Cost is the main reason stopping Canadians from buying an electric car: Survey


ev survey

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Canada EV Incentives drive adoption toward the 2035 zero-emission target, with rebates, federal and provincial programs boosting affordability amid concerns over charging infrastructure, range anxiety, and battery life, according to a BNN Bloomberg-Leger survey.

 

Key Points

Canada EV incentives are rebates and tax credits reducing EV costs to accelerate zero-emission vehicle adoption nationwide.

✅ Federal and provincial rebates reduce EV purchase prices

✅ Incentives offset range, battery, and charging concerns

✅ Larger incentives correlate with higher adoption rates

 

If the federal government wants to meet its ambitious EV goals of having all cars and passenger trucks sold in Canada be zero emissions by 2035, it’s going to have to do something about the cost of these vehicles.

A new survey from BNN Bloomberg and RATESDOTCA has found that cost is the number one reason stopping Canadians from buying an electric car.

The survey, which was conducted by Leger Marketing earlier this month, asked 1,511 Canadians if they were planning to purchase a new electric vehicle in the near future. It found that just over one in four, or 26 per cent of Canadians, are planning to do so, with Atlantic Canada lagging other regions. On the other hand, 19 per cent of Canadians are planning to buy a gas/diesel/hybrid card for their next purchase. 

Those who aren’t planning on buying an EV were asked what the biggest reason for their decision was. By far, it was the price of these vehicles: 31 per cent of this group cited cost as the main reason for not electrifying their ride. Another 59 per cent of respondents cited it as a concern, but not the main one. Other reasons for not wanting to buy an electric vehicle included lack of infrastructure (18 per cent), range concerns (16 per cent), and battery life and replacement (13 per cent), and some report EV shortages and wait times too.

What’s interesting is that it’s clear that government incentives for EVs are the most powerful tool right now to drive adoption, though some argue subsidies are a bad idea for Canada. When asked if further government incentives would convince them to buy an electric vehicle, 78 per cent of those surveyed said yes.

That’s right. If more governments increased the incentives offered for buying electric vehicles, reaching the goal of only selling zero emission vehicles in Canada by 2035 would no longer be a pipe dream, despite 2035 mandate skepticism from some.

At the moment, only Quebec and B.C. offer government incentives to buy an electric vehicle, even as B.C. charging bottlenecks are predicted. The federal government offers up to a $5,000 incentive, with restrictions including a limit on the total price of the vehicle, and has signaled EV sales regulations are forthcoming. Ontario previously offered a rebate of up to $14,000, however, the popular program was cancelled when the Progress Conservative government was elected in 2018.

The cancellation led to a plunge in new electric vehicle sales in Ontario, falling more than 55 per cent in the first six months of 2019 when compared to the same time period in the previous year, according to Electric Mobility Canada.

It’s no surprise that the larger the incentive, the more Canadians will be swayed to buy an electric car. Perhaps what’s surprising is that the incentive doesn’t even have to be as large as the previous Ontario rebate was. The survey found that seven per cent of Canadians would buy an electric vehicle if they got an incentive ranging anywhere from $5,001-$7,250. A full 35 per cent said a $12,500 or higher incentive would convince them.

The majority of Canadians surveyed said they use their vehicles for leisure or commuting to work. Leisure uses include running errands and seeing friends and family, of which 43 per cent of respondents said was the primary way they used their vehicle. Meanwhile, 36 per cent said they primarily used their car to commute to work.

The survey also found that incentives were more effective at convincing younger people to buy an electric vehicle. Eighty-three per cent of those under the age of 55 could be swayed by new incentives. But for those over 55, only 66 per cent said they would change their mind. 

 

Related News

Related News

Germany to Exempt Electric Cars from Vehicle Tax Until 2035

Germany is extending its vehicle tax exemption for electric cars until 2035, a federal move aimed at boosting EV sales, supporting the auto industry, and advancing the country’s transition to cleaner, more sustainable transportation.

 

Why is Germany Exempting EVs from Vehicle Tax Until 2035?

Germany is exempting electric vehicles from vehicle tax until 2035 to boost EV adoption, support its auto industry, and meet national climate targets.

✅ Encourages consumers to buy zero-emission cars

✅ Protects jobs in the automotive sector

✅ Advances Germany’s clean energy transition

Germany’s federal government has confirmed plans to extend the country’s vehicle tax exemption for electric cars until 2035, as part of a renewed push to accelerate the nation’s e-mobility transition and support its struggling automotive industry. The move, announced by Finance Minister Lars Klingbeil, comes just weeks before the existing exemption was set to expire.

“In order to get many more electric cars on the road in the coming years, we need to provide the right incentives now,” Klingbeil told the German Press Agency (DPA). “That is why we will continue to exempt electric cars from vehicle tax.”

Under the proposed law, the exemption will apply to new fully electric vehicles registered until December 31, 2030, with benefits lasting until the end of 2035. According to the Finance Ministry, the measure aims to “provide an incentive for the early purchase of a purely electric vehicle.” While popular among consumers and automakers, the plan is expected to cost the federal budget several hundred million euros in lost revenue.

Without the extension, the tax relief for new battery-electric vehicles (BEVs) would have ended on January 1, 2026, creating uncertainty for automakers and potential buyers. The urgency to pass the new legislation reflects the government’s goal to maintain Germany’s momentum toward electrification, even as the age of electric cars accelerates amid economic headwinds and fierce international competition.

The exemption’s renewal was originally included in the coalition agreement between the Christian Democratic Union (CDU), the Christian Social Union (CSU), and the Social Democratic Party (SPD). It follows two other measures from the government’s “investment booster” package—raising the maximum gross price for EV tax incentives to €100,000 and allowing special depreciation for electric vehicles. However, the vehicle tax measure was previously in jeopardy due to Germany’s tight fiscal situation. The Finance Ministry had cautioned that every proposal in the coalition deal was “subject to financing,” and a plan to end EV subsidies led to speculation that the EV tax break could be dropped altogether.

Klingbeil’s announcement coincides with an upcoming “automotive dialogue” summit at the Chancellery, hosted by Chancellor Friedrich Merz. The meeting will bring together representatives from federal ministries, regional governments, automakers advancing initiatives such as Daimler’s electrification plan across their portfolios, and trade unions to address both domestic and international challenges facing Germany’s car industry. Topics will include slowing EV sales growth in China, the ongoing tariff dispute with the United States, where EPA emissions rules are expected to boost EV sales, and strategies for strengthening Germany’s global competitiveness.

“We must now put together a strong package to lead the German automotive industry into the future and secure jobs,” Klingbeil said. “We want the best cars to continue to be built in Germany. Everyone knows that the future is electric.”

The government is also expected to revisit a proposed program to help low- and middle-income households access electric cars, addressing affordability concerns that persist across markets, modelled on France’s “social leasing” initiative. Though included in the coalition agreement, progress on that program has stalled, and few details have emerged since its announcement.

Germany’s latest tax policy move signals renewed confidence in its electric vehicle transition, despite budget constraints and a turbulent global market, as the 10-year EV outlook points to most cars being electric worldwide. Extending the exemption until 2035 sends a clear message to consumers and manufacturers alike: the country remains committed to building its clean transport future—one electric car at a time.

 

Related Articles

 

View more

Electric vehicles can fight climate change, but they’re not a silver bullet: U of T study

EV Adoption Limits highlight that electric vehicles alone cannot meet emissions targets; life cycle assessment, carbon budgets, clean grids, public transit, and battery materials constraints demand broader decarbonization strategies, city redesign, and active travel.

 

Key Points

EV Adoption Limits show EVs alone cannot hit climate targets; modal shift, clean grids, and travel demand are essential.

✅ 350M EVs by 2050 still miss 2 C goals without major mode shift

✅ Grid demand rises 41%, requiring clean power and smart charging

✅ Battery materials constraints need recycling, supply diversification

 

Today there are more than seven million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago. It’s a massive change – but according to a group of researchers at the University of Toronto’s Faculty of Applied Science & Engineering, it won’t be nearly enough to address the global climate crisis. 

“A lot of people think that a large-scale shift to EVs will mostly solve our climate problems in the passenger vehicle sector,” says Alexandre Milovanoff, a PhD student and lead author of a new paper published in Nature Climate Change. 

“I think a better way to look at it is this: EVs are necessary, but on their own, they are not sufficient.” 

Around the world, many governments are already going all-in on EVs. In Norway, for example, where EVs already account for half of new vehicle sales, the government has said it plans to eliminate sales of new internal combustion vehicles by 2025. The Netherlands aims to follow suit by 2030, with France and Canada's EV goals aiming to follow by 2040. Just last week, California announced plans to ban sales of new internal combustion vehicles by 2035.

Milovanoff and his supervisors in the department of civil and mineral engineering – Assistant Professor Daniel Posen and Professor Heather MacLean – are experts in life cycle assessment, which involves modelling the impacts of technological changes across a range of environmental factors. 

They decided to run a detailed analysis of what a large-scale shift to EVs would mean in terms of emissions and related impacts. As a test market, they chose the United States, which is second only to China in terms of passenger vehicle sales. 

“We picked the U.S. because they have large, heavy vehicles, as well as high vehicle ownership per capita and high rate of travel per capita,” says Milovanoff. “There is also lots of high-quality data available, so we felt it would give us the clearest answers.” 

The team built computer models to estimate how many electric vehicles would be needed to keep the increase in global average temperatures to less than 2 C above pre-industrial levels by the year 2100, a target often cited by climate researchers. 

“We came up with a novel method to convert this target into a carbon budget for U.S. passenger vehicles, and then determined how many EVs would be needed to stay within that budget,” says Posen. “It turns out to be a lot.” 

Based on the scenarios modelled by the team, the U.S. would need to have about 350 million EVs on the road by 2050 in order to meet the target emissions reductions. That works out to about 90 per cent of the total vehicles estimated to be in operation at that time. 

“To put that in perspective, right now the total proportion of EVs on the road in the U.S. is about 0.3 per cent,” says Milovanoff. 

“It’s true that sales are growing fast, but even the most optimistic projections of an electric-car revolution suggest that by 2050, the U.S. fleet will only be at about 50 per cent EVs.” 

The team says that, in addition to the barriers of consumer preferences for EV deployment, there are technological barriers such as the strain that EVs would place on the country’s electricity infrastructure, though proper grid management can ease integration. 

According to the paper, a fleet of 350 million EVs would increase annual electricity demand by 1,730 terawatt hours, or about 41 per cent of current levels. This would require massive investment in infrastructure and new power plants, some of which would almost certainly run on fossil fuels in some regions. 

The shift could also impact what’s known as the demand curve – the way that demand for electricity rises and falls at different times of day – which would make managing the national electrical grid more complex, though vehicle-to-grid strategies could help smooth peaks. Finally, there are technical challenges stemming from the supply of critical materials for batteries, including lithium, cobalt and manganese. 

The team concludes that getting to 90 per cent EV ownership by 2050 is an unrealistic scenario. Instead, what they recommend is a mix of policies, rather than relying solely on a 2035 EV sales mandate as a singular lever, including many designed to shift people out of personal passenger vehicles in favour of other modes of transportation. 

These could include massive investment in public transit – subways, commuter trains, buses – as well as the redesign of cities to allow for more trips to be taken via active modes such as bicycles or on foot. They could also include strategies such as telecommuting, a shift already spotlighted by the COVID-19 pandemic. 

“EVs really do reduce emissions, which are linked to fewer asthma-related ER visits in local studies, but they don’t get us out of having to do the things we already know we need to do,” says MacLean. “We need to rethink our behaviours, the design of our cities, and even aspects of our culture. Everybody has to take responsibility for this.” 

The research received support from the Hatch Graduate Scholarship for Sustainable Energy Research and the Natural Sciences and Engineering Research Council of Canada.

 

Related News

View more

Tesla prepares to bring its electric cars to South America

Tesla Chile Market Entry signals EV expansion into South America, with a Santiago country manager, service technicians, and advisors, leveraging lithium supply, competing with BYD, and preparing sales, service, and charging infrastructure.

 

Key Points

Tesla will enter Chile to launch EV sales, service, and charging from Santiago, opening its South America expansion.

✅ Country manager role based in Santiago to lead market launch

✅ Focus on EV sales, service centers, and charging infrastructure

✅ Leverages Chile's lithium ecosystem; competes with BYD

 

Tesla is preparing to bring its electric cars to South America, according to a new job posting in Chile.

It has been just over a decade since Tesla launched the Model S and significantly accelerated EV inflection point in the deployment of electric vehicles around the world.

The automaker has expanded its efforts across North America, where the U.S. EV tipping point has been reached, and most countries in Europe, and it is still gradually expanding in Asia.

But there’s one continent that Tesla hasn’t touched yet: South America, even as global EV adoption raced to two million in five years.

It sounds like it is about to change.

Tesla has started to promote a job posting on LinkedIn for a country manager in Chile, aligning with international moves like UK expansion plans it has signaled.

The country manager is generally the first person hired when Tesla expands in a new market.

The job is going to be based in Santiago, the capital of Chile, where the company is also looking for some Tesla advisors and service technicians.

Chile is an interesting choice for a first entry into the South American market. The Chilean auto market consists of only about 234,000 vehicles sold year-to-date and that’s down 29% versus the previous year.

That’s roughly the number of vehicles sold in Brazil every month.

While the size of the auto market in the country is small, there’s a strong interest for electric vehicles as the EV era arrives ahead of schedule there, which might explain Tesla’s foray.

The country is rich in lithium, a critical material for EV batteries, where lithium supply concerns have also emerged, which has helped create interest for electric vehicles in the country. The government also announced an initiative to allow for only new sales of electric vehicles in the country starting in 2035.

Tesla’s Chinese competitor BYD has set its sight on the South American market by bringing its cheaper China-made EVs to the market, part of a broader Chinese EV push in Europe as well, but now it looks like Tesla is willing to test the market on the higher-end.

 

Related News

View more

Winds of Change: Vineyard Wind Ushers in a New Era for Clean Energy

Vineyard Wind Offshore Wind Farm delivers clean power to Massachusetts near Martha's Vineyard, with 62 turbines and 800 MW capacity, advancing renewable energy, cutting carbon, lowering costs, and driving net-zero emissions and green jobs.

 

Key Points

An 800 MW Massachusetts offshore project of 62 turbines supplying clean power to 400,000+ homes and cutting emissions.

✅ 800 MW powering 400,000+ MA homes and businesses

✅ 62 turbines, 13 MW each, 15 miles from Martha's Vineyard

✅ Cuts 1.6M tons CO2 annually; boosts jobs and port infrastructure

 

The crisp Atlantic air off the coast of Martha's Vineyard carried a new melody on February 2nd, 2024. Five colossal turbines, each taller than the Statue of Liberty, began their graceful rotations, marking the historic moment power began flowing from Vineyard Wind, the first large-scale offshore wind farm in the United States, enabled by Interior Department approval earlier in the project timeline. This momentous occasion signifies a seismic shift in Massachusetts' energy landscape, one that promises cleaner air, lower energy costs, and a more sustainable future for generations to come.

Nestled 15 miles southeast of Martha's Vineyard and Nantucket, Vineyard Wind is a colossal undertaking. The project, a joint venture between Avangrid Renewables and Copenhagen Infrastructure Partners, will ultimately encompass 62 turbines, each capable of generating a staggering 13 megawatts. Upon full completion later this year, Vineyard Wind will power over 400,000 homes and businesses across Massachusetts, contributing a remarkable 800 megawatts to the state's energy grid.

But the impact of Vineyard Wind extends far beyond mere numbers. This trailblazing project holds immense environmental significance. By harnessing the clean and inexhaustible power of the wind, Vineyard Wind is projected to annually reduce carbon emissions by a staggering 1.6 million metric tons – equivalent to taking 325,000 cars off the road. This translates to cleaner air, improved public health, and a crucial step towards mitigating the climate crisis.

Governor Maura Healey hailed the project as a "turning point" in Massachusetts' clean energy journey. "Across the Commonwealth, homes and businesses will now be powered by clean, affordable energy, contributing to cleaner air, lower energy costs, and pushing us closer to achieving net-zero emissions," she declared.

Vineyard Wind's impact isn't limited to the environment; it's also creating a wave of economic opportunity. Since its inception in 2017, the project has generated nearly 2,000 jobs, with close to 1,000 positions filled by union workers thanks to a dedicated Project Labor Agreement. Construction has also breathed new life into the New Bedford Marine Commerce Terminal, with South Coast construction activity accelerating around the port, transforming it into the nation's first port facility specifically designed for offshore wind, showcasing the project's commitment to local infrastructure development.

"Every milestone on Vineyard Wind 1 is special, but powering up these first turbines stands apart," emphasized Pedro Azagra, CEO of Avangrid Renewables. "This accomplishment reflects the years of dedication and collaboration that have defined this pioneering project. Each blade rotation and megawatt flowing to Massachusetts homes is a testament to the collective effort that brought offshore wind power to the United States."

Vineyard Wind isn't just a project; it's a catalyst for change. It perfectly aligns with Massachusetts' ambitious clean energy goals, which include achieving net-zero emissions by 2050 and procuring 3,200 megawatts of offshore wind by 2028, while BOEM lease requests in the Northeast continue to expand the development pipeline across the region. As Energy and Environmental Affairs Secretary Rebecca Tepper stated, "Standing up a new industry is no easy feat, but we're committed to forging ahead and growing this sector to lower energy costs, create good jobs, and build a cleaner, healthier Commonwealth."

The launch of Vineyard Wind transcends Massachusetts, serving as a beacon for the entire U.S. offshore wind industry, as New York's biggest offshore wind farm moves forward to amplify regional momentum. This demonstration of large-scale development paves the way for further investment and growth in this critical clean energy source. However, the journey isn't without its challenges, and questions persist about reaching 1 GW on the grid nationwide as stakeholders navigate timelines. Concerns regarding potential impacts on marine life and visual aesthetics remain, requiring careful consideration and ongoing community engagement.

Despite these challenges, Vineyard Wind stands as a powerful symbol of hope and progress. It represents a significant step towards a cleaner, more sustainable future, powered by renewable energy sources at a time when U.S. offshore wind is about to soar according to industry outlooks. It's a testament to the collaborative effort of policymakers, businesses, and communities working together to tackle the climate crisis. As the turbines continue their majestic rotations, they carry a message of hope, reminding us that a brighter, more sustainable future is within reach, powered by the wind of change.

Additional Considerations:

  • The project boasts a dedicated Fisheries Innovation Fund, fostering collaboration between the fishing and offshore wind industries to ensure sustainable coexistence.
  • Vineyard Wind has invested in education and training programs, preparing local residents for careers in the burgeoning wind energy sector.
  • The project's success opens doors for further offshore wind development in the U.S., such as Long Island proposals gaining attention, paving the way for a clean energy revolution.

 

Related News

View more

25.5% Of US Electricity Coming From Renewable Energy

US Renewable Energy Growth drives the US electricity mix as wind, solar, and hydropower rise while coal, natural gas, and nuclear decline, boosting market share month over month and year over year across the grid.

 

Key Points

US Renewable Energy Growth tracks rising wind, solar, and hydro shares in the mix as coal, gas, and nuclear decline.

✅ Wind and solar surpass nuclear in April share

✅ Renewables reach 29.3% of US electricity in April

✅ Coal and natural gas shares trend lower since 2020

 

Electricity generated by renewable energy sources continues to grow month over month and year over year in the United States. In April 2022, the share of US electricity coming from renewable energy was up to 29.3%, surpassing a record April level reported previously in national data. That was up from 24.8% in April 2020 and 25.7% in April 2021.

Looking at the first four months of the year, renewables provided 25.5% of US electricity, and were the second-most U.S. source in 2020 as well, while the figure for January–April 2020 was 21.7% and the figure for January–April 2021 was 22.5%.

Coal power (20.2% of US electricity) was down year over year in this time period (from 22% in January–April 2021), even as renewables surpassed coal in 2022 nationwide, but is admittedly still a bit higher than it was in January–April 2020 (16.8%).

Electricity from natural gas is also down year over year, but only very slightly (34.7% for both years). Though, it has dropped significantly since January–April 2020 (39.6%).

Electricity from nuclear power continued to take a steady, step-by-step tumble.

Wind & Solar Power Growth Strong
As reported earlier, April was the first month that wind and solar power provided more electricity than nuclear across the United States. Wind and solar power provided 21% of US electricity, while nuclear power provided 17.8% of US electricity (coal, incidentally, also provided 17.8% of US electricity, but wind and solar had provided more electricity than coal in some previous months as well).

Wind and solar power’s combined market share for the first four months of the year was up from just 14.6% in 2020 and 18.4% in 2021.

Looking at their growth year over year, you can see strong and continuous expansion of solar-provided electricity and wind-provided electricity, amid favorable government plans that have supported deployment.

Solar grew from 2.9% in January–April 2020 to 3.6%in January–April 2021 to, eventually, 4.4% in January–April 2022, with solar's 2022 share rising to 4.7% for the full year. Wind rose from 9.2% to 10.3% to 12.2%.

Together, wind and solar were up from 12.1% in January–April 2020 to 13.9% in January–April 2021, reflecting a surge in wind power within the U.S. electricity mix over this period, to 16.7% January–April 2022.

Hydropower (6.5%) is holding approximately the same position as the same period in 2021 (6.5%), but it is down a significant chunk from April 2020 (8.2%).

 

Related News

View more

3 ways to tap billions in new money to go green - starting this month

Inflation Reduction Act Energy Credits help households electrify with tax credits and rebates for heat pumps, EVs, rooftop solar, battery storage, and efficiency upgrades, cutting utility bills, reducing carbon emissions, and accelerating home electrification nationwide.

 

Key Points

Federal incentives offering tax credits and rebates for heat pumps, EVs, solar, and efficiency to cut emissions.

✅ 30% rooftop solar and storage credit; $2,000 annual cap for heat pumps

✅ Up to $7,500 EV tax credit; price, income, and assembly rules apply

✅ Low-income rebates and discounts available via states starting mid-2023

 

Earlier this year, Congress passed the biggest climate bill in history — cloaked under the name the “Inflation Reduction Act,” a historic climate deal by any measure.

Starting in the new year, the bill will offer households thousands of dollars to transition over from fossil-fuel burning heaters, stoves and cars to cleaner versions as renewable electricity accelerates. On Jan. 1, middle-income households will be able to access over a half-dozen tax credits for electric stoves, cars, rooftop solar and more. And starting sometime in mid-2023, lower-income households will be able to get upfront discounts on some of those same appliances — without having to wait to file their taxes to get the cash back. This handy online tool shows what you might be eligible for, depending on your Zip code and income.

But which credits should Americans focus on — and which are best for the climate? Here’s a guide to the top climate-friendly benefits of the Inflation Reduction Act, and how to access them.


Heat pumps — the best choice for decarbonizing at home

Tax credit available on Jan. 1: 30 percent of the cost, up to $2,000

Income limit: None

Ah, heat pumps — one of the most popular technologies of the transition to clean energy and to net-zero electricity systems. “Heat pump” is a bit of a misnomer for these machines, which are more like super-efficient combo air conditioning and heating systems. These appliances run on electricity and move heat, instead of creating it, and so can be three to five times more efficient than traditional gas or electrical resistance heaters.

“For a lot of people, a heat pump is going to be their biggest personal impact,” said Sage Briscoe, the federal senior policy manager at Rewiring America, a clean-energy think tank. (Heat pumps have become so iconic that Rewiring America even has a heat pump mascot.)

Heat pumps can have enormous cost and carbon savings. According to one analysis using data from the National Renewable Energy Laboratory, switching to a heat pump can save homeowners anywhere from $100 to $1,200 per year on heating bills and prevent anywhere from 1 to 8 metric tons of carbon dioxide emissions per year. For comparison, going vegan for an entire year saves about 1 metric ton of CO2 emissions.

But many consumers encounter obstacles when switching over to heat pumps. In some areas, it can be difficult to find a contractor trained and willing to install them; some homeowners report that contractors share misinformation about heat pumps, including that they don’t work in cold climates. (Modern heat pumps do work in cold climates, and can heat a home even when outdoor temperatures are down to minus-31 degrees Fahrenheit.) Briscoe recommends that homeowners look for skilled contractors who know about heat pumps and do advance research to figure out which models might work best for their home.


Electric vehicles — top choice for cutting car emissions

Tax credit available on Jan. 1: Up to $7,500 depending on the make and model of the car

Income limit: <$150,000 for single filers; <$300,000 for joint filers

If you are like the millions of Americans who don’t live in a community with ample public transit, the best way to decarbonize your transport, as New Zealand's electricity transition shows, is switching to an electric car. But electric cars can be prohibitively expensive for many Americans.

Starting Jan. 1, a new EV tax credit will offer consumers up to $7,500 off the purchase of an electric vehicle. For the first few months, Americans will get somewhere between $3,751 and $7,500 off their purchase of an EV, depending on the size of the battery in the car.

There are limitations, per the new law. The vehicles will also have to be assembled in North America, where Canada's electricity progress is notable, and cars that cost more than $55,000 aren’t eligible, nor are vans or trucks that cost more than $80,000. This week, the Internal Revenue Service provided a list of vehicles that are expected to meet the criteria starting Jan. 1.

Beginning about March, however, that $7,500 credit will be split into two parts: Consumers can get a $3,750 credit if the vehicle has a battery containing at least 40 percent critical minerals from the United States (or a country that the United States has a free-trade agreement with) and another $3,750 credit if at least 50 percent of the battery’s components were assembled and manufactured in North America. Those rules haven’t been finalized yet, so the tax credit starting on Jan. 1 is a stopgap measure until the White House has ironed out the final version.

Joe Britton, the executive director of the EV industry group Zeta, said that means there will likely be a wider group of vehicles eligible for the full tax credit in January and February than there will be later in 2023. Because of this, he recommended that potential EV owners act fast in 2023.

“I would be buying a car in the first quarter,” he said.


Rooftop solar — the best choice for generating clean energy

Tax credit available now: 30 percent of the cost of installation, no cap

Income limit: None

For those who want to generate their own clean energy, there is always rooftop solar panels. This tax credit has actually been available since the Inflation Reduction Act was signed into law in August 2022. It offers a tax credit equal to 30 percent of the cost of installing rooftop solar, with no cap. According to Rewiring America, the average 6 kilowatt solar installation costs about $19,000, making the average solar tax credit about $5,700. (The Inflation Reduction Act also includes a 30 percent tax credit for homeowners that need to upgrade their electricity panel for rooftop solar, and a 30 percent tax credit for installing battery storage to support the shift toward carbon-free electricity solutions.)

Solar panels can save homeowners tens of thousands of dollars in utility bills as extreme heat boosts electricity bills and, when combined with battery storage, can also provide a power backup in the case of a blackout or other disaster. For someone trying to move their entire home away from fossil fuels, solar panels become even more enticing: Switch everything over to electricity, and then make the electricity super cheap with the help from the sun.

For people who don’t own their own homes, there are other options as well. Renters can subscribe to a community solar project to lower their electricity bills and get indirect benefits from the tax credits.


Tips, tricks and words of caution
There are many other credits also coming out in 2023: for EV chargers (up to $1,000), a boon for expanding carbon-free electricity across the grid, heat pump water heaters (up to $2,000), and even cash for sealing up the doors and windows of your home (up to $1,200).

The most important thing to know, Briscoe said, is whether you qualify for the upfront discounts for low- and moderate-income Americans — which won’t be available until later in 2023 — or the tax credits, which will be available Jan. 1. (Try this tool.) If going the tax credit route, it’s better to spread the upgrades out across multiple years, since there is an annual limit on how many of the credits you can claim in a given year. And, she warned, it is not always going to be easy: It can be hard to find the right installers and the right information for how to make use of all the available government resources.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified