Electric Utilities Plot Bullish Course for EV Charging Infrastructure


ev charging station

NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

EV Charging Infrastructure Incentives are expanding as utilities fund public chargers, Level 2 networks, DC fast charging, grid-managed off-peak programs, and equitable access across Ohio, New Jersey, and Florida to accelerate clean transportation.

 

Key Points

Utility-backed programs funding Level 2 and DC fast chargers, managing grid demand, and expanding EV equity.

✅ Incentives for Level 2 and DC fast public charging stations.

✅ Grid-friendly off-peak charging to balance demand.

✅ Equity targets place chargers in low-income communities.

 

Electric providers in Florida, Ohio and New Jersey recently announced plans to expand electric vehicle charging networks and infrastructure through various incentive programs that could add thousands of new public chargers in the next several years.

Elsewhere, utilities are advancing similar efforts, with Michigan EV programs proposing more than $20 million for charging infrastructure to accelerate adoption.

American Electric Power in Ohio will offer nearly $10 million in incentives toward the build out of 375 EV charging stations throughout the company's service territory, which largely includes Columbus.

Meanwhile, the Public Service Electric and Gas Company (PSE&G), an electric utility provider in New Jersey, has proposed a six-year plan to support the development of nearly 40,000 electric vehicle chargers across a wide range of customers and sectors, said Francis Sullivan, a spokesperson for PSE&G.

And Duke Energy in Florida is installing up to 530 EV charging stations across its service area, as part of its Park and Plug pilot program, which will be making the charging ports available in multifamily housing complexes, workplaces and other high traffic areas.

"We are bringing cleaner energy to Florida through 700 megawatts of new universal solar, and we are helping our customers to bring clean transportation to the state as well," Catherine Stempien, Duke Energy Florida president, said in a statement. "We are committed to providing smarter, cleaner energy alternatives for all our customers."

The project in Ohio is making incentive funding available to government organizations, multifamily housing developments and workplaces, covering from 50 percent to all of the costs. The plan, to be rolled out in the next four years, aims to incentivize the development of 300 level-two chargers and 75 "fast chargers" capable of charging a car's battery in minutes rather than hours.

"I think what's interesting about what we're seeing now in the industry is that electric vehicles and electric vehicle charging are expanding beyond California, and like other Pacific Coast states," said Scott Fisher, vice president of marketing at Greenlots, maker of car chargers and software. Greenlots has been selected as one of the companies to provide the chargers for the AEP project.

California has occupied the lion's share of the electric vehicle market, making up about 5 percent of the cars on the state's highways. The U.S. market sits at about 1.5 percent. However, indications show the EV boom may be set to take off as more models are being rolled out, and prices are making the electric cars more competitive with their gas-powered counterparts. The group Securing America's Future Energy (SAFE) announced the one-millionth electric vehicle is on course to be sold in the United States this month.

In a statement, Ben Prochazka, vice president of the Electrification Coalition, an EV advocacy group, called this "a major milestone and brings us one step closer to reducing our transportation system's dependence on oil. This is a direct result of the tireless efforts by communities and advocates throughout the 'EV ecosystem.'"

In New Jersey, PSE&G's efforts -- which are part of the company's proposed Clean Energy Future program -- will not only focus on building out the charging infrastructure, but structure car recharging to control charging and encourage residents to charge their cars during off-peak times.

"For now, with a modest number of charging stations in the market, it's not a huge problem. But over time, as you're putting in many thousands of these stations, what you want to make sure is that those stations are operating in sync with state power grids, where you don't have people all charging at the same time at like 5 p.m. on a hot summer day," said Fisher.

PSE&G also plans to offer incentives to encourage the development of level-two chargers and DC fast-chargers, as well as "provide grants and incentives for 100 electric school buses and EV charging infrastructure at school districts in PSE&G's service territory," said Sullivan.

"PSE&G will also help fund electrification projects at customer locations such as ports, airports and transit facilities," Sullivan added, via email.

Utilities and transportation planners are also keeping the concept of equity in mind -- to ensure EVs are adopted by more than just the Tesla owner -- and will also focus on placing infrastructure in low-income areas.

"Ten percent of the stations will be in low income areas, defined by census blocks," said Scott Blake, a communications consultant at AEP in Columbus.

Duke Energy also announced 10 percent of the chargers it is installing in Florida will be in "income-qualified communities," according to a company press release.

 

Related News

Related News

Illinois electric utility publishes online map of potential solar capacity

ComEd Hosting Capacity Map helps Illinois communities assess photovoltaic capacity, distributed energy resources, interconnection limits, and grid planning needs, guiding developers and policymakers on siting solar, net metering feasibility, and RPS-aligned deployment by circuit.

 

Key Points

An online tool showing circuit-level DER capacity, PV limits, and interconnection readiness across ComEd.

✅ Circuit-level estimates of solar hosting capacity

✅ Guides siting, interconnection, and net metering

✅ Supports RPS goals with grid planning insights

 

As the Illinois solar market grows from the Future Energy Jobs Act, the largest utility in the state has posted a planning tool to identify potential PV capacity in their service territory. ComEd, a Northern Illinois subsidiary of Exelon, has a hosting capacity website for its communities indicating how much photovoltaic capacity can be sited in given areas, based on the existing electrical infrastructure, as utilities pilot virtual power plant programs that leverage distributed resources.

According to ComEd’s description, “Hosting Capacity is an estimate of the amount of DER [distributed energy resources] that may be accommodated under current configurations at the overall circuit level without significant system upgrades to address adverse impacts to power quality or reliability.” This website will enable developers and local decision makers to estimate how much solar could be installed by township, sections and fractions of sections as small as ½ mile by ½ mile and to gauge EV charging impacts with NREL's projection tool for distribution planning. The map sections indicate potential capacity by AC kilowatts with a link to to ComEd’s recently upgraded Interconnection and Net Metering homepage.

The Hosting Map can provide insight into how much solar can be installed in which locations in order to help solar reach a significant portion of the Illinois Renewable Portfolio Standard (RPS) of 25% electricity from renewable sources by 2025, and to plan for transportation electrification as EV charging infrastructure scales across utility territories. For example, the 18 sections of Oak Park Township capacity range from 612 to 909 kW, and total 13,260 kW of photovoltaic power. That could potentially generate around 20 million kWh, and policy actions such as the CPUC-approved PG&E EV program illustrate how electrification initiatives may influence future demand. Oak Park, according to the PlanItGreen Report Card, a joint project of the Oak Park River Forest Community Foundation and Seven Generations Ahead, uses about 325 million kWh.

Based on ComEd’s Hosting Capacity, Oak Park could generate about 6% of its electricity from solar power located within its borders. Going significantly beyond this amount would likely require a combination of upgrades by ComEd’s infrastructure, potentially higher interconnection costs and deployment of technologies like energy storage solutions. What this does indicate is that a densely populated community like Oak Park would most likely have to get the majority of its solar and renewable electricity from outside its boundaries to reach the statewide RPS goal of 25%. The Hosting Capacity Map shows a considerable disparity among communities in ½ mile by ½ mile sections with some able to host only 100-200 kWs to some with capacities of over 3,000 kW.

 

Related News

View more

Four Major Types of Substation Integration Service Providers Account for More than $1 Billion in Annual Revenues

Substation Automation Services help electric utilities modernize through integration, EPC engineering, protective relaying, communications and security, with CAPEX and OPEX insights and a growing global market for third-party providers worldwide rapidly.

 

Key Points

Engineering, integration, and EPC support modernizing utility substations with protection, control, and secure communications

✅ Third-party engineering, EPC, and OEM services for utilities

✅ Integration of multi-vendor devices and platforms

✅ Focus on relays, communications, security, CAPEX-OPEX

 

The Newton-Evans Research Company has released additional findings from its newly published four volume research series entitled: The World Market for Substation Automation and Integration Programs in Electric Utilities: 2017-2020.

This report series has observed four major types of professional third-party service providers that assist electric utilities with substation modernization. These firms range from (1) smaller local or regional engineering consultancies with substation engineering resources to (2) major global participants in EPC work, to (3) the engineering services units of manufacturers of substation devices and platforms, to (4) substation integration specialist firms that source and integrate devices from multiple manufacturers for utility and industrial clients, and often provide substation automation training to support implementation.

2016 Global Share Estimates for Professional Services Providers of Electric Power Substation Integration and Automation Activities

The North American market report (Volume One) includes survey participation from 65 large and midsize US and Canadian electric utilities while the international market report (Volume Two) includes survey participation from 32 unique utilities in 20 countries around the world. In addition to the baseline survey questions, the report includes 2017 substation survey findings on four additional specific topics: communications issues; protective relaying trends; security topics and the CAPEX/OPEX outlook for substation modernization.

Volume Three is the detailed market synopsis and global outlook for substation automation and integration:

Section One of the report provides top-level views of substation modernization, automation & integration and the emerging digital grid landscape, and a narrative market synopsis.

Section Two provides mid-year 2017 estimates of population, electric power generation capacity, transmission substations, including the 2 GW UK substation commissioning as a benchmark, and primary MV distribution substations for more than 120 countries in eight world regions. Information on substation related expenditures and spending for protection and control for each major world region and several major countries is also provided.

Section Three provides information on NGO funding resources for substation modernization among developing nations.

Section Four of this report volume includes North American market share estimates for 2016 shipments of many substation automation-related devices and equipment, such as trends in the digital relay market for utilities.

The Supplier Profiles report (Volume Four) provides descriptive information on the substation modernization offerings of more than 90 product and services companies, covering leading players in the transformer market as well.

 

Related News

View more

UK Energy Industry Divided Over Free Electricity Debate

UK Free Electricity Debate weighs soaring energy prices against market regulation, renewables, and social equity, examining price caps, funding via windfall taxes, grid investment, and consumer protection in the UK's evolving energy policy landscape.

 

Key Points

A policy dispute over free power, balancing consumer relief with market stability, renewables, and investment.

✅ Pros: relief for households; boosts efficiency and green adoption.

✅ Cons: risks to market signals, quality, and grid investment.

✅ Policy options: price caps, windfall taxes, targeted subsidies.

 

In recent months, the debate over free electricity in the UK has intensified, revealing a divide within the energy sector. With soaring energy prices and economic pressures impacting consumers, the discussion around providing free electricity has gained traction. However, the idea has sparked significant controversy among industry stakeholders, each with their own perspectives on the feasibility and implications of such a move.

The Context of Rising Energy Costs

The push for free electricity is rooted in the UK’s ongoing energy crisis, exacerbated by geopolitical tensions, supply chain disruptions, and the lingering effects of the COVID-19 pandemic. As energy prices reached unprecedented levels, households faced the harsh reality of skyrocketing bills, prompting calls for government intervention to alleviate financial burdens.

Supporters of free electricity argue that it could serve as a vital lifeline for struggling families and businesses. The proposal suggests that by providing a certain amount of electricity for free, the government could help mitigate the effects of rising costs while encouraging energy conservation and efficiency.

Industry Perspectives

However, the notion of free electricity has not been universally embraced within the energy sector. Some industry leaders express concerns about the financial viability of such a scheme. They argue that providing free electricity could undermine the market dynamics that incentivize investment in infrastructure and renewable energy, in a market already exposed to natural gas price volatility today. Critics warn that if energy companies are forced to absorb costs, it could lead to diminished service quality and investment in necessary advancements.

Additionally, there are worries about how free electricity could be funded. Proponents suggest that a tax on energy companies could generate the necessary revenue, but opponents question whether this would stifle innovation and competition. The fear is that placing additional financial burdens on energy providers could ultimately lead to higher prices in the long run.

Renewable Energy and Sustainability

Another aspect of the debate centers around the UK’s commitment to transitioning to renewable energy sources. Supporters of free electricity emphasize that such a policy could encourage more widespread adoption of green technologies by making energy more accessible. They argue that by removing the financial barriers associated with energy costs, households would be more inclined to invest in solar panels, heat pumps, and other sustainable solutions.

On the other hand, skeptics contend that the focus should remain on ensuring a stable and reliable energy supply as the UK moves toward its climate goals. They caution against implementing policies that might disrupt the balance of the energy market, potentially hindering the necessary investments in renewable infrastructure.

Government's Role

As discussions unfold, the government’s role in this debate is crucial. Policymakers must navigate the complex landscape of energy regulation, market dynamics, and consumer needs. The government has already introduced measures aimed at assisting vulnerable households, such as energy price caps and direct financial support. However, the question remains whether these initiatives go far enough in addressing the root causes of the energy crisis.

In this context, the government faces pressure from both consumers demanding relief and industry leaders advocating for market stability, including proposals to end the link between gas and electricity prices to curb price volatility. The challenge lies in finding a middle ground that balances immediate support for households with long-term sustainability and investment in the energy sector.

Future Implications

The ongoing debate about free electricity in the UK underscores broader themes related to energy policy, market regulation, and social equity, with rising electricity prices abroad offering context for comparison. As the country navigates its energy transition, the decisions made today will have far-reaching implications for both consumers and the industry.

If the government chooses to pursue a model that includes free electricity, it will need to carefully consider how to implement such a system without jeopardizing the market. Transparency, stakeholder engagement, and thorough impact assessments will be essential to ensure that any new policies are sustainable and equitable.

Conversely, if the concept of free electricity is ultimately rejected, the focus will likely shift back to addressing energy costs through other means, such as enhancing energy efficiency programs or increasing support for vulnerable populations.

The divide within the UK’s energy industry regarding free electricity highlights the complexities of balancing consumer needs with market stability. As the energy crisis continues to unfold, the conversations surrounding this issue will remain at the forefront of public discourse. Ultimately, finding a solution that addresses the immediate challenges while promoting a sustainable energy future will be key to navigating this critical juncture in the UK’s energy landscape.

 

Related News

View more

China, Cambodia agree to nuclear energy cooperation

Cambodia-CNNC Nuclear Energy MoU advances peaceful nuclear cooperation, human resources development, and Belt and Road ties, targeting energy security and applications in medicine, agriculture, and industry across ASEAN under IAEA-guided frameworks.

 

Key Points

A pact to expand peaceful nuclear tech and skills, boosting Cambodia's energy, healthcare under ASEAN and Belt and Road.

✅ Human resources development and training pipelines

✅ Peaceful nuclear applications in medicine, agriculture, industry

✅ Aligns with IAEA guidance, ASEAN links, Belt and Road goals

 

Cambodia has signed a memorandum of understanding with China National Nuclear Corporation (CNNC) on cooperation in the peaceful use of nuclear energy. The agreement calls for cooperation on human resources development.

The agreement was signed yesterday by CNNC chief accountant Li Jize and Tekreth Samrach, Cambodia's secretary of state of the Office of the Council of Ministers and vice chairman of the Cambodian Commission on Sustainable Development. It was signed during the 14th China-ASEAN Expo and China-ASEAN Business and Investment Summit, being held in Nanning, the capital of China's Guangxi province.

The signing was witnessed by Cambodia's minister of commerce and other government officials, CNNC said.

"This is another important initiative of China National Nuclear Corporation in implementing the 'One Belt, One Road' strategy as China's nuclear program continues to advance and strengthening cooperation with ASEAN countries in international production capacity, laying a solid foundation for follow-up cooperation between the two countries," CNNC said.

One Belt, One Road is China's project to link trade in about 60 Asian and European countries along a new Silk Road, even as Romania ended talks with a Chinese partner in a separate nuclear project.

CNNC noted that Cambodia's current power supply cannot meet its basic electricity needs, while sectors including medicine, agriculture and industry require a "comprehensive upgrade". It said Cambodia has great market potential for nuclear power and nuclear technology applications.

On 14 August, CNNC vice president Wang Jinfeng met with Tin Ponlok, secretary general of Cambodia's National Council for Sustainable Development, to consult on the draft MOU. Cambodia's Ministry of Environment said these discussions focused on human resources in nuclear power for industrial development and environmental protection.

In late August, CNNC president Qian Zhimin visited Cambodia and met Say Chhum, president of the Senate of Cambodia. Qian noted that CNNC will support Cambodia in applying nuclear technologies in industry, agriculture and medical science, thus developing its economy and improving the welfare of the population. Cambodia can start training workers, promoting new energy exploitation as India's nuclear revival progresses in Asia, and infrastructure construction, and increasing its capabilities in scientific research and industrial manufacturing, he said. This will help the country achieve its long-term goal of the peaceful use of nuclear energy, he added.

In November 2015, Russian state nuclear corporation Rosatom signed a nuclear cooperation agreement with Cambodia, focused on a possible research reactor, but with consideration of nuclear power, while KHNP in Bulgaria illustrates parallel developments in Europe. A further cooperation agreement was signed in March 2016, and in May Rosatom and the National Council for Sustainable Development signed memoranda to establish a nuclear energy information centre in Cambodia and set up a joint working group on the peaceful uses of atomic energy.

In mid-2016, Cambodia's Ministry of Industry, Mines and Energy held discussions with CNNC on building a nuclear power plant and establishing the regulatory and legal infrastructure for that, in collaboration with the International Atomic Energy Agency, mirroring IAEA assistance in Bangladesh on nuclear development.

 

Related News

View more

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

Americans Keep Using Less and Less Electricity

U.S. Electricity Demand Decoupling signals GDP growth without higher load, driven by energy efficiency, LED adoption, services-led output, and rising renewables integration with the grid, plus EV charging and battery storage supporting decarbonization.

 

Key Points

GDP grows as electricity use stays flat, driven by efficiency, renewables, and a shift toward services and output.

✅ LEDs and codes cut residential and commercial load intensity.

✅ Wind, solar, and gas gain share as coal and nuclear struggle.

✅ EVs and storage can grow load and enable grid decarbonization.

 

By Justin Fox

Economic growth picked up a little in the U.S. in 2017. But electricity use fell, with electricity sales projections continuing to decline, according to data released recently by the Energy Information Administration. It's now been basically flat for more than a decade:


 

Measured on a per-capita basis, electricity use is in clear decline, and is already back to the levels of the mid-1990s.

 


 

Sources: U.S. Energy Information Administration, U.S. Bureau of Economic Analysis

*Includes small-scale solar generation from 2014 onward

 

I constructed these charts to go all the way back to 1949 in part because I can (that's how far back the EIA data series goes) but also because it makes clear what a momentous change this is. Electricity use rose and rose and rose and then ... it didn't anymore.

Slower economic growth since 2007 has been part of the reason, but the 2017 numbers make clear that higher gross domestic product no longer necessarily requires more electricity, although the Iron Law of Climate is often cited to suggest rising energy use with economic growth. I wrote a column last year about this big shift, and there's not a whole lot new to say about what's causing it: mainly increased energy efficiency (driven to a remarkable extent by the rise of LED light bulbs), and the continuing migration of economic activity away from making tangible things and toward providing services and virtual products such as games and binge-watchable TV series (that are themselves consumed on ever-more-energy-efficient electronic devices).

What's worth going over, though, is what this means for those in the business of generating electricity. The Donald Trump administration has made saving coal-fired electric plants a big priority; the struggles of nuclear power plants have sparked concern from multiple quarters. Meanwhile, U.S. natural gas production has grown by more than 40 percent since 2007, thanks to hydraulic fracturing and other new drilling techniques, while wind and solar generation keep making big gains in cost and market share. And this is all happening within the context of a no-growth electricity market.

In China, a mystery in China's electricity data has complicated global comparisons.

 

Here are the five main sources of electric power in the U.S.:


 

The big story over the past decade has been coal and natural gas trading places as the top fuel for electricity generation. Over the past year and a half coal regained some of that lost ground as natural gas prices rose from the lows of early 2016. But with overall electricity use flat and production from wind and solar on the rise, that hasn't translated into big increases in coal generation overall.

Oh, and about solar. It's only a major factor in a few states (California especially), so it doesn't make the top five. But it's definitely on the rise.

 

 

What happens next? For power generators, the best bet for breaking out of the current no-growth pattern is to electrify more of the U.S. economy, especially transportation. A big part of the attraction of electric cars and trucks for policy-makers and others is their potential to be emissions-free. But they're only really emissions-free if the electricity used to charge them is generated in an emissions-free manner -- creating a pretty strong business case for continuing "decarbonization" of the electric industry. It's conceivable that electric car batteries could even assist in that decarbonization by storing the intermittent power generated by wind and solar and delivering it back onto the grid when needed.

I don't know exactly how all this will play out. Nobody does. But the business of generating electricity isn't going back to its pre-2008 normal. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.