EV shortages, wait times amid high gasoline prices


ev charger

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Canada EV demand surge is driven by record gas prices, zero-emission policies, and tight dealer inventory, while microchip shortages, ZEV mandates abroad, and lithium supply concerns extend wait times for new and used models.

 

Key Points

Canada EV demand surge is rising interest in zero-emission cars due to high gas prices and limited EV supply.

✅ Gas at $2/litre spurs zero-emission interest

✅ Dealer inventory scarce; waits up to 3 years

✅ Microchip and lithium constraints limit output

 

Price shock at the pump is driving  Canadians toward buying an ev. But manufacturers are having trouble keeping up with consumer demand, even as the U.S. auto sector pivots to EVs across North America.

In parts of the country, gas prices exceeded $2 per litre last month amid strong global demand for oil combined with Russia's invasion of Ukraine. Halifax-based electric vehicle salesperson Jeremie Bernardin said he's noticed an explosion of interest in zero-emission vehicles since the price of fuel started to take off.

"I think there's a lot of people that were considering electric vehicles for a very long time, and they needed that extra little push," Bernardin, who is also the president of the Electric Vehicle Association of Atlantic Canada, where Atlantic EV demand has lagged the national average, told CTVNews.ca over the phone on Wednesday.

With so few electric vehicles on dealership lots, Canadians looking to buy a brand-new zero-emission car will have to put down a deposit and get onto a waiting list. Bernardin said the wait times can be as long as three years, depending on the manufacturer and the dealership.

Tesla, which makes Canada's best-selling electric car according to the automotive publication Motor Illustrated, says delivery times for its vehicles range between three months to one year, depending on the model. But some manufacturers like Nissan have already completely sold out of their electric vehicle inventory for the 2022 model year, though recent EV assembly deals in Canada aim to expand capacity over time.

Shortages of electric vehicles have been around long before the recent spike in gas prices. In March 2021, a report commissioned by Transport Canada found that more than half of Canadian dealerships had no electric vehicles in stock. The report also found that wait times exceeded six months at 31 per cent of dealerships that had no zero-emission cars in their inventory.

Interest in used electric vehicles has also surged amid the high gas prices. Used car marketplace AutoTrader.ca says searches for electric cars in March 2022 increased 89 per cent compared to the previous year, while the number of inquiries sent to electric vehicle sellers through its platform jumped 567 per cent.

"It's understandable that when the gas prices are expensive, consumers are looking to buy and get into electric vehicles, though upfront cost remains a major barrier for many buyers today," Baris Akyurek, AutoTrader.ca's director of marketing intelligence, told CTVNews.ca in a phone interview on Wednesday.

SUPPLY CHAIN ISSUES PERSIST
The surging interest in electric vehicles also comes at a time when pandemic-induced shortages of microchips have been affecting the automotive industry at large since late 2020. Modern automobiles can have hundreds of microchips that control everything from the air conditioning to the power steering system, and a shortage of these crucial components have resulted in fewer vehicles being manufactured.

"Electric vehicles are subject to supply chain issues, just like anything else. Right now, the COVID pandemic has disrupted global supply chains. The auto industry specifically is seeing a microchip shortage that it's been struggling with for the past year or two. So those things are at play," said Joanna Kyriazis, senior policy advisor with Simon Fraser University’s Clean Energy Canada, in a phone interview with CTVNews.ca on Tuesday.

On top of that, Kyriazis says more than 80 per cent of the world's supply of electric vehicles are shipped to consumers in China and the European Union.

China has a strict zero-emission vehicle (ZEV) mandate that requires automakers to ensure that a certain minimum percentage of their vehicles are electric or hydrogen-powered. In Europe, automakers are also forced to sell more electric vehicles there in order to meet the EU's stringent fleetwide emissions standards, and in Canada, Ottawa is preparing EV sales regulations to guide adoption in the coming years.

"We don't have the same aggressive regulations in place yet to really force automakers to prioritize the Canadian market when they're deciding where to allocate their EV inventory and where to sell EVs," said Kyriazis, though Ottawa's 2035 EV mandate remains debated by some industry observers today.

Kyriazis also said she believes it's possible that a shortage of lithium and other minerals required for battery production could be a potential issue within the next five years.

"But my understanding is that the global market is not hitting a supply crunch just yet," she said. "There could be a near-term supply issue. But we're not there yet."

In order to ensure adequate supply of minerals for battery production, the federal government in its most recent budget committed to providing up to $3.8 billion over eight years to create "Canada's first critical minerals strategy." The strategy is aimed at boosting extraction and production of Canadian nickel, lithium and other minerals used as components in electric vehicles and their batteries, and it aligns with opportunities for Canada-U.S. collaboration as companies electrify.

"Canada has a lot of natural resources and a lot of experience with natural resource extraction. We really can stand to be a leader in battery production," said Harry Constatine, president of the Vancouver Electric Vehicles Association, in an interview with CTVNews.ca over the phone on Monday.

 

 

Related News

Related News

Canada, Germany to work together on clean energy

Clean Energy Transition spans hydrogen strategies, offshore wind and undersea cables, decarbonization pledges, and net-zero targets, including green vs blue hydrogen, carbon capture, sustainable aviation fuel, forest conservation, and wetland protection in Canadian policy.

 

Key Points

A shift to low-carbon systems via hydrogen, renewables, net-zero policies, carbon capture, and conservation.

✅ Hydrogen pathways: green vs blue with carbon capture

✅ Grid expansion: offshore wind and undersea cables in Japan

✅ Policy and corporate moves: net-zero, SAF, forests, wetlands

 

The Canadian federal government is set to sign a new agreement with Germany to strategize on a “clean-energy transition,” with clean hydrogen in Canada expected to be a key player the Globe and Mail reports.

“Germany is probably the world’s most interesting market for hydrogen right now, and Canada is potentially a very big power in its production,” Sabine Sparwasser, Germany’s ambassador to Canada, said in an interview.

However, some friction is expected as Natural Resources Minister Seamus O’Regan has been endorsing “blue” hydrogen, while Germany has been more interested in “green” hydrogen. The former hydrogen is produced from natural gas or other fossil fuels, while simultaneously “using carbon-capture technology to minimize emissions from the process.” In contrast, “green” hydrogen, is manufactured from non-fossil fuel sources, and cleaning up Canada's electricity is critical to meeting climate pledges.

“How the focus on blue hydrogen will be aligned with Canada’s goal of reaching climate neutrality by 2050 is not spelled out in detail,” says an executive summary of the report by the Berlin-based think tank and consultancy Adelphi. “As a result, the strategy seems to be more of a vision for the future of those provinces with large fossil fuel resources.”

According to an IEA report Canada will need more electricity to hit net-zero, underscoring the strategy questions.

 

Internationally

Japan is in talks to develop undersea cables that would bring offshore wind energy to Tokyo and the Kansai region, as the country hopes to more than quadrable its wind capacity from 10 gigawatts in 2030 to 45 gigawatts in 2040. The construction of the cables would cost about US$9.2 billion.

In Western Canada, bridging the electricity gap between Alberta and B.C. makes similar climate sense, proponents argue.

Approximately 80 per cent of that offshore power is expected to be built in Hokkaido, Tohoku, and Kyushu regions. The project is part of the country’s pledge to achieve decarbonization by 2050, according to BNN Bloomberg.

Meanwhile, Russia is falling behind in the world’s transition to clean energy.

“What’s the alternative? Russia can’t be an exporter of clean energy, that path isn’t open for us,” says Konstantin Simonov, director of the National Energy Security Fund, a Moscow consultancy whose clients include major oil and gas companies. “We can’t just swap fossil fuel production for clean energy production, because we don’t have any technology of our own.” Ultimately, natural gas will always be cheaper than renewable energy in Russia, Simonov added. This story also from BNN Bloomberg.

Finally, New Zealand’s Tilt Renewables Ltd., an electricity company, has announced it would be acquired by Powering Australian Renewables (PowAR) for NZ$2.94 billion (US$2.10 billion). PowAR is Australia’s largest owner of wind and solar energy, and the deal will give the energy giant access to Tilt’s 20 wind farms. Reuters has the story.

 

In Canada  

Air Canada has unveiled plans to fight climate change. Specifically, the airlines giant has committed to reducing greenhouse gases (GHG) by 20 per cent from flights by 2030, investing $50 million in sustainable aviation fuel (SAF), and ensuring net-zero emissions by 2050.

In other news, B.C. is facing mounting pressure to abstain from logging “old growth forests” while the government transitions to more sustainable forestry policies. A report titled A New Future for Old Forests called on the provincial government to act within six months to protect such forests in April 2020.

The province's Site C mega dam is billions over budget but will go ahead, the premier said, highlighting the energy sector's complexity.

Last September, the province announced, “it would temporarily defer old growth harvesting in close to 353,000 hectares in nine different areas.” The B.C. government will hold consultations with First Nations and other forestry stakeholders “to determine the next areas where harvesting may be deferred,” according to Forests Minister Katrine Conroy. The Canadian Press has more.

Separately, LNG powered with electricity could be a boon for B.C.'s independent power producers, analysts say.

Finally, Pickering Developments Inc. has come forward saying it will not “alter or remove the wetland” that was meant to house an Amazon facility, according to CBC News.

The announcement comes after CBC News’s previously reported that the Toronto and Region Conservation Authority (TRCA) was pressured to issue a construction permit to Pickering Developments Inc. by Doug Ford’s provincial government. However, on March 12, an official with Amazon Canada told CBC News that the company no longer wished to build a warehouse on the site.

“In light of a recent announcement that a new fulfilment centre will no longer be located on this property, this voluntary undertaking ensures that no work, legally authorized by that permit, will occur,” Pickering Development Inc. said in a statement provided to CBC Toronto.

 

Related News

View more

Opinion | Why Electric Mail Trucks Are the Way of the Future

USPS Electric Mail Trucks promise zero-emission delivery, lower lifecycle and maintenance costs, and cleaner air. Congressional funding in Build Back Better would modernize the EV fleet and expand charging infrastructure, improving public health nationwide.

 

Key Points

USPS Electric Mail Trucks are zero-emission delivery vehicles that cut costs, reduce pollution, and improve health.

✅ Lower lifetime fuel and maintenance costs vs gas trucks

✅ Cuts greenhouse gas and NOx emissions in communities

✅ Expands charging infrastructure via federal investments

 

The U.S. Postal Service faces serious challenges, with billions of dollars in annual losses and total mail volume continuing to decline. Meanwhile, Congress is constantly hamstringing the agency.

But now lawmakers have an opportunity to invest in the Postal Service in a way that would pay dividends for years to come: By electrifying the postal fleet.

Tucked inside the massive social spending and climate package lumbering through the Senate is money for new, cleaner postal delivery trucks. There’s a lot to like about electric postal trucks. They’d significantly improve Americans’ health while also slowing climate change. And it just makes sense for taxpayers over the long term; the Postal Service’s private sector competitors have already made similar investments, as EV adoption reaches an EV inflection point in the market. As Democrats weigh potential areas to cut in President Joe Biden’s Build Back Better plan, this is one provision that should escape the knife.

To call the U.S. Postal Service’s current vehicles “clunkers” would be an understatement. These often decades-old trucks are famous for having no airbags, no air conditioning and a nasty habit of catching fire. So the Postal Service’s recent decision to buy 165,000 replacement trucks is basically a no-brainer. But the main question is whether they will run on electricity or gasoline.

Electric vehicles are newer to the market and still carry a higher sticker price, as seen with electric bus adoption in many cities. But that higher price buys concrete benefits, like lower lifetime fuel and maintenance costs and huge reductions in pollution. Government demand for electric trucks will also push private markets to create better, cheaper vehicles, directly benefiting consumers. So while buying electric postal trucks may be somewhat more costly at first, over the long term, failing to do so could be far costlier.

At some level, this is a straightforward business decision that the Postal Service’s competitors have already made. For instance, Amazon has already deployed some of the 100,000 electric vans it recently ordered, and FedEx has promised a fully electric ground fleet by 2040, while nonprofit investment in electric trucks is accelerating electrification at major ports. In a couple of decades, the Postal Service could be the only carrier still driving dirty gas guzzlers, buying expensive fuel and paying the higher maintenance costs that combustion engines routinely require. Consumers could flock to greener competitors.

Beyond these business advantages, zero-emission vehicles carry other big benefits for the public. The Postal Service recently calculated some of these benefits by estimating the climate harms that going all-electric would avoid, benefits that persist even where electricity generation still includes fossil-generated electricity in nearby grids. Its findings were telling: A fully electric fleet would prevent millions or tens of millions of dollars’ worth of climate-change-related harms to property and human health each year of the trucks’ lifetimes (and this is probably a considerable underestimate). The world leaders that recently gathered at the global climate summit in Glasgow encouraged exactly this type of transition toward low-carbon technologies.

A cleaner postal fleet would benefit Americans in many other important ways. In addition to warming the planet, tailpipe pollutants can have dire health consequences for the people who breathe in the fumes. Mail trucks traverse virtually every neighborhood in the country and often must idle in residential areas, so we all benefit when they stop emitting. And these localized harms are not distributed equally. Some parts of the country — too often, low-income communities of color — already have poor air quality. Removing pollution from dirty mail trucks will especially help these overburdened and underserved populations.

The government’s purchasing power also routinely inspires companies to devise better and cheaper ways to do business. Investments in aerospace technologies, for instance, have spilled over into consumer innovations, giving us GPS technologies and faster, more fuel-efficient passenger jets. Bulk demand for cleaner trucks could inspire similar innovations as companies clamor for government contracts, meaning we all could get cheaper and better green products like car batteries, and the American EV boom could further accelerate those gains.

Additionally, because postal trucks are virtually everywhere in the country, if they go electric, that would mean more charging stations and grid updates everywhere too, and better utility planning for truck fleets to ensure reliable service. Suddenly, that long road trip that discourages many would-be electric car buyers may be simpler, which could boost electric vehicle adoption.

White House climate adviser Gina McCarthy talks with EVgo CEO Cathy Zoi before the start of an event near an EVgo electric car charging station.
ENERGY

The case for electrifying the postal fleet is strong from both a business and a social standpoint. Indeed, even Postmaster General Louis DeJoy, who was appointed during the Trump administration, supports it. But getting there is not so simple. Most private businesses could just borrow the money they need for this investment and pay it back with the long-term savings they would enjoy. But not the Postal Service. Thanks to its byzantine funding structure, it cannot afford electric trucks’ upfront costs unless Congress either provides the money or lets it borrow more. This is the primary reason it has not committed to making more than 10 percent of its fleet electric.

And that returns us to the Build Back Better legislation. The version passed by the House sets aside $7 billion to help the Postal Service buy electric mail trucks — enough to electrify the vast majority of its fleet by the end of the decade.

Biden has made expanding the use of electric vehicles a top priority, setting an ambitious goal of 100 percent zero-emission federal vehicle acquisitions by 2035, and new EPA emission limits aim to accelerate EV adoption. But Sen. Joe Manchin has expressed resistance to some of the climate-related subsidies in the legislation and is also eager to keep costs down. This provision, however, is worthy of the West Virginia Democrat’s support.

Most Americans would see — and benefit from — these trucks on a daily basis. And for an operation that got its start under Benjamin Franklin, it’s a crucial way to keep the Postal Service relevant.

 

Related News

View more

Bimbo Canada signs agreements to offset 100 per cent of its electricity consumption for Canadian operations

Bimbo Canada VPPAs secure renewable electricity from RES wind and solar projects in Alberta, totaling 170MW, via 15-year contracts to offset consumption, advance RE100 goals, and drive decarbonization across bakeries, depots, and distribution centers.

 

Key Points

Virtual power purchase agreements sourcing wind and solar to offset Bimbo Canadas electricity and support RE100.

✅ 15-year RES contracts for Alberta wind and solar capacity

✅ Offsets electricity for bakeries, depots, and distribution centers

✅ Advances Grupo Bimbo RE100 target for 100% renewable power

 

Canada's oldest and largest bakery, Bimbo Canada, has signed two virtual power purchase agreements (VPPAs) with Renewable Energy Systems  (RES) to procure renewable electricity, similar to federal green electricity contracts advancing in Alberta, that will offset 100 per cent of the company's electricity consumption in Canada. The projects are expected to be fully operational by December, 2022.

Canada is the second market, alongside the United States, to enter into VPPAs, where companies like Amazon clean energy projects are expanding rapidly. These agreements, together with additional sustainability initiatives conducted around the world by the parent company Grupo Bimbo, will help the company offset 90 per cent of its global electricity consumption.

"Bimbo Canada is committed to nourishing a better world through productive sustainability practices," said Joe McCarthy, president of Bimbo Canada. "These agreements are the next big step in reducing our environmental footprint, as peers such as Arvato's first solar plant signal industry momentum, and becoming leaders in responsible stewardship of the environment."

The 15-year agreements with RES will support the commercial development of two renewable energy projects in southern Alberta, consisting of wind and solar projects, similar to RBC's solar PPA announced in the region, totaling 170MW of installed capacity. Under these two agreements, Bimbo Canada will procure the benefit of approximately 50MW of renewable electricity to offset electricity consumption for its 16 bakeries, 14 distribution centres and 191 depots. Commercial development for the wind and solar farms will be finalized later this year by RES Canada and the projects are expected to be fully operational by the end of next year.  

"RES is proud that its Alberta wind and solar projects, amid growth such as a $200M Alberta wind farm led by a Buffett-linked firm, are helping Bimbo Canada meet its sustainability initiatives," said Peter Clibbon, RES Senior VP of Development. "It's a win-win situation with our projects delivering competitive wind and solar electricity to Bimbo Canada, and while providing our host communities with long-term tax and landowner income."

In 2018, Grupo Bimbo joined RE100, a global initiative led by The Climate Group and in partnership with Carbon Disclosure Project (CDP) and committed to operating with 100 per cent renewable electricity by 2025. As a leading supplier of fresh-baked goods and snacks for Canadian families, these agreements support the company's targets and builds upon many successful past sustainability initiatives, as market activity by Canadian Solar project sales continues nationwide.

"The renewable electricity initiatives in our operations respond to Grupo Bimbo's deep commitment that we have had for many decades globally with the planet and with present and future generations," said Daniel Servitje, global CEO of Grupo Bimbo. "With this announcement, we have achieved another important milestone for the company on our journey towards becoming 100 per cent renewable electricity by 2025."

Last year, Bimbo Canada reduced product waste and exceeded its product waste reduction target by 18 per cent, which saved four million units of products from landfills. The company also eliminated 174 metric tonnes of plastic per year (equal to 43 adult elephants) through several packaging optimization initiatives.

Earlier this year, Bimbo Canada signed the Canada Plastics Pact (CPP) and, amid a broader push for clean energy exemplified by Edmonton rooftop solar installations, earned its first ENERGY STAR certification for its Hamilton, Ontario bakery. The company will continue to work towards other initiatives that fulfill its commitment to be a sustainable, highly productive and deeply humane company.

 

Related News

View more

Peak Power Receives $765,000 From Canadian Government to Deploy 117 V1G EV Chargers

Peak Power V1G EV chargers optimize smart charging in Ontario, using Synergy technology and ZEVIP support to manage peak demand, enhance grid capacity, and expand EV infrastructure across mixed-use developments with utility-friendly energy management.

 

Key Points

Peak Power's V1G smart chargers use Synergy tech to cut peak load and grow Ontario EV charging access.

✅ 117 chargers funded by NRCAN's ZEVIP program

✅ Synergy tech shifts load off peak to boost grid capacity

✅ Partners: SWTCH Energy and Signature Electric

 

Peak Power, a Canadian climate tech company with a core focus in energy management and energy storage, announces it has received a $765,000 investment through Natural Resources Canada’s (NRCan) Zero Emission Vehicle Infrastructure Program (ZEVIP) to install 117 V1G chargers as Ontario energy storage push intensifies province-wide planning. The total cost of the project is valued at over $1.6 million.

Peak Power will install the V1G chargers across several mixed-use developments in Ontario. Peak Power’s Synergy technology, which is currently used in the company’s successful Peak Drive EV charging project, will underpin the chargers. The Synergy tech will enable the chargers to draw energy from the grid when it’s most widely available and avoid times of peak demand, similar to emerging EV-to-grid integration pilots now, and can also adjust the flow rate at which the cars are charged. The intelligent chargers will reduce strain on the grid, benefiting utilities and electricity users by increasing grid capacity as well as giving EV drivers more locations to charge their vehicles.

As part of ZEVIP, the project supports the federal government’s goals of accelerating the electrification of Canada’s transportation sector. The 117 chargers will encourage adoption of EVs, as drivers have access to expanded infrastructure for charging, and as Ontario streamlines charging-station builds to accelerate deployments. From the perspective of grid operators, the intelligent nature of the Peak Power software will allow more capacity from the grid without requiring major infrastructure upgrades.

Peak Power will work with partners with deep expertise in EV charging to install the chargers. SWTCH Energy is co-developing the software for the EV chargers with Peak Power, while Signature Electric will install the hardware and supporting infrastructure.

“We’re thrilled to support the Canadian government's electrification goals through smart EV charging,” said Matthew Sachs, COO of Peak Power. “The funding from NRCan will enable us to provide drivers with more options for EV charging, while the smart nature of our Synergy tech in the chargers means grid operators don’t have to worry about capacity restraints when EVs are plugged into the grid, with EV owners selling power back offering additional flexibility too. ZEVIP is critical to greater electrification of the country’s infrastructure, and we’re proud to support the initiative.”

“Happy EV Week, Canada. Our government is making electric vehicles more affordable and charging more accessible where Canadians live, work and play, for example through the Ivy and ONroute charging network that supports travel corridors,” said the Honourable Jonathan Wilkinson, Minister of Natural Resources. “Investing in more EV chargers, like the ones announced today in Ontario, will put more Canadians in the driver’s seat on the road to a net-zero future and help achieve our climate goals.”

"I'm pleased to be announcing the deployment of over 100 Electric Vehicle chargers across Ontario with Peak Power,” said Julie Dabrusin, Parliamentary Secretary to the Minister of Natural Resources and to the Minister of Environment and Climate Change, and Member of Parliament for Toronto-Danforth. “This $765,000 investment by the Government of Canada will allow folks in Toronto and across the province to access the infrastructure they need, as B.C. expands EV charging shows national momentum, to drive an EV while fighting climate change. Happy #EVWeek!”

"Limited access to EV charging infrastructure in high-density mixed-used environments remains a key barrier to widespread EV adoption,” said Carter Li, CEO of SWTCH. “SWTCH’s partnership with Peak Power and Signature Electric to deploy V1G technology to these settings will enhance coordination between energy utilities, building operators, and EV drivers to improve building energy efficiency and access to EV charging infrastructure, with charger rebates in B.C. expanding home and workplace options as well.”

“Signature Electric is proud to be a partner on increasing the availability of localized charging for Canadians,” said Mark Marmer, Owner of Signature Electric. “Together, we can scale EV infrastructure to support Canada’s commitment to achieving net-zero emissions by 2050.”

 

Related News

View more

Unprecedented Growth in Solar and Storage Anticipated with Record Installations and Investments

U.S. Clean Energy Transition accelerates with IRA and BIL, boosting renewable energy, solar PV, battery storage, EV adoption, manufacturing, grid resilience, and jobs while targeting carbon-free electricity by 2035 and net-zero emissions by 2050.

 

Key Points

U.S. shift to renewables under IRA and BIL scales solar, storage, and EVs toward carbon-free power by 2035.

✅ Renewables reached ~22% of U.S. electricity generation in 2022.

✅ Nearly $13b in PV manufacturing; 94 plants; 25k jobs announced.

✅ Battery storage grew from 3% in 2017 to 36% by H1 2023.

 

In recent years, the United States has made remarkable strides in embracing renewable energy, with notable solar and wind growth helping to position itself for a more sustainable future. This transition has been driven by a combination of factors, including environmental concerns, economic opportunities, and technological advancements.

With the introduction of the Inflation Reduction Act (IRA) and the Bipartisan Infrastructure Law (BIL), the United States is rapidly advancing its journey towards clean energy solutions.

To underscore the extent of this progress, consider the following vital statistics: In 2022, renewable energy sources (including hydroelectric power) accounted for approximately 22% of the nation's electricity generation, and renewables surpassed coal in the mix that year, while the share of renewables in total electricity generation capacity had risen to around 30% and the nation is moving toward 30% electricity from wind and solar as well.

Notably, in the transportation sector, consumers are increasingly embracing zero-emission fuels, such as electric vehicles. In 2022, battery electric vehicles (BEVs) represented 5.6% of new vehicle registrations, surging to 7.1% by the first half of 2023, according to estimates from EUPD Research.

The United States has set ambitious targets, including achieving 100% carbon pollution-free electricity by 2035 and aiming for economy-wide net-zero greenhouse gas emissions by no later than 2050, and policy proposals such as Biden's solar plan reinforce these goals for the power sector. These targets are poised to provide a significant boost to the clean energy sector in the country, reaffirming its commitment to a sustainable and environmentally responsible future.

 

IRA and BIL: Catalysts for Growth

The IRA and BIL represent a transformative shift in the landscape of clean energy policy, heralding a new era for the solar and energy storage sectors in the United States. The IRA allocates substantial resources to address the climate crisis, fortify domestic clean energy production, and solidify the U.S. as a global leader in clean energy manufacturing.

According to the U.S. Department of Energy (DOE), an impressive investment exceeding $120 billion has been announced for the U.S. battery manufacturing and supply chain sector since the introduction of IRA and BIL. Additionally, plans have been unveiled for over 200 new or expanded facilities dedicated to minerals, materials processing, and manufacturing. This move is expected to create more than 75,000 potential job opportunities, strengthening the nation's workforce.

Following the introduction of IRA and BIL, solar photovoltaic (PV) manufacturing in the U.S. has also witnessed a substantial surge in planned investments, totaling nearly $13 billion, as reported by the DOE. Furthermore, a total of 94 new and expanded PV manufacturing plants have been announced, potentially generating over 25,000 jobs in the country.

 

Booming Solar Sector

In recent years, the U.S. solar sector has outpaced other energy sources, including a surging wind sector and natural gas, in terms of capacity growth. EUPD Research estimates reveal a notable upward trend in the contribution of solar capacity to annual power capacity additions, as 82% of the 2023 pipeline consists of wind, solar, and batteries across utility-scale projects. This trajectory has risen from 37% in 2019 to 38% in 2020, further increasing to 44% in 2021 and an impressive 45% in 2022.

Although the country experienced a temporary setback in 2022 due to pandemic-related delays, trade law enforcement, supply chain disruptions, and rising costs, it is now on track to make a historic addition to its PV capacity in 2023. According to EUPD Research's 2023 forecast, the U.S. is poised to achieve its largest-ever expansion in PV capacity, estimated at 32 to 35 GWdc, assuming the installation of all planned utility-scale capacity, and solar generation rose 25% in 2022 as a supportive indicator. Additionally, from 2023 to 2028, the U.S. is projected to add approximately 233 GWdc of PV capacity.

In terms of cumulative installed PV capacity (including utility-scale, commercial and industrial, and residential) on a state-by-state basis, California holds the top position, followed by Texas, Florida, North Carolina, and Arizona. Remarkably, Texas is rapidly expanding its utility-scale PV capacity and may potentially surpass California in the next two years.

 

Rapid Growth in Battery Storage

Battery energy storage has emerged as the dominant and rapidly expanding source of energy storage in the U.S. in recent years. The proportion of battery storage in the country's energy storage capacity has surged dramatically, increasing from a mere 3% in 2017 to a substantial 36% in the first half of 2023.

 

Related News

View more

Canada is a solar power laggard, this expert says

Canada Distributed Energy faces disruption as solar, smart grids, microgrids, and storage scale utility-scale renewables, challenging centralized utilities and accelerating decarbonization, grid modernization, and distributed generation across provinces like Alberta.

 

Key Points

Canada Distributed Energy shifts from centralized grids to local solar, wind, and storage for reliable low-carbon power.

✅ Morgan Solar and Enbridge launch Alberta Solar One, 13.7 MW.

✅ Optical films boost panel efficiency, lowering cost per watt.

✅ Strong utilities slow adoption of microgrids and smart grids.

 

By Nick Waddell

Disruption is coming to electricity generation but Canada has become a laggard when it comes to not just adoption of alternative energy sources but in moving to a more distributed model of electricity generation. That’s according to Mike Andrade, CEO of Morgan Solar, whose new solar project in conjunction with Enbridge has just come online in Alberta, a province known as a powerhouse for both green and fossil energy in Canada.

“There’s a lot of inertia to Canada’s electrical system and I don’t think that bodes well,” said Andrade, who spoke on BNN Bloomberg on Thursday. 

“Canada is one of the poorest places for uptake of solar, as NEB data on solar demand indicates,” Andrade said, “I believe a lot of it has to do with the fact that we have strong provincial utilities that have their mandates and their chosen technologies.”

Alberta Solar One, a 13.7 MW power facility near Lethbridge, Alberta, had its unveiling this week amid red-hot solar growth in Alberta that shows no sign of slowing. It’s a 36,500-panel farm constructed by Enbridge in a quick six-month turnaround as part of the power company’s pledge to become a carbon-free generator by 2050. Along with solar, Enbridge has made big investments in offshore and onshore wind farms in the United States, while also producing so-called green hydrogen at an Ontario plant.

Private company Morgan Solar considers the Alberta Solar One project as the first utility-scale validation of its technology, which uses optical films to redirect light onto photovoltaic cells to further power production. 

“We use an advanced modelling system and a variety of tools to design very simple optical systems that can be easily inserted into a panel,” Andrade said. “They cost less and bring down the cost per watt. It captures light that would otherwise miss the cells and so you get more power per cell area than any other commercial technology at this point.”

Like renewables in general, solar energy has been thrust into the spotlight as governments worldwide aim to make good on their climate change and emissions pledges, with analyses showing zero-emissions electricity by 2035 is possible in Canada, and convert power generation from fossil fuels to alternative sources. 

The market has paid attention, too, driving up values on renewable energy stocks across the board, including solar stocks, as provinces like Alberta explore selling renewable energy into broader markets. Last year, the Invesco Solar ETF, which tracks the MAC Global Solar Energy Index, soared 234 per cent, while Canadian companies with solar assets like Algonquin Power and Northland Power have been winners over the past few years.

Canadian cleantech companies involved in the solar power sector have also fared well, with names like UGE International (UGE International Stock Quote, Chart, News, Analyst. Financials TSXV:UGE), Aurora Solar and 5N Plus (5N Plus Stock Quote, Chart, News, Analysts, Financials TSX:VNP) having attracted investor attention of late.

Currently, part of the push in alternative energy involves the move from centralized to a more distributed picture of power generation, where solar panels, wind turbines and small modular nuclear reactors can operate close to or within sources of consumption like cities.

But Andrade says Canada has a lot of catching up to do on that front, especially as its current system seems devoted to maintaining the precedence of large, centralized power production — along with the utility companies that generate it.

“Canada is going to be left with this big, old fashioned hub and spoke model, and that’s increasingly going to be out-competed by a distributed grid, call them smart grids or micro grids,” Andrade said.

“That’s the future that solar is going to drive along with storage, and I personally don’t think Canada is prepared for it, not because we can’t do it but because regulatory and incumbency is holding us back from doing that,” he said.

“We pay our utilities, saying, ‘You invest capital and we’ll give you a fixed return on capital.’ Well, guess what? You’re going to get large, centralized capital projects which are going to get big central generation hub and spoke distribution,” Andrade said.

Ahead of the Canadian federal government’s tabling next week of its first budget in two years, many in the energy sector will be taking notes on the Liberal government’s investments in the so-called green recovery after the economic downturn, with renewable energy proponents hoping for further support, noting Alberta’s renewable energy surge could power thousands of jobs, to shift Canada’s resource sector away from fossil fuels.

By comparison, President Biden in the US recently unveiled his $2-billion infrastructure plan which put precedence on greening the country’s power grid, encouraging the adoption of electric vehicles and supporting renewable resource development, and Canadian studies suggest 2035 zero-emission power is practical and profitable as well across the national grid. 

On disruption in power generation, Andrade said there are parallels to be drawn from information technology, which has historically made a point of discarded outdated models along the way.

“I was at IBM, and they had the mainframe business and that got blown up. I also worked with Nortel and Celestica and they got blown up —and it wasn’t due to having better central hub and spoke systems. They got beat up by this distributed system,” Andrade said. 

“The same thing is going to happen here and the disruption is coming in electricity generation as well,” he said.

 

About The Author - Nick Waddell

Cantech Letter founder and editor Nick Waddell has lived in five Canadian provinces and is proud of his country's often overlooked contributions to the world of science and technology. Waddell takes a regular shift on the Canadian media circuit, making appearances on CTV, CBC and BNN, and contributing to publications such as Canadian Business and Business Insider.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified