theft of authentication data, and the scanning of resources, are used to launch further attacks,” said Dashchenko. “The diversity of infected servers and scanned resources suggests the group may operate in the interests of the third parties.”

This may well tie into a similar conclusion from a rival security vendor.

In 2014 CrowdStrike claimed that the ‘Energetic Bear’ group was also tracked in Symantec's Dragonfly research and had been hacking foreign companies on behalf of the Russian state.

The security vendor had said the group had been carrying out attacks on foreign companies since 2012, with reports of breaches at U.S. power plants that underscored the campaign, and there was evidence that these operations were sanctioned by the Russian government.

Last month the United States for the first time publicly accused Russia in a condemnation of Russian grid hacking of attacks against the American power grid.

Symantec meanwhile warned last year of a resurgence in cyber attacks on European and US energy companies, including reports of access to U.S. utility control rooms that could result in widespread power outages.

And last July the UK’s National Cyber Security Centre (NCSC) acknowledged it was investigating a broad wave of attacks on companies in the British energy and manufacturing sectors.

 

Related News

View more

EU Smart Meters Spur Growth in the Customer Analytics Market

EU Smart Meter Analytics integrates AMI data with grid edge platforms, enabling back-office efficiency, revenue assurance, and customer insights via cloud and PaaS solutions, while system integration cuts costs and improves utility performance.

 

Key Points

EU smart meter analytics uses AMI data and cloud to improve utility performance, revenue assurance, and outcomes.

✅ AMI underpins grid edge analytics and utility IT/OT integration

✅ Cloud and PaaS reduce costs and scale data-driven applications

✅ Focus shifts from meter rollout to back-office and revenue analytics

 

Europe's investment in smart meters has begun to open up the market for analytics that benefit both utilities and customers.

Two new reports from GTM Research demonstrate the substantial investment in both advanced metering infrastructure (AMI) and specific customer analytics segments -- the first report analyzes the progress of AMI deployment in Europe, while the second is a comprehensive assessment of analytics use cases, including AI in utility operations, enabled by or interacting with AMI.

The Third Energy Package mandated EU member states to perform a cost-benefit analysis to evaluate the economic viability of deploying smart meters and broader grid modernization costs across member states. Two-thirds of the member states found there was a net positive result, while seven members found negative or inconclusive results.

“The mandate spurred AMI deployment in the EU, but all member states are deploying some AMI. Even without an overall positive cost-benefit outcome, utilities found pockets of customers where there is a positive business case for AMI,” said Paulina Tarrant, research associate at GTM Research and lead author of “Racing to 2020: European Policy, Deployment and Market Share Primer.”

Annual AMI contracting peaked in 2013 -- two years after the mandate -- with 29 million contracted that year. Today, 100 million meters have been contracted overall. As member states reach their respective targets, the AMI market will cool in Europe and spending on analytics and applications will continue to ramp up, aligning with efforts to invest in smarter infrastructure across the sector, Tarrant noted.

Between 2017 and 2021, more than $30 billion will be spent on utility back-office and revenue-assurance analytics in the EU, reflecting the shift toward the digital grid architecture, according to GTM Research’s Grid Edge Customer Utility Analytics Ecosystems: Competitive Analysis, Forecasts and Case Studies.

The report examines the broad landscape of customer analytics showing how AMI interacts with the larger IT/OT environment of a utility.

“The benefits of AMI expand beyond revenue assurance -- in fact, AMI represents the backbone of many customer utility analytics and grid edge solutions,” said Timotej Gavrilovic, author of the Grid Edge Customer Utility Ecosystems report.

Integration is key, according to the report.

“Technology providers are integrating data sets, solutions and systems and partnering with others to provide a one-stop shop serving broad utility needs, increasing efficiencies and reducing costs,” Gavrilovic said. “Cloud-based deployments and platform-as-a-service offerings are becoming commonplace, creating an opportunity for utilities to balance the cost versus performance tradeoff to optimize their analytics systems and applications.”

A diverse array of customer analytics applications is a critical foundation for demonstrating the positive cost-benefit of AMI.

“Advanced analytics and applications are key to ensuring that AMI investments provide a positive return after smart meters are initiated,” said Tarrant. “Improved billing and revenue assurance was not enough everywhere to show customer benefit -- these analytics packages will leverage the distributed network infrastructure, including advanced inverters used with distributed energy resources, and subsequent increased data access, uniting the electricity markets of the EU.”

 

Related News

View more

New Rules for a Future Puerto Rico Microgrid Landscape

Puerto Rico Microgrid Regulations outline renewable energy, CHP, and storage standards, enabling islanded systems, PREPA interconnection, excess energy sales, and IRP alignment to boost resilience, distributed resources, and community power across the recovering grid.

 

Key Points

Rules defining microgrids, requiring 75 percent renewables or CHP, and setting interconnection and PREPA fee frameworks.

✅ 75 percent renewables or CHP; hybrids allowed

✅ Registration, engineer inspection, and annual generation reports

✅ PREPA interconnection fees; excess energy sales permitted

 

The Puerto Rico Energy Commission unveiled 29 pages of proposed regulations last week for future microgrid installations on the island.

The regulations, which are now open for 30 days of public comment, synthesized pages of responses received after a November 10 call for recommendations. Commission chair José Román Morales said it’s the most interest the not-yet four-year-old commission has received during a public rulemaking process.

The goal was to sketch a clearer outline for a tricky-to-define concept -- the term "microgrid" can refer to many types of generation islanded from the central grid -- as climate pressures on the U.S. grid mount and more developers eye installations on the recovering island.

“There’s not a standard definition of what a microgrid is, not even on the mainland,” said Román Morales.

According to the commission's regulation, “a microgrid shall consist, at a minimum, of generation assets, loads and distribution infrastructure. Microgrids shall include sufficient generation, storage assets and advanced distribution technologies, including advanced inverters, to serve load under normal operating and usage conditions.”

All microgrids must be renewable (with at least 75 percent of power from clean energy), combined heat and power (CHP) or hybrid CHP-and-renewable systems. The regulation applies to microgrids controlled and owned by individuals, customer cooperatives, nonprofit and for-profit companies, and cities, but not those owned by the Puerto Rico Electric Power Authority (PREPA). Owners must submit a registration application for approval, including a certification of inspection from a licensed electric engineer, and an annual fuel, generation and sales report that details generation and fuel source, as well as any change in the number of customers served.

Microgrids, like the SDG&E microgrid in Ramona in California, can interconnect with the PREPA system, but if a microgrid will use PREPA infrastructure, owners will incur a monthly fee. That amounts to $25 per customer up to a cap of $250 per month for small cooperative microgrids. The cost for larger systems is calculated using a separate, more complex equation. Operators can also sell excess energy back to PREPA.

 

Big goals for the island's future grid

In total, 53 groups and companies, including Sunnova, AES, the Puerto Rico Solar Energy Industries Association (PR-SEIA), the Advanced Energy Management Alliance (AEMA), and the New York Smart Grid Consortium, submitted their thoughts about microgrids or, in many cases, broader goals for the island’s future energy system. It was a quick turnaround: The Puerto Rico Energy Commission offered a window of just 10 days to submit advice, although the commission continued to accept comments after the deadline.

“PREC wanted the input as fast as possible because of the urgency,” said AES CEO Chris Shelton.

AES’ plan includes a network of “mini-grids” that could range in size from several megawatts to one large enough to service the entire city of San Juan.

“The idea is, you connect those to each other with transmission so they can have a co-optimized portfolio effect and lower the overall cost,” said Shelton. “But they would be largely autonomous in a situation where the tie-lines between them were broken.”

According to estimates provided in AES’ filing, utility-scale solar installations over 50 megawatts on the island could cost between $40 and $50 per megawatt-hour. Those prices make solar located near load centers an economic alternative to the island’s fossil-fuel generating plants. The utility’s analysis showed that a 10,000-megawatt solar system could replace 12,000 gigawatt-hours of fossil generation, with 25 gigawatt-hours of battery storage leveling out load throughout the day. Puerto Rico’s peak load is 3,000 megawatts.

In other filings, PR-SEIA urged a restructuring of FEMA funds so they’re available for microgrid development. GridWise Alliance wrote that plans should consider cybersecurity, and AEMA recommended the commission develop an integrated resource plan (IRP) that includes distributed energy resources, microgrids and non-wires alternatives.

 

An air of optimism, though 1.5 million are still without power

After the commission completes the microgrid rulemaking, a new IRP is next on the commission’s to-do list. PREPA must file that plan in July, and regulators are working furiously to make sure it incorporates the recent flood of rebuilding recommendations from the energy industry.

Though the commission has the final say when it comes to approval of the plan, PREPA will lead the IRP process. The utility’s newly formed Transformation Advisory Council (TAC), a group of 11 energy experts, will contribute.

With that group, along with New York’s Resiliency Working Group, lessons from California's grid transition, the Energy Commission, the utility itself, and the dozens of other clean energy experts and entrepreneurs who want to offer their two cents, the energy planning process has a lot of moving parts. But according to Julia Hamm, CEO of the Smart Electric Power Alliance and a member of both the Energy Resiliency Working Group and the TAC, those working to establish standards for Puerto Rico’s future are hitting their stride.

“Certainly over the past three months, it has been a bit of a challenge to ensure that everybody has been coordinating efforts. Just over the past couple of weeks, we’ve seen some good progress on that front. We’re starting to see a lot more communication,” she said, adding that an air of optimism has settled on the process. “The key stakeholders all have a very common vision for Puerto Rico when it comes to the power sector.”

Nisha Desai, a PREPA board member who is liaising with the TAC, affirmed that collaborators are on the same page. “Everyone is violently in agreement that the future of Puerto Rico involves renewables, microgrids and distributed generation,” she said.

The TAC will hold its first in-person meeting in mid-January, and has already consulted with the utility on its formal fiscal plan submission, due January 10.

Though many taking part in the process feel the once-harried recovery is beginning to adopt a more organized approach, Desai acknowledges that “there are a lot of people in Puerto Rico who feel forgotten.”

Puerto Rico’s current generation sits at just 72.6 percent, in a nation facing longer, more frequent outages due to extreme weather. The government recently offered its first estimate that about half the island, 1.5 million residents, remains without power.

In late December and into January, 1,500 more crewmembers from 18 utilities in states as far flung as Minnesota, Missouri and Arizona will land on the island to aid further restoration through mutual aid agreements.

“The system is getting up to speed, getting to 100 percent, but there’s still some instability,” said Román Morales. “Right now it’s a matter of time.”

 

Related News

View more

U.S. Nonprofit Invests $250M in Electric Trucks for California Ports

California Ports Electric Truck Leasing accelerates zero-emission logistics, cutting diesel pollution at Los Angeles and Long Beach. A $250 million nonprofit plan funds heavy-duty EVs and charging infrastructure to improve air quality and community health.

 

Key Points

A nonprofit's $250M plan to lease EV trucks at LA/Long Beach ports to cut diesel emissions and improve air quality.

✅ $250M lease program for heavy-duty EVs at LA/Long Beach ports

✅ Cuts diesel emissions; improves air quality in nearby communities

✅ Requires robust charging infrastructure and OEM partnerships

 

In a significant move towards sustainable transportation, a prominent U.S. nonprofit has announced plans to invest $250 million in leasing electric trucks for operations at California ports. This initiative aims to reduce air pollution and promote greener logistics, responding to the urgent need for environmentally friendly solutions in the transportation sector.

Addressing Environmental Concerns

California’s ports, particularly the Port of Los Angeles and the Port of Long Beach, are among the busiest in the United States. However, they also contribute significantly to air pollution due to the heavy reliance on diesel trucks for cargo transport. These ports are essential for the economy, facilitating trade and commerce, but the environmental toll is considerable. Diesel emissions are linked to respiratory issues and other health problems in nearby communities, which often bear the brunt of pollution.

The nonprofit's investment in electric trucks is a critical step towards mitigating these environmental challenges. By transitioning to electric vehicles (EVs), the project aims to significantly cut emissions from port operations, contributing to California's broader goals of reducing greenhouse gas emissions and improving air quality.

The Scale of the Initiative

This ambitious initiative involves leasing a fleet of electric trucks that will operate within the ports and surrounding areas. The $250 million investment is expected to facilitate the acquisition of hundreds of electric vehicles, which will replace conventional diesel trucks used for cargo transport. This fleet will help demonstrate the viability and effectiveness of electric trucks in heavy-duty applications, paving the way for broader adoption.

The plan includes partnerships with established electric truck manufacturers, such as the Volvo VNR Electric platform, and local logistics companies to ensure seamless integration of these vehicles into existing operations. By collaborating with industry leaders, the initiative seeks to establish a model that can be replicated in other major logistics hubs across the country.

Economic and Community Benefits

The introduction of electric trucks is expected to yield multiple benefits, not only in terms of environmental impact but also economically. As these trucks begin operations, and as other fleets adopt electric mail trucks, they will create jobs within the green technology sector, from manufacturing to maintenance and charging infrastructure development. The project is anticipated to stimulate local economies, providing new opportunities in communities that have historically been disadvantaged by pollution.

Moreover, the initiative is poised to enhance public health. By reducing diesel emissions, the nonprofit aims to improve air quality for residents living near the ports, and emerging research links EV adoption to fewer asthma-related ER visits in local communities. This could lead to decreased healthcare costs associated with pollution-related illnesses, benefiting both the community and the healthcare system.

Challenges Ahead

While the initiative is promising, challenges remain. The successful implementation of electric trucks at scale requires a robust charging infrastructure capable of supporting the significant power needs of a large fleet. Additionally, the transition from diesel to electric vehicles involves significant upfront costs, even with leasing arrangements. Ensuring that logistics companies can manage these costs effectively will be crucial for the project's success.

Furthermore, electric trucks currently face limitations in terms of range and payload capacity compared to their diesel counterparts. Continued advancements in battery technology and infrastructure development will be necessary to fully realize the potential of electric vehicles in heavy-duty applications.

The Bigger Picture

This investment in electric trucks aligns with broader national and global efforts to combat climate change. As governments and organizations commit to reducing carbon emissions, initiatives like this one represent crucial steps toward achieving sustainability goals, and ports worldwide are also piloting complementary technologies like hydrogen-powered cranes to decarbonize cargo handling.

California has set ambitious targets for reducing greenhouse gas emissions, including a mandate for all new trucks to be zero-emission by 2045. The nonprofit’s investment not only supports these goals, amid ongoing debates over funding priorities in the state, but also serves as a pilot program that could inform future policies and investments in clean transportation.

The $250 million investment in electric trucks for California ports marks a significant milestone in the push for sustainable transportation solutions. By addressing the urgent need for cleaner logistics, this initiative stands to benefit the environment, public health, and the economy. As the project unfolds, it will be closely watched as a potential model for similar efforts across the country and beyond, with developments such as the all-electric berth at London Gateway illustrating parallel advances, highlighting the critical intersection of innovation, sustainability, and community well-being in the modern logistics landscape.

 

Related News

View more

Hong Kong to expect electricity bills to rise 1 or 2 per cent

Hong Kong Electricity Tariff Increase reflects a projected 1-2% rise as HK Electric and CLP Power shift to cleaner fuel and natural gas, expand gas-fired units and LNG terminals, and adjust the fuel clause charge.

 

Key Points

An expected 1-2% 2018 rise from cleaner fuel, natural gas projects, asset growth, and shrinking fuel cost surpluses.

✅ Expected 1-2% rise amid cleaner fuel and gas shift

✅ Fuel clause charge and asset expansion pressure prices

✅ HK Electric and CLP Power urged to use surpluses prudently

 

Hong Kong customers have been asked to expect higher electricity bills next year, as seen with BC Hydro rate increases in Canada, with a member of a government panel on energy policy anticipating an increase in tariffs of one or two per cent.

The environment minister, Wong Kam-sing, also hinted they should be prepared to dig deeper into their pockets for electricity, as debates over California electric bills illustrate, in the wake of power companies needing to use more expensive but cleaner fuel to generate power in the future.

HK Electric supplies power to Hong Kong Island, Lamma Island and Ap Lei Chau. Photo: David Wong

The city’s two power companies, HK Electric and CLP Power, are to brief lawmakers on their respective annual tariff adjustments for 2018, amid Ontario electricity price pressures drawing international attention, at a Legislative Council economic development panel meeting on Tuesday.

HK Electric supplies electricity to Hong Kong Island and neighbouring Lamma Island and Ap Lei Chau, while CLP Power serves Kowloon and the New Territories, including Lantau Island.

Wong said on Monday: “We have to appreciate that when we use cleaner fuel, there is a need for electricity tariffs to keep pace. I believe it is the hope of mainstream society to see a low-carbon and healthier environment.”

Secretary for the Environment Wong Kam-sing believes most people desire a low-carbon environment. Photo: Sam Tsang

But he declined to comment on how much the tariffs might rise.

World Green Organisation chief executive William Yu Yuen-ping, also a member of the Energy Advisory Committee, urged the companies to better use their “overflowing” surpluses in their fuel cost recovery accounts.

Tariffs are comprised of two components: a basic amount reflecting a company’s operating costs and investments, and the fuel clause charge, which is based on what the company projects it will pay for fuel for the year.

William Yu of World Green Organisation says the companies should use their surpluses more carefully. Photo: May Tse

Critics have claimed the local power suppliers routinely overestimate their fuel costs and amass huge surpluses.

In recent years, the two managed to freeze or cut their tariffs thanks to savings from lower fuel costs. Last year, HK Electric offered special rebates to its customers, which saw its tariff drop by 17.2 per cent. CLP Power froze its own charge for 2017.

Yu said the two companies should use the surpluses “more carefully” to stabilise tariffs.

Rise after fall in Hong Kong electricity use linked to subsidies

“We estimate a big share of the surplus has been used up and so the honeymoon period is over.”

Based on his group’s research, Yu believed the tariffs would increase by one or two per cent.

Economist and fellow committee member Billy Mak Sui-choi said the expansion of the power companies’ fixed asset bases, such as building new gas-fired units and offshore liquefied natural gas terminals, a pattern reflected in Nova Scotia's 14% rate hike recently approved by regulators, would also cause tariffs to rise.

To fight climate change and improve air quality, the government has pledged to cut carbon intensity by between 50 and 60 per cent by 2020. Officials set a target of boosting the use of natural gas for electricity generation to half the total fuel mix from 2020.

Both power companies are privately owned and monitored by the government through a mutually agreed scheme of control agreements, akin to oversight seen under the UK energy price cap in other jurisdictions. These require the firms to seek government approval for their development plans, including their projected basic tariff levels.

At present, the permitted rate of return on their net fixed assets is 9.99 per cent. The deals are due to expire late next year.

Earlier this year, officials reached a deal with the two companies on the post-2018 scheme, settling on a 15-year term. The new agreements slash their permitted rate of return to 8 per cent.

 

Related News

View more

Ontario looks to build on electricity deal with Quebec

Ontario-Quebec Electricity Deal explores hydro imports, terawatt hours, electricity costs, greenhouse gas cuts, and baseload impacts, amid debates on Pickering nuclear operations and competitive procurement in Ontario's long-term energy planning.

 

Key Points

A proposed hydro import deal from Quebec, balancing costs, emissions, and reliability for Ontario electricity customers.

✅ Draft 20-year, 8 TWh offer reported by La Presse disputed

✅ Ontario seeks lower costs and GHG cuts versus alternatives

✅ Not a baseload replacement; Pickering closure not planned

 

Ontario is negotiating a possible energy swap agreement to buy electricity from Quebec, but the government is disputing a published report that it is preparing to sign a deal for enough electricity to power a city the size of Ottawa.

La Presse reported Tuesday that it obtained a copy of a draft, 20-year deal that says Ontario would buy eight terawatt hours a year from Quebec – about 6 per cent of Ontario’s consumption – whether the electricity is consumed or not.

Ontario Energy Minister Glenn Thibeault’s office said the province is in discussions to build on an agreement signed last year for Ontario to import up to two terawatt hours of electricity a year from Quebec.

 

But his office released a letter dated late last month to his Quebec counterpart, in which Mr. Thibeault said the offer extended in June was unacceptable because it would increase the average residential electricity bill by $30 a year.

“I am hopeful that your continued support and efforts will help to further discussions between our jurisdictions that could lead to an agreement that is in the best interest of both Ontario and Quebec,” Mr. Thibeault wrote July 27 to Pierre Arcand.

Ontario would prepare a “term sheet” for the next stage of discussions ahead of the two ministers meeting at the Energy and Mines Ministers Conference later this month in New Brunswick, Mr. Thibeault wrote.

Any future agreements with Quebec will have to provide a reduction in Ontario electricity rates compared with other alternatives and demonstrate measurable reductions in greenhouse gas emissions, he wrote.

Progressive Conservative Leader Patrick Brown said Ontario doesn’t need eight terawatt hours of additional power and suggested it means the Liberal government is considering closing power facilities such as the Pickering nuclear plant early.

A senior Energy Ministry official said that is not on the table. The government has said it intends to keep operating two units at Pickering until 2022, and the other four units until 2024.

Even if the Quebec offer had been accepted, the energy official said, that power wouldn’t have replaced any of Ontario’s baseload power because it couldn’t have been counted on 24 hours a day, 365 days a year.

The Society of Energy Professionals said Mr. Thibeault was right to reject the deal, but called on him to release the Long-Term Energy Plan – which was supposed to be out this spring – before continuing negotiations.

Some commentators have argued for broader reforms to address Ontario's hydro system challenges, urging policymakers to review all options as negotiations proceed.

The Ontario Energy Association said the reported deal would run counter to the government’s stated energy objectives amid concerns over electricity prices in the province.

“Ontarians will not get the benefit of competition to ensure it is the best of all possible options for the province, and companies who have invested in Ontario and have employees here will not get the opportunity to provide alternatives,” president and chief executive Vince Brescia said in a statement. “Competitive processes should be used for any new significant system capacity in Ontario.”

The Association of Power Producers of Ontario said it is concerned the government is even considering deals that would “threaten to undercut a competitive marketplace and long-term planning.”

“Ontario already has a surplus of energy, so it’s very difficult to see how this deal or any other sole-source deal with Quebec could benefit the province and its ratepayers,” association president and CEO David Butters said in a statement.

The Ontario Waterpower Association also said such a deal with Quebec would “present a significant challenge to continued investment in waterpower in Ontario.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.