The N.L. government is pushing the electric car but Labrador's infrastructure is lagging behind


ev charging station

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Labrador EV Charging Infrastructure faces gaps, with few fast chargers; Level 2 dominates, fueling range anxiety for Tesla and Chevrolet Bolt drivers, despite rebates and Newfoundland's network linking St. John's to Port aux Basques.

 

Key Points

It refers to the current and planned network of Level 2 and Level 3 charging sites across Labrador.

✅ 2 public Level 2 chargers: Happy Valley-Goose Bay and Churchill Falls

✅ Phase 2: 3 fast chargers planned for HV-GB, Churchill Falls, Labrador City

✅ $2,500 rebates offered; rural range anxiety still deters buyers

 

Retired pilot Allan Carlson is used to crossing Labrador by air.

But he recently traversed the Big Land in an entirely new way, driving for hours on end in his electric car.

The vehicle in question is a Tesla Model S P100D, which Carlson says he can drive up to 500 kilometres on a full charge — and sometimes even a little more.

After catching a ferry to Blanc-Sablon, Que., earlier this month, he managed to reach Happy Valley-Goose Bay, over 600 kilometres away.

To get there, though, he had to use the public charging station in Blanc-Sablon. He also had to push the limits of what his car could muster. 

But more affordable mass-market electric vehicles don't have the battery power of a top-of-the-range Tesla, prompting the Big Land's first EV owner to wonder when Labrador infrastructure will catch up to the high-speed charging network recently unveiled across Newfoundland this summer.

Phillip Rideout, an electrician who lives in Nain, bought a Chevrolet Bolt EV for his son — the range of which tops out at under 350 kilometres, depending on driving patterns and weather conditions.

He's comfortable driving the car within Nain but said he's concerned about traveling to southern Labrador on a single charge.

"It's a start in getting these 14 charging stations across the island," Rideout said of Newfoundland's new network, "but there is still more work to be done."

The provincial government continues to push an electric-vehicle future, however, even as energy efficiency rankings trail the national average, despite Labradorians like Rideout feeling left out of the loop.

Bernard Davis, minister of environment and climate change, earlier this month announced that government is accepting applications for its electric-vehicle rebate program, as the N.W.T. EV initiative pursues similar goals.

Under the $500,000 program, anyone looking to buy a new or used EV would be entitled to $2,500 in rebates, an attempt by the provincial government to increase EV adoption.

But according to a survey conducted this year by polling firm Leger for the Canadian Vehicle Manufacturer's Association, 51 per cent of rural Canadians found a lack of fast-charging public infrastructure to be a major deterrent to buying an electric car, even as Atlantic EV interest lags overall, according to recent data.

While Newfoundland's 14-charger network, operated by N.L. Hydro and Newfoundland Power, allows drivers to travel from St. John's to Port aux Basques, and 10 new fast-charging stations are planned along the Trans-Canada in New Brunswick, Labrador in contrast has just two publicly available charging locations: one at the YMCA in Happy Valley-Goose Bay and the other near the town office of Churchill Falls.

This is the proposed second phase of additional Level 2 and Level 3 charging locations across Labrador. (TakeChargeNL)
These are slower, Level 2 chargers, as opposed to newer Level 3 charging stations on the island. A Level 2 system averages 50 kilometres of range per hour, and a Level 3 systems can add up to 250 kilometres within the same time frame, making them about five times faster.

Even though all of the fast-charging stations have gone to Newfoundland, MHA for Lake Melville Perry Trimper is optimistic about Labrador's electric future.

Trimper has owned an EV in St. Johns since 2016, but told CBC he'd be comfortable driving it in Happy Valley-Goose Bay.

He acknowledged, however, that prospective owners in Labrador might not be able to drive far from their home charging outlet. 

More promises
If rural skepticism driven by poor infrastructure continues, the urban population could lead the way in adoption, allowing the new subsidies to disproportionately go toward larger population centres, Davis acknowledged.

"Obviously people are not going to purchase electric vehicles if they don't believe they can charge them where they want to be or where they want to go," Davis said in an interview in early September.

Under the provincial government's Phase 2 proposal, Newfoundland and Labrador is projected to get 19 charging stations, with three going to Labrador in Happy Valley-Goose Bay, Churchill Falls and Labrador City, taking cues from NB Power's public network in building regional coverage.

Davis would not commit to a specific cutoff period for the rebate program or a timeline for the first fast-charging stations in Labrador to be built.

"At some point, we are not going to need to place any subsidy on electric vehicles," he said, "but that time is not today and that's why these subsidies are important right now."

Future demand 
Goose Bay Motors manager Joel Hamlen thinks drivers in Labrador could shift away from gas vehicles eventually, even as EV shortages and wait times persist.

But he says it'll take investment into a charging network to get there.

"If we can get something set up where these people can travel down the roads and use these vehicles in the province … I am sure there will be even more of a demand," Hamlen said.

 

Related News

Related News

Ukraine's Green Fightback: Rising from the Ashes with Renewable Energy

Ukraine Green Fightback advances renewable energy, energy independence, and EU integration, rebuilding war-damaged grids with solar, wind, and storage, exporting power to Europe, and scaling community microgrids for resilient, low-carbon recovery and REPowerEU alignment.

 

Key Points

Ukraine Green Fightback shifts to renewables and resilient grids, aiming 50% clean power by 2035 despite wartime damage.

✅ 50% renewable electricity target by 2035, up from 15% in 2021

✅ Community solar and microgrids secure hospitals and schools

✅ Wind and solar rebuild capacity; surplus exports to EU grids

 

Two years after severing ties with Russia's power grid, Ukraine stands defiant, rebuilding its energy infrastructure with a resolute focus on renewables. Amidst the ongoing war's devastation, a remarkable green fightback is taking shape, driven by a vision of a self-sufficient, climate-conscious future.

Energy Independence, Forged in Conflict:

Ukraine's decision to unplug from Russia's grid in 2022 was both a strategic move and a forced necessity, aligning with a wider pushback from Russian oil and gas across the continent. While it solidified energy independence aspirations, the full-scale invasion pushed the country into "island mode," highlighting vulnerabilities of centralized infrastructure.

Today, Ukraine remains deeply intertwined with Europe, inching towards EU accession and receiving global support, as Europe's green surge in clean energy gathers pace. This aligns perfectly with the country's commitment to environmental responsibility, further bolstered by the EU's own "REPowerEU" plan to ditch fossil fuels.

Rebuilding with Renewables:

The war's impact on energy infrastructure has been significant, with nearly half damaged or destroyed. Large-scale renewables have borne the brunt, with 30% of solar and 90% of wind farms facing disruption.

Yet, the spirit of resilience prevails. Surplus electricity generated by solar plants is exported to Poland, showcasing the potential of renewable sources and mirroring Germany's solar power boost across the region. Ambitious projects are underway, like the Tyligulska wind farm, Ukraine's first built in a conflict zone, already supplying clean energy to thousands.

The government's vision is bold: 50% renewable energy share by 2035, a significant leap from 2021's 15%, and informed by the fact that over 30% of global electricity already comes from renewables. This ambition is echoed by civil society groups who urge even higher targets, with calls for 100% renewable energy worldwide continuing to grow.

Community-Driven Green Initiatives:

Beyond large-scale projects, community-driven efforts are flourishing. Villages like Horenka and Irpin, scarred by the war, are rebuilding hospitals and schools with solar panels, ensuring energy security and educational continuity.

These "bright examples," as Svitlana Romanko, founder of Razom We Stand, calls them, pave the way for a broader green wave. Research suggests replacing all coal plants with renewables would cost a manageable $17 billion, paving the way for a future free from dependence on fossil fuels, with calls for a fossil fuel lockdown gaining traction.

Environmental Cost of War:

The war's ecological footprint is immense, with damages exceeding €56.7 billion. The Ministry of Environmental Protection and Natural Resources is meticulously documenting this damage, not just for accountability but for post-war restoration.

Their efforts extend beyond documentation. Ukraine's "EcoZagroza" app allows citizens to report environmental damage and monitor pollution levels, fostering a collaborative approach to environmental protection.

Striving for a Greener Future:

President Zelenskyy's peace plan highlights ecocide prevention and environmental restoration. The ministry itself is undergoing a digitalization push, tackling corruption and implementing EU-aligned reforms.

While the European Commission's recent progress report acknowledges Ukraine's strides, set against a Europe where renewable power has surpassed fossil fuels for the first time, the "crazy rhythm" of change, as Ecoaction's Anna Ackermann describes it, reflects the urgency of the situation. Finding the right balance between war efforts and green initiatives remains a crucial challenge.

Conclusion:

Ukraine's green fightback is a testament to its unwavering spirit. Amidst the darkness of war, hope shines through in the form of renewable energy projects and community-driven initiatives. By embracing a green future, Ukraine not only rebuilds but sets an example for the world, demonstrating that even in the face of adversity, sustainability can prevail.

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

Invenergy and GE Renewable Energy complete largest wind project constructed in North America

North Central Energy Facilities deliver 1,484 MW of renewable power in Oklahoma, uniting Invenergy, GE Renewable Energy, and AEP with the Traverse, Maverick, and Sundance wind farms, 531 turbines, grid-scale clean energy, and regional decarbonization.

 

Key Points

A 1,484 MW trio of Oklahoma wind farms by Invenergy with GE turbines, owned by AEP to supply regional customers.

✅ 1,484 MW capacity from 531 GE 2 MW platform turbines

✅ Largest single-phase wind farm: 998 MW Traverse

✅ Owned by AEP subsidiaries SWEPCO and PSO

 

Invenergy, the largest privately held global developer, owner and operator of sustainable energy solutions and GE Renewable Energy, today announced commercial operations for the 998-megawatt Traverse Wind Energy Center, the largest wind farm constructed in a single phase in North America, reflecting broader growth such as Enel's 450 MW project announced recently.

Located in north central Oklahoma, Traverse joins the operational 199-megawatt Sundance Wind Energy Center and the 287-megawatt Maverick Wind Energy Center, as the last of three projects developed by Invenergy for American Electric Power (AEP) to reach commercial operation, amid investor activity like WEC Energy's Illinois stake in wind assets this year. These projects make up the North Central Energy Facilities and have 531 GE turbines with a combined capacity of 1,484 megawatts, making them collectively among the largest wind energy facilities globally, even as new capacity comes online such as TransAlta's 119 MW addition in the US.

"This is a moment that Invenergy and our valued partners at AEP, GE Renewable Energy, and the gracious members of our home communities in Oklahoma have been looking forward to," said Jim Shield, Senior Executive Vice President and Development Business Leader at Invenergy, reflecting broader momentum as projects like Building Energy project begin operations nationwide. "With the completion of Traverse and with it the North Central Energy Facilities, we're proud to further our commitment to responsible, clean energy development and to advance our mission to build a sustainable world."

The North Central Energy Facilities represent a $2 billion capital investment in north central Oklahoma, mirroring Iowa wind investments that spur growth, directly investing in the local economy through new tax revenues and lease payments to participating landowners and will generate enough electricity to power 440,000 American homes.

"GE was honored to work with Invenergy on this milestone wind project, continuing our long-standing partnership," said Steve Swift, Global Commercial Leader for GE's Onshore Wind business, a view reinforced by projects like North Carolina's first wind farm coming online. "Wind power is a key element of driving decarbonization, and a dependable and affordable energy option here in the US and around the world. GE's 2 MW platform turbines are ideally suited to bring reliable and sustainable renewable energy to the region for many years to come."

AEP's subsidiaries Southwestern Electric Power Company (SWEPCO) and Public Service Company of Oklahoma (PSO) assumed ownership of the three wind farms upon start of commercial operations, alongside emerging interstate delivery efforts like Wyoming-to-California wind plans, to serve their customers in Arkansas, Louisiana and Oklahoma.

 

Related News

View more

The U.S. passed a historic climate deal this year - Recap

Inflation Reduction Act climate provisions accelerate clean energy, EV tax credits, methane fee, hydrogen incentives, and a green bank, cutting carbon emissions, boosting manufacturing, and advancing environmental justice and net-zero goals through 2030.

 

Key Points

They are U.S. policies funding clean energy, EV credits, a methane fee, hydrogen, and justice programs to cut emissions.

✅ Up to $7,500 new and $4,000 used EV tax credits with income limits

✅ First federal methane fee to curb oil and gas emissions

✅ $60B for clean energy manufacturing and environmental justice

 

The Biden administration this year signed a historic climate and tax deal that will funnel billions of dollars into programs designed to speed the country’s clean energy transition, with ways to tap new funding available to households and businesses, and battle climate change.

As the U.S. this year grappled with climate-related disasters from Hurricane Ian in Florida to the Mosquito Fire in California, the Inflation Reduction Act, which contains $369 billion in climate provisions, was a monumental development to mitigate the effects of climate change across the country, with investment incentives viewed as essential to accelerating clean electricity this decade. 

The bill, which President Joe Biden signed into law in August, is the most aggressive climate investment ever taken by Congress and is expected to slash the country’s planet-warming carbon emissions by about 40% this decade and move the country toward a net-zero economy by 2050, aligning with a path to net-zero electricity many analyses lay out.

The IRA’s provisions have major implications for clean energy and manufacturing businesses, climate startups and consumers in the coming years. As 2022 comes to a close, here’s a look back at the key elements in the legislation that climate and clean energy advocates will be monitoring in 2023.


Incentives for electric vehicles
The deal offers a federal tax credit worth up to $7,500 to households that buy new electric vehicles, as well as a used EV credit worth up to $4,000 for vehicles that are at least two years old. Starting Jan. 1, people making $150,000 a year or less, or $300,000 for joint filers, are eligible for the new car credit, while people making $75,000 or less, or $150,000 for joint filers, are eligible for the used car credit.

Despite a rise in EV sales in recent years, the transportation sector is still the country’s largest source of greenhouse gas emissions, with the lack of convenient charging stations being one of the barriers to expansion. The Biden administration has set a goal of 50% electric vehicle sales by 2030, as Canada pursues EV sales regulations alongside broader oil and gas emissions limits.

The IRA limits EV tax credits to vehicles assembled in North America and is intended to wean the U.S. off battery materials from China, which accounts for 70% of the global supply of battery cells for the vehicles. An additional $1 billion in the deal will provide funding for zero-emissions school buses, heavy-duty trucks and public transit buses.

Stephanie Searle, a program director at the nonprofit International Council on Clean Transportation, said the combination of the IRA tax credits and state policies like New York's Green New Deal will bolster EV sales. The agency projects that roughly 50% or more of passenger cars, SUVs and pickups sold in 2030 will be electric. For electric trucks and buses, the number will be 40% or higher, the group said.

In the upcoming year, Searle said the agency is monitoring the Environmental Protection Agency’s plans to propose new greenhouse gas emissions standards for heavy-duty vehicles starting in the 2027 model year.

“With the IRA already promoting electric vehicles, EPA can and should be bold in setting ambitious standards for cars and trucks,” Searle said. “This is one of the Biden administration’s last chances for strong climate action within this term and they should make good use of it.”


Taking aim at methane gas emissions
The package imposes a tax on energy producers that exceed a certain level of methane gas emissions. Polluters pay a penalty of $900 per metric ton of methane emissions emitted in 2024 that surpass federal limits, increasing to $1,500 per metric ton in 2026.

It’s the first time the federal government has imposed a fee on the emission of any greenhouse gas. Global methane emissions are the second-biggest contributor to climate change after carbon dioxide and come primarily from oil and gas extraction, landfills and wastewater and livestock farming.

Methane is a key component of natural gas and is 84 times more potent than carbon dioxide, but doesn’t last as long in the atmosphere. Scientists have contended that limiting methane is needed to avoid the worst consequences of climate change. 

Robert Kleinberg, a researcher at Columbia University’s Center on Global Energy Policy, said the methane emitted by the oil and gas industry each year would be worth about $2 billion if it was instead used to generate electricity or heat homes.

“Reducing methane emissions is the fastest way to moderate climate change. Congress recognized this in passing the IRA,” Kleinberg said. “The methane fee is a draconian tax on methane emitted by the oil and gas industry in 2024 and beyond.”

In addition to the IRA provision on methane, the Biden Interior Department this year proposed rules to curb methane leaks from drilling, which it said will generate $39.8 million a year in royalties for the U.S. and prevent billions of cubic feet of gas from being wasted through venting, flaring and leaks. 


Boosting clean energy manufacturing
The bill provides $60 billion for clean energy manufacturing, including $30 billion for production tax credits to accelerate domestic manufacturing of solar panels, wind turbines, batteries and critical minerals processing, and a $10 billion investment tax credit to manufacturing facilities that are building EVs and clean energy technology, reinforcing the view that decarbonization is irreversible among policymakers.

There’s also $27 billion going toward a green bank called the Greenhouse Gas Reduction Fund, which will provide funding to deploy clean energy across the country, particularly in overburdened communities, and guide utility carbon-free electricity investments at scale. And the bill has a hydrogen production tax credit, which provides hydrogen producers with a credit based on the climate attributes of their production methods.

Emily Kent, the U.S. director of zero-carbon fuels at the Clean Air Task Force, a global climate nonprofit, said the bill’s support for low-emissions hydrogen is particularly notable since it could address sectors like heavy transportation and heavy industry, which are hard to decarbonize.

“U.S. climate policy has taken a major step forward on zero-carbon fuels in the U.S. and globally this year,” Kent said. “We look forward to seeing the impacts of these policies realized as the hydrogen tax credit, along with the hydrogen hubs program, accelerate progress toward creating a global market for zero-carbon fuels.”

The clean energy manufacturing provisions in the IRA will also have major implications for startups in the climate space and the big venture capital firms that back them. Carmichael Roberts, head of investment at Breakthrough Energy Ventures, has said the climate initiatives under the IRA will give private investors more confidence in the climate space and could even lead to the creation of up to 1,000 companies.

“Everybody wants to be part of this,” Roberts told CNBC following the passage of the bill in August. Even before the measure passed, “there was already a big groundswell around climate,” he said.


Investing in communities burdened by pollution
The legislation invests more than $60 billion to address the unequal effects of pollution and climate change on low-income communities and communities of color. The funding includes grants for zero-emissions technology and vehicles, and will help clean up Superfund sites, improve air quality monitoring capacity, and provide money to community-led initiatives through Environmental and Climate Justice block grants.

Research published in the journal Environmental Science and Technology Letters found that communities of color are systematically exposed to higher levels of air pollution than white communities due to redlining, a federal housing discrimination practice. Black Americans are also 75% more likely than white Americans to live near hazardous waste facilities and are three times more likely to die from exposure to pollutants, according to the Clean Air Task Force.

Biden signed an executive order after taking office aimed to prioritize environmental justice and help mitigate pollution in marginalized communities. The administration established the Justice40 Initiative to deliver 40% of the benefits from federal investments in climate change and clean energy to disadvantaged communities. 

More recently, the EPA in September launched an office focused on supporting and delivering grant money from the IRA to these communities.


Cutting ag emissions
The deal includes $20 billion for programs to slash emissions from the agriculture sector, which accounts for more than 10% of U.S. emissions, according to EPA estimates.

The president has pledged to reduce emissions from the agriculture industry in half by 2030. The IRA funds grants for agricultural conservation practices that directly improve soil carbon, as well as projects that help protect forests prone to wildfires.

Separately, this year the U.S. Department of Agriculture announced it will spend $1 billion on projects for farmers, ranchers and forest landowners to use practices that curb emissions or capture and store carbon. That program is focusing on projects for conservation practices including no-till, cover crops and rotational grazing.

Research suggests that removing carbon already in the atmosphere and replenishing soil worldwide could result in a 10% carbon drawdown.

 

Related News

View more

US Army deploys its first floating solar array

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

View more

Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified