Scientists measure what it takes to push an atom

subscribe

I.B.M. scientists have measured the force needed to nudge one atom.

About one-130-millionth of an ounce of force pushes a cobalt atom across a smooth, flat piece of platinum.

Pushing the same atom along a copper surface is easier, just one-1,600-millionth of an ounce of force.

The scientists report these minuscule findings in a recent issue of the journal Science.

I.B.M. scientists have been pushing atoms around for some time, since Donald M. Eigler of the company’s Almaden Research Center in San Jose, Calif., spelled “IBM” using 35 xenon atoms in 1989. Since then, researchers at the company have continued to explore how they might be able to construct structures and electronic components out of individual atoms.

Knowing the precise forces required to move atoms “helps us to understand what is possible and what is not possible,” said Andreas J. Heinrich, a physicist at Almaden and an author of the new Science paper. “It’s a stepping stone for us, but it’s by no means the end goal.”

In the experiment, Dr. Heinrich and his collaborators at Almaden and the University of Regensburg in Germany used the sharp tip of an atomic force microscope to push a single atom. To measure the force, the tip was attached to a small tuning fork, the same kind that is found in a quartz wristwatch. In fact, in the first prototype, Franz J. Giessibl, a scientist at Regensburg who was a pioneer in the use of atomic force microscopes, bought an inexpensive watch and pulled out the quartz tuning fork for use in the experiment.

The tip vibrates 20,000 times a second until it comes into contact with an atom. As the tip pushes, the tuning fork bends, like a diving board, and the vibration frequency dips.

A single atom does not roll, and even a perfectly smooth surface is not perfectly smooth. Instead, the atom rests in small indentations in the lattice, in effect like an egg in an egg carton. The resistance — what becomes friction when multiplied by millions and billions of atoms — comes from the energy needed to rearrange the bonds between the cobalt atom and surface.

When the tip pushes hard enough, the atom hops, almost instantaneously to the next indentation. “It’s not smooth,” said Markus Ternes, another Almaden scientist working on the research. “It’s faster than we can detect.”

From the changes in the frequency of the tuning fork vibrations, the scientists calculated the force that the tip applied to the cobalt atom.

Copper is less sticky than platinum, because of differences between the underlying bonds, and hence allowed the greater ease is pushing the cobalt atom along.

Related News

bitcoin screen

Bitcoin mining uses so much electricity that 1 city could curtail facility's power during heat waves

MEDICINE HAT - On the day of the grand opening of the largest bitcoin mining project in the country, the weather was partly cloudy and 15 C. On a Friday afternoon like this one, the new facility uses as much electricity as all of Medicine Hat, Alta., a city of more than 60,000 people and home to several large industrial plants.

The vast amount of electricity needed for bitcoin mining is why the city of Medicine Hat has championed the economic benefits of the project, while environmentalists say they are wary of the significant energy use.

Toronto-based Hut 8 has spent more…

READ MORE

Macron: France, Germany to provide each other with gas, electricity, to weather crisis

READ MORE

nissan ev parking

Nissan accepting electricity from EVs as payment for parking

READ MORE

texas power lines

Electricity complaints filed by Texans reach three-year high, report says

READ MORE

powerlines

Lawmakers push bill to connect Texas grid to rest of the nation

READ MORE