Electric vehicle owners can get paid to sell electricity back to the grid


Electric vehicle owners

NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Ontario EV V2G Pilots enable bi-directional charging, backup power, and grid services with IESO, Toronto Hydro, and Hydro One, linking energy storage, solar, blockchain apps, and demand response incentives for smarter electrification.

 

Key Points

Ontario EV V2G pilots test bidirectional charging and backup power to support grid services with apps and incentives.

✅ Tests Nissan Leaf V2H backup with Hydro One and Peak Power.

✅ Integrates solar, storage, blockchain apps via Sky Energy and partners.

✅ Pilots demand response apps in Toronto and Waterloo utilities.

 

Electric vehicle owners in Ontario may one day be able to use the electricity in their EVs instead of loud diesel or gas generators to provide emergency power during blackouts. They could potentially also sell back energy to the grid when needed. Both are key areas of focus for new pilot projects announced this week by Ontario’s electricity grid operator and partners that include Toronto Hydro and Ontario Hydro.

Three projects announced this week will test the bi-directional power capabilities of current EVs and the grid, all partially funded by the Independent Electricity System Operator (IESO) of Ontario, with their announcement in Toronto also attended by Ontario Energy Minister Todd Smith.

The first project is with Hydro One Networks and Peak Power, which will use up to 10 privately owned Nissan Leafs to test what is needed technically to support owners using their cars for vehicle-to-building charging during power outages. It will also study what type of financial incentives will convince EV owners to provide backup power for other users, and therefore the grid.

A second pilot program with solar specialist Sky Energy and engineering firm Hero Energy will study EVs, energy storage, and solar panels to further examine how consumers with potentially more power to offer the grid could do it securely, in part using blockchain technology. York University and Volta Research are other partners in the program, which has already produced an app that can help drivers choose when and how much power to provide the grid — if any.

The third program is with local utilities in Toronto and Waterloo, Ont., and will test a secure digital app that helps EV drivers see the current demands on the grid through improved grid coordination mechanisms, and potentially price an incentive to EV drivers not to charge their vehicles for a few hours. Drivers could also be actively further paid to provide some of the charge currently in their vehicle back to the grid.

It all adds up to $2.7 million in program funding from IESO ($1.1 million) and the associated partners.

“An EV charged in Ontario produces roughly three per cent of emissions of a gas fuelled car,” said IESO’s Carla Nell, vice-president of corporate relations and innovation at the announcement near Peak Power chargers in downtown Toronto. “We know that Ontario consumers are buying EVs, and expected to increase tenfold — so we have to support electrification.”

If these types of programs sound familiar, it may be because utilities in Ontario have been testing such vehicle-to-grid technologies soon after affordable EVs became available in the fall of 2011. One such program was run by PowerStream, now the called Alectra, and headed by Neetika Sathe, who is now Alectra’s vice-president of its Green Energy and Technology (GRE&T) Centre in Guelph, Ont.

The difference between now and those tests in the mid-2010s is that the upcoming wave of EV sales can be clearly seen on the horizon, and California's grid stability work shows how EVs can play a larger role.

“We can see the tsunami now,” she said, noting that cost parity between EVs and gas vehicles is likely four or five years away — without government incentives, she stressed. “Now it’s not a question of if, it’s a question of when — and that when has received much more clarity on it.”

Sathe sees a benefit in studying all these types of bi-directional power-flowing scenarios, but notes that they are future scenarios for years in the future, especially since bi-directional charging equipment — and the vehicles with this capability — are pricey, and largely still not here. What she believes is much closer is the ability to automatically communicate what the grid needs with EV drivers, as Nova Scotia Power pilots integration, and how they could possibly help. For a price, of course.

“If I can set up a system that says ‘oh, the grid is stressed, can you not charge for the next two hours? And here’s what we’ll offer to you for that,’ that’s closer to low-hanging fruit,” she said, noting that Alectra is currently testing out such systems. “Think of it the same way as offering your car for Uber, or a room on Airbnb.”

Related News

Electric cars don't need better batteries. America needs better charging networks

EV charging anxiety reflects concerns beyond range anxiety, focusing on charging infrastructure, fast chargers, and network reliability during road trips, from Tesla Superchargers to Electrify America stations across highways in the United States.

 

Key Points

EV charging anxiety is worry about finding reliable fast chargers on public networks, not just limited range.

✅ Non-Tesla networks vary in uptime and plug-and-charge reliability.

✅ Charging deserts complicate route planning on long highway stretches.

✅ Sync stops: align rest breaks with fast chargers to save time.

 

With electric cars, people often talk about "range anxiety," and how cars with bigger batteries and longer driving ranges will alleviate that. I just drove an electric car from New York City to Atlanta, a distance of about 950 miles, and it taught me something important. The problem really isn't range anxiety. It's anxiety around finding a convenient and working chargers on America's still-challenged EV charging networks today.

Back in 2019, I drove a Tesla Model S Long Range from New York City to Atlanta. It was a mostly uneventful trip, thanks to Tesla's nicely organized and well maintained network of fast chargers that can fill the batteries with an 80% charge in a half hour or less. Since then, I've wanted to try that trip again with an electric car that wasn't a Tesla, one that wouldn't have Tesla's unified charging network to rely on.
I got my chance with a Mercedes-Benz EQS 450+, a car that is as close to a direct competitor to the Tesla Model S as any. And while I made it to Atlanta without major incident, I encountered glitchy chargers, called the charging network's customer service twice, and experienced some serious charging anxiety during a long stretch of the Carolinas.

Long range
The EPA estimated range for the Tesla I drove in 2019 was 370 miles, and Tesla's latest models can go even further.

The EQS 450+ is officially estimated to go 350 miles on a charge, but I beat that handily without even trying. When I got into the car, its internal displays showed a range estimate of 446 miles. On my trip, the car couldn't stretch its legs quite that far, because I was driving almost entirely on highways at fairly high speeds, but by my calculations, I could have gone between 370 and 390 miles on a charge.

I was going to drive over the George Washington Bridge then down through New Jersey, Delaware, Virginia then North Carolina and South Carolina. I figured three charging stops would be needed and, strictly speaking, that was correct. The driving route laid out by the car's navigation system included three charging stops, but the on-board computers tended push things to the limit. At each stop, the battery would be drained to a little over 10% or so. (I learned later this is a setting I could adjust to be more conservative if I'd wanted.)

But I've driven enough electric cars to have some concerns. I use public chargers fairly often, and I know they're imperfect, and we need to fix these problems to build confidence. Sometimes they aren't working as well as they should. Sometimes they're just plain broken. And even if the car's navigation system is telling you that a charger is "available," that can change at any moment. Someone else can pull into the charging spot just a few seconds before you get there.
I've learned to be flexible and not push things to the limit.

On the first day, when I planned to drive from New York to Richmond, Virginia, no charging stop was called for until Spotsylvania, Virginia, a distance of nearly 300 miles. By that point, I had 16% charge left in the car's batteries which, by the car's own calculation, would have taken me another 60 miles.

As I sat and worked inside the Spotsylvania Town Centre mall I realized I'd been dumb. I had already stopped twice, at rest stops in New Jersey and Delaware. The Delaware stop, at the Biden Welcome Center, had EV fast chargers, as the American EV boom accelerates nationwide. I could have used one even though the car's navigation didn't suggest it.

Stopping without charging was a lost opportunity and it cost me time. If I'm going to stop to recharge myself why not recharge the car, too?
But that's the thing, though. A car can be designed to go 350 miles or more before needing to park whereas human beings are not. Elementary school math will tell you that at highway speeds, that's nearly six hours of driving all at once. We need bathrooms, beverages, food, and to just get out and move around once in a while. Sure, it's physically possible to sit in a car for longer than that in one go, but most people in need of speed will take an airplane, and a driver of an EQS, with a starting price just north of $100,000, can almost certainly afford the ticket.

I stopped for a charge in Virginia but realized I could have stopped sooner. I encountered a lot of other electric cars on the trip, including this Hyundai Ioniq 5 charging next to the Mercedes.

I vowed not to make that strategic error again. I was going to take back control. On the second day, I decided, I would choose when I needed to stop, and would look for conveniently located fast chargers so both the EQS and I could get refreshed at once. The EQS's navigation screen pinpointed available charging locations and their maximum charging speeds, so, if I saw an available charger, I could poke on the icon with my finger and add it onto my route.

For my first stop after leaving Richmond, I pulled into a rest stop in Hillsborough, North Carolina. It was only about 160 miles south from my hotel and I still had half of a full charge.

I sipped coffee and answered some emails while I waited at a counter. I figured I would take as long as I wanted and leave when I was ready with whatever additional electricity the car had gained in that time. In all, I was there about 45 minutes, but at least 15 minutes of that was used trying to get the charger to work. One of the chargers was simply not working at all, and, at another one, a call to Electrify America customer service -- the EV charging company owned by Volkswagen that, by coincidence, operated all the chargers I used on the trip -- I got a successful charging session going at last. (It was unclear what the issue was.)

That was the last and only time I successfully matched my own need to stop with the car's. I left with my battery 91% charged and 358 miles of range showing on the display. I would only need to stop once more on way to Atlanta and not for a long time.

Charging deserts
Then I began to notice something. As I drove through North Carolina and then South Carolina, the little markers on the map screen indicating available chargers became fewer and fewer. During some fairly long stretches there were none showing at all, highlighting how better grid coordination could improve coverage.

It wasn't an immediate concern, though. The EQS's navigation wasn't calling for me to a charge up again until I'd nearly reached the Georgia border. By that point I would have about 11% of my battery charge remaining. But I was getting nervous. Given how far it was between chargers my whole plan of "recharging the car when I recharge myself" had already fallen apart, the much-touted electric-car revolution notwithstanding. I had to leave the highway once to find a gas station to use the restroom and buy an iced tea. A while later, I stopped for lunch, a big plate of "Lexington Style BBQ" with black eyed peas and collard greens in Lexington, North Carolina. None of that involved charging because there no chargers around.

Fortunately, a charger came into sight on my map while I still had 31% charge remaining. I decided I would protect myself by stopping early. After another call to Electrify America customer service, I was able to get a nice, high-powered charging session on the second charger I tried. After about an hour I was off again with a nearly full battery.

I drove the last 150 miles to Atlanta, crossing the state line through gorgeous wetlands and stopping at the Georgia Welcome Center, with hardly a thought about batteries or charging or range.

But I was driving $105,000 Mercedes. What if I'd been driving something that cost less and that, while still going farther than a human would want to drive at a stretch, wouldn't go far enough to make that trip as easily, a real concern for those deciding if it's time to buy an electric car today. Obviously, people do it. One thing that surprised me on this trip, compared to the one in 2019, was the variety of fully electric vehicles I saw driving the same highways. There were Chevrolet Bolts, Audi E-Trons, Porsche Taycans, Hyundai Ioniqs, Kia EV6s and at least one other Mercedes EQS.

Americans are taking their electric cars out onto the highways, as the age of electric cars gathers pace nationwide. But it's still not as easy as it ought to be.

 

Related News

View more

Fact check: Claim on electric car charging efficiency gets some math wrong

EV Charging Coal and Oil Claim: Fact-check of kWh, CO2 emissions, and electricity grid mix shows 70 lb coal or ~8 gallons oil per 66 kWh, with renewables and natural gas reducing lifecycle emissions.

 

Key Points

A viral claim on EV charging overstates oil use; accurate figures depend on grid mix: ~70 lb coal or ~8 gallons oil.

✅ About 70 lb coal or ~8 gal oil per 66 kWh, incl. conversion losses

✅ EVs average ~100 g CO2 per mile vs ~280 g for 30 mpg cars

✅ Grid mix includes renewables, nuclear, natural gas; oil use is low

 

The claim: Average electric car requires equivalent of 85 pounds of coal or six barrels of oil for a single charge

The Biden administration has pledged to work towards decarbonizing the U.S. electricity grid by 2035. And the recently passed $1.2 trillion infrastructure bill provides funding for more electric vehicle (EV) charging infrastructure, including EV charging networks across the country under current plans.

However, a claim that electric cars require an inordinate amount of oil or coal energy to charge has appeared on social media, even as U.S. plug-ins traveled 19 billion miles on electricity in 2021.

“An average electric car takes 66 KWH To charge. It takes 85 pounds of coal or six barrels of oil to make 66 KWH,” read a Dec 1 Facebook post that was shared nearly 500 times in a week. “Makes absolutely no sense.” 

The post included a stock image of an electric car charging, though actual charging costs depend on local rates and vehicle efficiency.

This claim is in the ballpark for the coal comparison, but the math on the oil usage is wildly inaccurate.

It would take roughly 70 pounds of coal to produce the energy required to charge a 66 kWh electric car battery, said Ian Miller, a research associate at the MIT Energy Initiative. That's about 15 pounds less than is claimed in the post.

The oil number is much farther off.

While the post claims that it takes six barrels of oil to charge a 66 kWh battery, Miller said the amount is closer to 8 gallons  — the equivalent of 20% of one barrel of oil.

He said both of his estimates account for energy lost when fossil fuels are converted into electricity. 

"I think the most important question is, 'How do EVs and gas cars compare on emissions per distance?'," said Miller. "In the US, using average electricity, EVs produce roughly 100 grams of CO2 per mile."

He said this is more than 60% less than a typical gasoline-powered car that gets 30 mpg, aligning with analyses that EVs are greener in all 50 states today according to recent studies. Such a vehicle produces roughly 280 grams of CO2 per mile.

Lifecycle analyses also show that the CO2 from making an EV battery is not equivalent to driving a gasoline car for years, which often counters common misconceptions.

"If you switch to an electric vehicle, even if you're using fossil fuels (to charge), it's just simply not true that you'll be using more fossil fuel," said Jessika Trancik, a professor at the Massachusetts Institute of Technology who studies the environmental impact of energy systems.  

However, she emphasized electric cars in the U.S. are not typically charged using only energy from coal or oil, and that electricity grids can handle EVs with proper management.

The U.S. electricity grid relies on a diversity of energy sources, of which oil and coal together make up about 20 percent, according to a DOE spokesperson. This amount is likely to continue to drop as renewable energy proliferates in the U.S., even as some warn that state power grids will be challenged by rapid EV adoption. 

"Switching to an electric vehicle means that you can use other sources, including less carbon-intensive natural gas, and even less carbon-intensive electricity sources like nuclear, solar and wind energy, which also carry with them health benefits in the form of reduced air pollutant emissions," said Trancik. 

Our rating: Partly false
Based on our research, we rate PARTLY FALSE the claim that the average electric car requires the equivalent of 85 pounds of coal or six barrels of oil for a single charge. The claim is in the ballpark on coal consumption, as an MIT researcher estimates that around 70 pounds. But the oil usage is only about 8 gallons, which is 20% of one barrel. And the actual sources of energy for an electric car vary depending on the energy mix in the local electric grid. 

 

Related News

View more

New legislation will make it easier for strata owners to install EV charging stations

BC Strata EV Charging Reforms streamline approvals under the Strata Property Act, lowering the voting threshold and requiring an electrical planning report to expand EV charging stations in multi-unit strata buildings across British Columbia.

 

Key Points

BC reforms ease EV charger installs in stratas by lowering votes, requiring plans, and fast-tracking compliant requests.

✅ Vote threshold drops to 50% for EV infrastructure

✅ Electrical planning report required for stratas

✅ Stratas must approve compliant owner charging requests

 

Owning an electric vehicle (EV) will be a little easier for strata property owners, the province says, after announcing changes to legislation to facilitate the installation of charging stations in strata buildings.

On Thursday, the province said it would be making amendments to the Strata Property Act, the legal framework all strata corporations are required to follow, and align with practical steps for retrofitting condos with chargers in older buildings.

Three areas will improve access to EV charging stations in strata complexes, the province says, including lowering the voting threshold from 75 per cent to 50 per cent for approval of the costs, supported by EV charger rebates that can offset expenses, and changes to the property that are needed to install them, as well as requiring strata corporations to have an electrical planning report to make installation of these stations easier.

The amendments would mean stratas would have to approve owners' requests for such charging stations, even amid high-rise EV charging challenges reported across Canada, as long as "reasonable criteria are met."

Minister of Energy, Mines and Low Carbon Innovation Josie Osborne said people are more likely to buy an electric vehicle if they have the ability to charge it — something that's lacking for many British Columbians living in multi-unit residences, where Vancouver's EV-ready policy is setting a local example for multi-family buildings. 

"B.C. has one of the largest public electric vehicle charging networks in Canada, and leads the country in going electric, but we need to make it easier for more people to charge their EVs at home," Osborne said in a statement.

Tony Gioventu, the executive director of the Condominium Home Owners Association of B.C., said the new legislation strikes a balance between allowing people access to EV charging stations, as examples from Calgary apartments and condos demonstrate, while also ensuring stratas still have control over their properties. 

This is just the latest step in the B.C. government's move to get more EVs on the road: alongside rebates for home and workplace charging, the province passed the Zero-Emission Vehicles Act, which aims for 10 per cent of all new light-duty cars and trucks sold in B.C. to be zero emission by 2025. By 2040, they'll all need to be emission-free.

 

Related News

View more

How to retrofit a condo with chargers for a world of electric cars

Condo EV charging retrofits face strata approval thresholds, installation costs, and limited electrical capacity, but government rebates, subsidies, and smart billing systems can improve ROI, property value, and feasibility amid electrician shortages and infrastructure constraints.

 

Key Points

Condo EV charging retrofits equip multiunit parking with EV chargers, balancing costs, bylaws, capacity, and rebates.

✅ Requires owner approval (e.g., 75% in B.C.) and clear bylaws

✅ Leverage rebates, subsidies, and load management to cut costs

✅ Plan billing, capacity, and phased installation to increase ROI

 

Retrofitting an existing multiunit residential building with electric vehicle charging stations is a complex and costly exercise, as high-rise EV charging challenges in MURBs demonstrate, even after subsidies, but the biggest hurdle to adoption may be getting enough condo owners on board.

British Columbia, for example, offers a range of provincial government subsidies to help condo corporations (referred to in B.C. as stratas) with everything from the initial research to installing the chargers. But according to provincial strata law, three-quarters of owners must support the plan before it is implemented, though new strata EV legislation could make approvals easier in some jurisdictions.

“The largest challenge is getting that 75-per-cent majority approval to go ahead,” says EV charging specialist Patrick Breuer with ChargeFwd Ltd., a Vancouver-based sustainable transport consultancy.

Chris Brunner, a strata president in Vancouver, recently upgraded all the building’s parking stalls for EV charging. His biggest challenge was getting the strata’s investment owners, who don’t live in the building and were not interested in spending money, to support the project.

“We had to sell it in two ways,” Mr. Brunner says. “First, that there’s going to be a return on investment, including vehicle-to-building benefits that support savings and grid stability, and second, that there will come a time when this will be required. And if we do it now, taking advantage of the generous rebates and avoiding price increases for expertise and materials, we’ll be ahead of the curve.”

Once the owners have voted in favour, the condo board can begin the planning process and start looking for rebates. The B.C. government will provide a rebate of up to 75 per cent for the consulting phase, with additional provincial rebates available through current programs. It’s referred to as an “EV Ready” plan, which is a professionally prepared document that describes how to implement EV charging fairly, and estimates its cost.

Once a condo has completed the EV Ready plan, it becomes eligible for other rebates, such as the EV Ready Infrastructure subsidy, which will bring power to each individual parking stall through an energized outlet. This is rebated at 50 per cent of expenses, up to $600 a stall.

There are further rebates of up to 75 per cent for installing the charging stations themselves, and B.C. charging rebates extend to home and workplace programs, too. The program is administered by BC Hydro, a Crown corporation that receives funding in annual increments. “Right now, it’s funded until March 31, 2023,” Mr. Breuer says.

“Realtors are valuing [individual charging stations] from $2,000 to $10,000,” he said. The demand for installing EV chargers in buildings has grown to such an extent that it’s hard to find qualified electricians, Mr. Breuer says.

However, even with subsidies, there are some buildings where it doesn’t make financial sense to retrofit them. “If you have to core through thin floors or there’s a big parkade with a large voltage drop, it isn’t financially viable,” Mr. Breuer says. “We do a lot of EV Ready plans, but not all the projects can go ahead.”

For many people, it’s resistance to the unknown that is preventing them from voting for the retrofit, according to Carter Li of Toronto-based Swtch Energy Inc., which provides charging in high-density urban settings. It has done retrofits on 200 multiunit residential buildings in the Toronto area, and Calgary condo charging efforts show similar momentum in other cities, too. “They’re worried about paying for someone else’s electricity,” he says. Selling owners on the idea requires educating them about how the billing will work, maximizing electrical capacity to keep costs down, using government subsidies and the anticipated boost in property value.

Ontario currently does not provide any subsidies for retrofitting condos for EV charging. However, there is a stipulation under the Condominium Act that if owners request EV charging be installed and provide a condo board with sufficient documentation, an assessment will be conducted.

When Jeremy Benning was on the board of his Toronto condo in 2018, a few residents inquired about installing EV charging. A committee of owners did the legwork, and found a company that could do the infrastructure installation as well as set up accounts for individual billing purposes. Residents were surveyed a number of times before going ahead with the installation.

Mr. Benning estimates it cost about $40,000 to install two electrical subpanels to accommodate EV chargers in 20 parking spaces. Although the condo corporation paid the money up front out of its operating budget, everyone who ordered a charger will pay back their share over time. Many who do not even own an EV have opted to add a valuable frill to their unit.

The board considered applying for a subsidy from Natural Resources Canada, but it would require a public charger in the visitor parking lot. “The rebate wasn’t enough to pay for the cost of putting in that charging station,” Mr. Benning says. “Also, you have to maintain it, and what if it gets vandalized? It wasn’t worth it.”

Quebec’s Roulez Vert (Ride Green) program offers extensive provincial rebates and incentives for retrofitting condo buildings. If a single condo owner wants to install an EV charger, the government will refund up to 50 per cent of the installation cost or up to $5,000, whichever is less.

Otherwise, a property manager can qualify for a maximum of $25,000 a year to retrofit a building and can sometimes complete the work in stages. “They may do the first installation in one year, and then continue the next year,” says Léo Viger-Bernard of Recharge Véhicule Électrique (RVE). Recently, the Quebec government confirmed this program will run until 2027.

RVE consults with condo corporations, operates an online platform (murby.com) with resources for building owners, and sells a demand charge controller (DCC), which is an electric vehicle energy management system. The DCC allows an electrician to plug the EV charger directly into the electrical infrastructure of a single condo or apartment unit. Not only does this reduce extra wiring, but it also monitors the electrical consumption in each unit, only powering the charging station when there’s available electricity. Billing is assigned to the actual unit’s electricity bill.

Currently there are about 12,000 DCC units installed in retrofitted buildings across Canada, some that are 40 or 50 years old. “It’s not a question of age; it’s more the location of the electric meters,” Mr. Viger-Bernard says. The DCC can be installed either on the roof or on different floors.

According to Michael Wilk, president of Montreal-based Wilkar Property Management Inc., the biggest barrier is getting condo owners to understand the necessity of doing a retrofit now, as opposed to waiting. He uses price increases to try to convince them.

“Right now, the cost of doing a retrofit is 35 per cent more than it was two years ago,” he says. “If you wait another two years, we can only anticipate it’s going to be 35 per cent higher because of the rising cost of labour, parts and equipment.”

In Nova Scotia, Marc MacDonald of Spark Power Corp. installed an EV charger with a DCC unit at a condo near Halifax about a year ago. “They only had space in their electrical room to add a device for up to 10 EV chargers,” he says. The condo board was hesitant, demanding a great deal of information. “They were concerned about everyone wanting an EV charger.”

Now that Nova Scotia has introduced a program for rebates and incentives to install EV chargers in condos, on-street sites and more, Mr. MacDonald anticipates demand will increase, though Atlantic EV adoption still lags the national average. “But they’ll have to settle with reality. Not everyone can have an EV charger if the building can’t accommodate it.”

 

Related News

View more

Can food waste be turned into green hydrogen to produce electricity?

Food Waste to Green Hydrogen uses biological production to create clean energy, enabling waste-to-energy, decarbonization, and renewable hydrogen for electricity, industrial processes, and transport fuels, developed at Purdue University Northwest with Purdue Research Foundation licensing.

 

Key Points

A biological process converting food waste into renewable hydrogen for clean energy, electricity, industry, and transport.

✅ Enables rapid, scalable waste-to-hydrogen deployment

✅ Supports grid power, industrial heat, and mobility fuels

✅ Backed by patents, DOE grants, and licensing deals

 

West Lafayette, Indiana-based Purdue Research Foundation recently completed a licensing agreement with an international energy company – the name of which was not disclosed – for the commercialization of a new process discovered at Purdue University Northwest (PNW) for the biological production of green hydrogen from food waste. A second licensing agreement with a company in Indiana is under negotiation.


Food waste into green hydrogen
Researchers say that this new process, which uses food waste to biologically produce hydrogen, can be used as a clean energy source for producing electricity, as well as for chemical and industrial processes like green steel production or as a transportation fuel.

Robert Kramer, professor of physics at PNW and principal investigator for the research, says that more than 30% of all food, amounting to $48 billion, is wasted in the United States each year. That waste could be used to create hydrogen, a sustainable energy source alongside municipal solid waste power options. When hydrogen is combusted, the only byproduct is water vapor.

The developed process has a high production rate and can be implemented quickly to support large H2 energy systems in practice. The process is robust, reliable, and economically viable for local energy production and processes.

The research team has received five grants from the US Department of Energy and the Purdue Research Foundation totaling around $800,000 over the last eight years to develop the science and technology that led to this process, much like advances in advanced nuclear reactors drive clean energy innovation.

Two patents have been issued, and a third patent is currently in the final stages of approval. Over the next nine months, a scale-up test will be conducted, reflecting how power-to-gas storage can integrate with existing infrastructure. Based upon test results, it is anticipated that construction could start on the first commercial prototype within a year.

Last week, a facility designed to turn non-recyclable plastics into green hydrogen was approved in the UK, as other innovations like the seawater power concept progress globally. It is the second facility of its kind there.

 

Related News

View more

B.C. Hydro predicts 'bottleneck' as electric-vehicle demand ramps-up

B.C. EV Bottleneck signals a post-pandemic demand surge for electric vehicles amid semiconductor and lithium-ion battery shortages, driving waitlists, record sales, rebates, charging infrastructure needs, and savings on fuel and maintenance across British Columbia.

 

Key Points

B.C. EV bottleneck is rising demand outpacing supply from chip and battery shortages, creating waitlists.

✅ 85% delayed EV purchase; demand rebounds with reopening.

✅ Supply chain limits: chips and lithium-ion batteries.

✅ Plan ahead: join waitlists, consider used EVs, claim rebates.

 

B.C. Hydro is warning of a post-pandemic “EV bottleneck” as it predicts pent-up demand and EV shortages will lead to record-breaking sales for electric vehicles in 2021.

A new survey by B.C. Hydro found 85 per cent of British Columbians put off buying an electric vehicle during the pandemic, but as the province reopens, the number of people on the road commuting to-and-from work and school is expected to rise 15 per cent compared with before the pandemic.

It found about two-thirds of British Columbians are considering buying an EV over the next five years, with 60 per cent saying they would go with an EV if they can get one sooner.

“The EV market is at a potential tipping point, as demand is on the rise and will likely continue to grow long-term, with one study projecting doubling power output to meet full road electrification,” said a report about the findings released Wednesday.

The demand for EVs is prompted by rising gas prices, environmental concerns and to save money on maintenance costs like oil changes and engine repairs, said the report. At the same time, a shortage of semiconductor chips and lithium ion batteries needed for auto production is squeezing supply.

For people wanting to make the switch to electric, B.C. Hydro recommended they plan ahead and get on several waiting lists and explore networks offering faster charging options. Used EVs are also a cheaper option.

B.C. Hydro said an electric vehicle can save 80 per cent in gas expenses over a year and about $100 a month in maintenance costs compared with a gas-powered vehicle. There are also provincial and federal rebates of up to $8,000 for EV purchases in B.C., and additional charger rebates can help with installation costs.

B.C. has the highest electric vehicle uptake in North America, with zero-emission vehicles making up almost 10 per cent of all car sales in the province in 2020 as the province expands EV charging to support growth — more than double the four per cent in 2018.

According to a report by University of B.C. business Prof. Werner Antweiler on the state of EV adoption in B.C., electric vehicles are still concentrated in urban areas like Metro Vancouver and the Capital Regional District on Vancouver Island where public charging stations are more readily available.

He said electric vehicle purchases are still hampered by limited choice and a lack of charging stations, especially for people who park on the street or in condo parkades, which would require permission from strata councils to install a charging station, though rebates for home and workplace charging can ease installation.

The online survey was conducted by market researcher Majid Khoury of 800 British Columbians from May 17-19. It has a margin of error of plus-or-minus 3.5 per cent, 19 times out of 20.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.