Ontario Making it Easier to Build Electric Vehicle Charging Stations


ev charger

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Ontario EV Charger Streamlining accelerates public charging connections with OEB-led standardized forms, firm timelines, and utility coordination, leveraging Ontario’s clean electricity grid to expand reliable infrastructure across urban, rural, and northern communities.

 

Key Points

An OEB-led, provincewide procedure that standardizes EV charger connections and accelerates public charging.

✅ Standardized forms, data, and responsibilities across 58 utilities

✅ Firm timelines for studies, approvals, and grid connection upgrades

✅ Supports rural, northern, highway, and community charging expansion

 

The Ontario government is making it easier to build and connect new public electric vehicle (EV) chargers to the province’s world-class clean electricity grid. Starting May 27, 2024, all local utilities will follow a streamlined process for EV charging connections that will make it easier to set up new charging stations and, as network progress to date shows, support the adoption of electric vehicles in Ontario.

“As the number of EV owners in Ontario continues to grow, our government is making it easier to put shovels in the ground to build the critical infrastructure needed for drivers to charge their vehicles where and when they need to,” said Todd Smith, Minister of Energy. “This is just another step we are taking to reduce red tape, increase EV adoption, and use our clean electricity supply to support the electrification of Ontario’s transportation sector.”

Today, each of Ontario’s 58 local electricity utilities have different procedures for connecting new public EV charging stations, with different timelines, information requirements and responsibilities for customers.

In response to Minister Smith’s Letter of Direction, which called on the Ontario Energy Board (OEB) to take steps to facilitate the efficient integration of EV’s into the provincial electricity system, including vehicle-to-building charging applications, the OEB issued provincewide, streamlined procedures that all local utilities must follow for installing and connecting new EV charging infrastructure. This new procedure includes the implementation of standardized forms, timelines, and information requirements which will make it easier for EV charging providers to deploy chargers in all regions of the province.

“Our government is paving the way to an electric future by building the EV charging infrastructure drivers need, where they need it,” said Prabmeet Sarkaria, Minister of Transportation. “By increasing the accessibility of public EV charging stations across the province, including for rural and northern communities, we are providing more sustainable and convenient travel options for drivers.”

“Having attracted over $28 billion in automotive investments in the last three years, our province is a leading jurisdiction in the global production and development of EVs,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade. “By making it easier to build public charging infrastructure, our government is supporting Ontario’s growing end-to-end EV supply chain and ensuring EV drivers can confidently and conveniently power their journeys.”

This initiative is part of the government’s larger plan to support the adoption of electric vehicles and make EV charging infrastructure more accessible, which includes:

  • The EV ChargeON program – a $91 million investment to support the installation of public EV chargers, including emerging V1G chargers to support grid-friendly deployment, outside of Ontario’s large urban centres, including at community hubs, Ontario’s highway rest areas, carpool parking lots, and Ontario Parks.
  • The new Ultra-Low Overnight price plan which allows customers who use more electricity at night, including those charging their EV, to save up to $90 per year by shifting demand to the ultra-low overnight rate period when provincewide electricity demand is lower and to participate in programs that let them sell electricity back to the grid when appropriate.
  • Making it more convenient for electric vehicle (EV) owners to travel the province with EV fast chargers now installed at all 20 renovated ONroute stations along the province’s busiest highways, the 400 and 401.

The initiative also builds on the government’s Driving Prosperity: The Future of Ontario’s Automotive Sector plan which aims to create a domestic EV battery ecosystem in the province, expand energy storage capacity, and position Ontario as a North American automotive innovation hub by working to support the continued transition to electric, low carbon, connected and autonomous vehicles.

Related News

The Age of Electric Cars Is Dawning Ahead of Schedule

EV Price Parity is nearing reality in Europe as subsidies, falling battery costs, higher energy density, and expanding charging infrastructure push Tesla, Volkswagen, and Renault to compete under EU CO2 regulations and fleet targets.

 

Key Points

EV price parity means EVs match ICE cars on total ownership cost as subsidies fade and batteries get cheaper.

✅ Battery pack costs trending toward $100/kWh

✅ EU CO2 rules and incentives accelerate adoption

✅ Charging networks reduce range anxiety and TCO

 

An electric Volkswagen ID.3 for the same price as a Golf. A Tesla Model 3 that costs as much as a BMW 3 Series. A Renault Zoe electric subcompact whose monthly lease payment might equal a nice dinner for two in Paris.

As car sales collapsed in Europe because of the pandemic, one category grew rapidly: electric vehicles, a shift that some analysts say could put most drivers within a decade on battery power. One reason is that purchase prices in Europe are coming tantalizingly close to the prices for cars with gasoline or diesel engines.

At the moment this near parity is possible only with government subsidies that, depending on the country, can cut more than $10,000 from the final price. Carmakers are offering deals on electric cars to meet stricter European Union regulations on carbon dioxide emissions. In Germany, an electric Renault Zoe can be leased for 139 euros a month, or $164.

Electric vehicles are not yet as popular in the United States, largely because government incentives are less generous, but an emerging American EV boom could change that trajectory. Battery-powered cars account for about 2 percent of new car sales in America, while in Europe the market share is approaching 5 percent. Including hybrids, the share rises to nearly 9 percent in Europe, according to Matthias Schmidt, an independent analyst in Berlin.

As electric cars become more mainstream, the automobile industry is rapidly approaching the tipping point, an inflection point for the market, when, even without subsidies, it will be as cheap, and maybe cheaper, to own a plug-in vehicle than one that burns fossil fuels. The carmaker that reaches price parity first may be positioned to dominate the segment.

A few years ago, industry experts expected 2025 would be the turning point. But technology is advancing faster than expected, and could be poised for a quantum leap. Elon Musk is expected to announce a breakthrough at Tesla’s “Battery Day” event on Tuesday that would allow electric cars to travel significantly farther without adding weight.

The balance of power in the auto industry may depend on which carmaker, electronics company or start-up succeeds in squeezing the most power per pound into a battery, what’s known as energy density. A battery with high energy density is inherently cheaper because it requires fewer raw materials and less weight to deliver the same range.

“We’re seeing energy density increase faster than ever before,” said Milan Thakore, a senior research analyst at Wood Mackenzie, an energy consultant which recently pushed its prediction of the tipping point ahead by a year, to 2024.

Some industry experts are even more bullish. Hui Zhang, managing director in Germany of NIO, a Chinese electric carmaker with global ambitions, said he thought parity could be achieved in 2023.

Venkat Viswanathan, an associate professor at Carnegie Mellon University who closely follows the industry, is more cautious, though EV revolution skeptics argue the revolution is overstated. But he said: “We are already on a very accelerated timeline. If you asked anyone in 2010 whether we would have price parity by 2025, they would have said that was impossible.”

This transition will probably arrive at different times for different segments of the market. High-end electric vehicles are pretty close to parity already. The Tesla Model 3 and the gas-powered BMW 3 Series both sell for about $41,000 in the United States.

A Tesla may even be cheaper to own than a BMW because it never needs oil changes or new spark plugs and electricity is cheaper, per mile, than gasoline. Which car a customer chooses is more a matter of preference, particularly whether an owner is willing to trade the convenience of gas stations for charging points that take more time. (On the other hand, owners can also charge their Teslas at home.)

Consumers tend to focus on sticker prices, and it will take longer before unsubsidized electric cars cost as little to drive off a dealer’s lot as an economy car, even for shoppers weighing whether it’s the right time to buy an electric car now.

The race to build a better battery
The holy grail in the electric vehicle industry has been to push the cost of battery packs — the rechargeable system that stores energy — below $100 per kilowatt-hour, the standard measure of battery power. That is the point, more or less, at which propelling a vehicle with electricity will be as cheap as it is with gasoline.

Current battery packs cost around $150 to $200 per kilowatt-hour, depending on the technology. That means a battery pack costs around $20,000. But the price has dropped 80 percent since 2008, according to the United States Department of Energy.

All electric cars use lithium-ion batteries, but there are many variations on that basic chemistry, and intense competition to find the combination of materials that stores the most power for the least weight.

For traditional car companies, this is all very scary. Internal combustion engines have not changed fundamentally for decades, but battery technology is still wide open. There are even geopolitical implications. China is pouring resources into battery research, seeing the shift to electric power as a chance for companies like NIO to make their move on Europe and someday, American, markets. In less than a decade, the Chinese battery maker CATL has become one of the world’s biggest manufacturers.


Everyone is trying to catch Tesla
The California company has been selling electric cars since 2008 and can draw on years of data to calculate how far it can safely push a battery’s performance without causing overheating or excessive wear. That knowledge allows Tesla to offer better range than competitors who have to be more careful. Tesla’s four models are the only widely available electric cars that can go more than 300 miles on a charge, according to Kelley Blue Book.

On Tuesday, Mr. Musk could unveil a technology offering 50 percent more storage per pound at lower cost, according to analysts at the Swiss bank UBS. If so, competitors could recede even further in the rearview mirror.

“The traditional car industry is still behind,” said Peter Carlsson, who ran Tesla’s supplier network in the company’s early days and is now chief executive of Northvolt, a new Swedish company that has contracts to manufacture batteries for Volkswagen and BMW.

“But,” Mr. Carlsson said, “there is a massive amount of resources going into the race to beat Tesla. A number, not all, of the big carmakers are going to catch up.”

The traditional carmakers’ best hope to avoid oblivion will be to exploit their expertise in supply chains and mass production to churn out economical electrical cars by the millions.

A key test of the traditional automakers’ ability to survive will be Volkswagen’s new battery-powered ID.3, which will start at under €30,000, or $35,000, after subsidies and is arriving at European dealerships now. By using its global manufacturing and sales network, Volkswagen hopes to sell electric vehicles by the millions within a few years. It plans to begin selling the ID.4, an electric sport utility vehicle, in the United States next year. (ID stands for “intelligent design.”)

But there is a steep learning curve.

“We have been mass-producing internal combustion vehicles since Henry Ford. We don’t have that for battery vehicles. It’s a very new technology,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology in southwestern Germany whose research focuses on battery manufacturing. “The question will be how fast can we can get through this learning curve?”

It’s not just about the batteries
Peter Rawlinson, who led design of the Tesla Model S and is now chief executive of the electric car start-up Lucid, likes to wow audiences by showing up at events dragging a rolling carry-on bag containing the company’s supercompact drive unit. Electric motor, transmission and differential in one, the unit saves space and, along with hundreds of other weight-saving tweaks, will allow the company’s Lucid Air luxury car — which the company unveiled on Sept. 9 — to travel more than 400 miles on a charge, Mr. Rawlinson said.

His point is that designers should focus on things like aerodynamic drag and weight to avoid the need for big, expensive batteries in the first place. “There is kind of a myopia,” Mr. Rawlinson said. “Everyone is talking about batteries. It’s the whole system.”

“We have been mass-producing internal combustion vehicles since Henry Ford,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology. “We don’t have that for battery vehicles.”

A charger on every corner would help
When Jana Höffner bought an electric Renault Zoe in 2013, driving anywhere outside her home in Stuttgart was an adventure. Charging stations were rare, and didn’t always work. Ms. Höffner drove her Zoe to places like Norway or Sicily just to see if she could make it without having to call for a tow.

Ms. Höffner, who works in online communication for the state of Baden-Württemberg, has since traded up to a Tesla Model 3 equipped with software that guides her to the company’s own network of chargers, which can fill the battery to 80 percent capacity in about half an hour. She sounds almost nostalgic when she remembers how hard it was to recharge back in the electric-vehicle stone age.

“Now, it’s boring,” Ms. Höffner said. “You say where you want to go and the car takes care of the rest.”

The European Union has nearly 200,000 chargers, far short of the three million that will be needed when electric cars become ubiquitous, according to Transport & Environment, an advocacy group. The United States remains far behind, with less than half as many as Europe, even as charging networks jostle under federal electrification efforts.

But the European network is already dense enough that owning and charging an electric car is “no problem,” said Ms. Höffner, who can’t charge at home and depends on public infrastructure.
 

 

Related News

View more

UK Electric cars will cost more if Sunak fails to strike Brexit deal

UK-EU EV Tariffs 2024 threaten a 10% levy under Brexit rules of origin, raising electric vehicle prices, straining battery supply chains, and risking a price war for manufacturers, consumers, and climate targets across automotive market.

 

Key Points

Tariffs from Brexit rules of origin imposing 10% duties on EVs, raising UK prices amid battery and supply chain gaps.

✅ 10% tariffs if rules of origin thresholds are unmet

✅ Price hikes on UK EVs, led by Tesla Model Y

✅ Battery supply gaps strain UK and EU manufacturers

 

Electric cars will cost British motorists an extra £6,000 if Rishi Sunak fails to strike a post-Brexit deal with the EU on tariffs, industry bosses have told The Independent.

UK manufacturers warned of a “devastating price war” on consumers, echoing UK concern over higher EV prices across the market – threatening both the electric vehicle (EV) market and the UK’s climate change commitments – if tariffs are enforced in January 2024.

In the latest major Brexit row, the Sunak government is pushing the European Commission to agree to delay the costly new rules, even as the UK readies for rising EV adoption across the economy, set to come in at the start of next year as part of Boris Johnson’s Brexit trade deal.

But Brussels has shown no sign it is willing to budge – even as Washington has announced a 100% tariff on Chinese-made EVs this year – leaving business leaders in despair about the impact of 10 per cent tariffs on exports on Britain’s car industry.

The tariffs would increase the price of a new Tesla Model Y – the UK’s most popular electric vehicle – by £6,000 or more, according to a new report by the Independent Commission on UK-EU Relations.

“For the sake of our economy and our planet, the government has a responsibility to get round the table with the EU, fix this and fix the raft of other issues with the Brexit deal,” said commission director Mike Buckley.

The new rules of origin agreed in the Brexit trade and cooperation agreement (TCA) require 45 per cent of an electric car’s value, as the age of electric cars accelerates, to originate in the UK or EU to qualify for trade without tariffs.

The British auto industry has warned the 2024 rules pose an “existential threat” to sales because of the lack of domestic batteries to meet the rules, even as EV adoption within the decade is widely expected to surge – pleading for a delay until 2027.

The VDA – the lobby group for Germany’s car industry – has also called for an “urgent” move to delay, warning that the rules create a “significant competitive disadvantage” for European carmarkers in relation to China, where tariffs on Chinese EVs are reshaping global trade, and other Asian competitors.

The new report by the Independent Commission on UK-EU Relations – backed by the manufacturers’ body Make UK and the British Chamber of Commerce – warns that the January tariffs will immediately push up costs and hit electric vehicle sales, despite UK EV inquiries surging during the fuel supply crisis in recent years.

 

Related News

View more

Europe's Green Surge: Renewables Soar, Emissions Plummet, but Challenges Remain

EU Renewable Energy Transition accelerates wind and solar growth, slashes fossil fuels and carbon emissions via the ETS, strengthens energy security with LNG diversification, and advances grid resilience toward 2030 climate targets.

 

Key Points

EU shift to wind, solar, and efficiency that cuts fossil fuels while boosting energy security and grid stability

✅ Fossil fuels at 29% of EU power in 2023, coal and gas down sharply

✅ Renewables hit 44% share; wind 18%, solar 9% and rising

✅ ETS, LNG diversification, and efficiency cut demand and emissions

 

Europe's energy landscape is undergoing a dramatic transformation, fueled by a surge in renewable energy and a corresponding decline in fossil fuel dependence. This shift, documented in both a report from the energy think tank Ember and the European Commission's State of the Energy Union report, paints a picture of progress, but also highlights the challenges that lie ahead on the path to a sustainable future.

 

Fossil Fuels Facing an Unprecedented Decline:

Fossil fuels dipped to their lowest point in recorded history, making up only 29% of EU electricity generation in 2023. This represents a significant 19% decrease in both fossil fuel generation and carbon emissions compared to 2022, exceeding even the reductions witnessed during the pandemic. Coal, the dirtiest fossil fuel, saw the steepest decline, dropping by 26%, while gas generation fell by 15%. This decline is attributed to a combination of factors, including:

Increased deployment of renewables: As renewable energy sources like wind and solar become more affordable and efficient, they are increasingly displacing fossil fuels in the energy mix.

Carbon pricing: The EU's Emissions Trading System (ETS) puts a price on carbon emissions, incentivizing generators to switch to cleaner sources of energy.

Geopolitical tensions: The war in Ukraine and subsequent sanctions on Russia have accelerated Europe's efforts to diversify its energy sources away from Russian fossil fuels across the bloc.


Renewables Ascending to New Heights:

Renewable energy is now the dominant force in the EU, as renewables surpassed fossil fuels in the power mix, contributing a record-breaking 44% of the electricity mix. Wind energy leads the charge, generating 18% of electricity – the equivalent of France's entire demand – and surpassing gas for the first time. Solar power also continues to grow, reaching a 9% share, as solar reshapes electricity prices in Northern Europe and hydropower recovered from its 2022 dry spell. This remarkable growth is driven by factors such as:

Favorable policy frameworks: The EU has set ambitious renewable energy targets and implemented supportive policies, including feed-in tariffs and auctions.

Technological advancements: Advancements in wind turbine and solar panel technologies have made them more efficient and cost-effective.
Public support: There is growing public support for renewable energy, driven by concerns about climate change and energy security.

Beyond generation, energy efficiency is playing a critical role in reducing overall energy demand. Electricity demand in the EU fell by 3.4% in 2023, thanks to factors such as improved building insulation and more efficient appliances.

 

EU on Track to Quit Russian Fossil Fuels:

The report underscores Europe's progress in reducing dependence on Russian fossil fuels. Imports of Russian gas have plummeted to 40-45 billion cubic metres, compared to a staggering 155 bcm in 2021. This represents a remarkable 70% reduction in just one year. This shift has been achieved through a combination of increased LNG imports, diversification of gas suppliers, and accelerated deployment of renewable energy sources.

Overall greenhouse gas emissions decreased by 3% in 2022, putting the EU on track to achieve its ambitious 55% reduction target by 2030. These achievements demonstrate the EU's commitment to climate action and its ability to respond decisively to geopolitical challenges.

 

Success, But Not Complacency:

Despite the positive developments, the Commission warns against complacency. Energy markets remain volatile, fossil fuel subsidies are rising in some countries, and critical infrastructure vulnerabilities persist, while some advocates call for a fossil fuel lockdown to accelerate the transition. The bloc needs to accelerate renewable energy expansion to reach the legally binding 42.5% target by 2030. Additionally, ensuring affordability and security of energy supply will be crucial to maintaining public support for the transition.

 

Challenges and Opportunities:

While some countries like Denmark, Finland, and the Netherlands fall short of EU climate and energy goals, others like Spain, Portugal, and Belgium showcase success with renewables. The Commission is taking action with a plan to support the wind industry, where investments in European wind continue, even as it faces challenges from high inflation and increasing competition from China. Additionally, ensuring timely updates to national energy and climate plans is crucial for achieving the EU's overall objectives.

 

NGOs Urge Faster Action:

NGOs like the Climate Action Network (CAN) express concern about the adequacy of national plans, highlighting the gap between ambition and concrete action. They urge member states to accelerate efforts to meet the 2030 targets and avoid a "lost decade" in climate action. CAN emphasizes the need for more ambitious national energy and climate plans, increased investment in renewables, and accelerated energy efficiency measures.

Europe's energy transition is progressing rapidly, with renewables taking center stage and emissions declining. However, significant challenges remain, necessitating continued commitment, national-level action, and a focus on affordability, security, and sustainability. As 2030 approaches, Europe's green surge must translate into concrete results to secure a climate-neutral future.

 

Looking ahead, several key areas will define the success of Europe's energy transition:

  • Accelerating renewable energy deployment: The EU needs to maintain its momentum in building wind, solar, and other renewable energy sources. This requires sustained clean energy investment, streamlined permitting processes, and addressing grid integration challenges.
  • Ensuring affordability and security of supply: The energy transition must be just and inclusive, ensuring that energy remains affordable for all citizens and businesses. Additionally, diversifying energy sources and enhancing grid resilience are crucial to guarantee energy security.
  • Enhancing energy efficiency: Reducing energy demand remains crucial to achieving climate goals and reducing reliance on fossil fuels. This requires continued investments in building energy efficiency, promoting energy-efficient appliances and technologies, and encouraging behavioral changes.
  • International cooperation: Climate change and energy security are global challenges. The EU must continue to lead by example as renewables exceed 30% globally and collaborate with other countries on technological advancements, policy innovations, and financial support for developing nations undergoing their own energy transitions.

Europe's green surge is a testament to its ambition and collective action. By addressing the remaining challenges and seizing the opportunities ahead, the EU can pave the way for a sustainable and secure energy future for itself and the world.

 

 

Related News

View more

Canadian electricity associations aligning goals toward net-zero by 2050

Electricity Alliance Canada champions clean power, electrification, and net-zero, uniting renewable energy, hydropower, nuclear, wind, and solar to decarbonize Canada with sustainable, reliable, affordable electricity across sectors by 2050, economywide growth.

 

Key Points

A national coalition advancing clean power and electrification to help achieve Canada's net-zero by 2050.

✅ Coalition of six Canadian electricity associations

✅ Promotes electrification and clean, reliable power

✅ Aims net-zero by 2050, coal phase-out by 2030

 

Six of Canada’s leading electricity associations have created a coalition to promote clean power’s role, amid a looming power challenge for the country, in a sustainable energy future.

The Electricity Alliance Canada’s mandate is to enable, promote and advocate for increased low or no-carbon electricity usage throughout the economy to help achieve the nation’s net-zero emissions target of 100 percent by 2050, with net-zero electricity regulations permitting some natural gas generation along the way.

The founding members are the Canadian Electricity Association, the Canadian Nuclear Association, the Canadian Renewable Energy Association, Electricity Human Resources Canada, Marine Renewables Canada, and WaterPower Canada, and they aim to incorporate lessons from Europe's power crisis as collaboration advances.

“Electricity will power Canada’s energy transition and create many new well-paying jobs,” reads the joint statement by the six entities. “We are pleased to announce this enhanced collaboration to advance discussion and implement strategies that promote greater electrification in a way that is sustainable, reliable and affordable. Electricity Alliance Canada looks forward to working with governments and energy users to capture the full potential of electricity to contribute to Canada’s net-zero target.”

Canada is much further along than many nations when it comes decarbonizing its power generation sector, yet it is expected to miss 2035 clean electricity goals without accelerated efforts. More than 80 percent of its electricity mix is fueled by non-emitting hydroelectric and nuclear as well as wind, solar and marine renewable generation, according to the Alliance. By contrast, the U.S. portion of non-emitting electricity resources is closer to 40 percent or less.

The remainder of its coal-fired power plants are scheduled to be phased out by 2030, according to reports, though scrapping coal-fired electricity could be costly and ineffective according to one report.

Hydropower leads the way in Canada, with nearly 500 generating plant producing an average of 355 TWh per year, according to the Canadian Hydropower Association. Nuclear plants such as Ontario Power Generation’s Darlington station and Bruce Power also contribute massive-scale and carbon-free electricity capacity, as debates over Ontario's renewable future continue.

Observers note that clean, affordable electricity in Ontario should be a prominent election issue this year.

 

Related News

View more

Building Energy Celebrates the Beginning of Operations and Electricity Generation

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

View more

UK Renewable energy projects worth billions stuck on hold

UK Renewable Grid Connection Delays threaten the 2035 zero-carbon electricity target as National Grid queues stall wind and solar projects, investors, and infrastructure, slowing clean energy deployment, curtailing capacity build-out, and risking net-zero progress.

 

Key Points

Prolonged National Grid queues delaying wind and solar connections, jeopardizing the UK's 2035 clean power target.

✅ Up to 15-year waits for grid connections

✅ Over £200bn projects stuck in the queue

✅ Threatens zero-carbon electricity by 2035

 

The UK currently has a 2035 target for 100% of its electricity to be produced without carbon emissions, while Ireland's green electricity progress offers a nearby benchmark within the next four years.

But meeting the target will require a big increase in the number of renewable projects across the country. It is estimated as much as five times more solar and four times as much wind is needed, with growth in UK offshore wind expected to play a key role here.

The government and private investors have spent £198bn on renewable power infrastructure since 2010, alongside European wind investments recorded last year. But now energy companies are warning that significant delays to connect their green energy projects to the system will threaten their ability to bring more green power online.

A new wind farm or solar site can only start supplying energy to people's homes once it has been plugged into the grid.

Energy companies like Octopus Energy, one of Europe's largest investors in renewable energy, say they have been told by National Grid that they need to wait up to 15 years for some connections, even as a new 10 GW contract aims to speed UK grid additions - far beyond the government's 2035 target.

'Longest grid queues in Europe'
There are currently more than £200bn worth of projects sitting in the connections queue, the BBC has calculated.

Around 40% of them face a connection wait of at least a year, according to National Grid's own figures. That represents delayed investments worth tens of billions of pounds, reflecting stalled grid spending that slows renewable rollouts.

"We currently have one of the longest grid queues in Europe," according to Zoisa North-Bond, chief executive of Octopus Energy Generation.

The problem is so many new renewable projects are applying for connections, the grid cannot keep up with required network expansion such as new pylons in Scotland being discussed nationwide.

The system was built when just a few fossil fuel power plants were requesting a connection each year, but now there are 1,100 projects in the queue, a challenge mirrored by U.S. grid hurdles in moving toward 100% renewables today.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified