Ontario Making it Easier to Build Electric Vehicle Charging Stations


ev charger

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Ontario EV Charger Streamlining accelerates public charging connections with OEB-led standardized forms, firm timelines, and utility coordination, leveraging Ontario’s clean electricity grid to expand reliable infrastructure across urban, rural, and northern communities.

 

Key Points

An OEB-led, provincewide procedure that standardizes EV charger connections and accelerates public charging.

✅ Standardized forms, data, and responsibilities across 58 utilities

✅ Firm timelines for studies, approvals, and grid connection upgrades

✅ Supports rural, northern, highway, and community charging expansion

 

The Ontario government is making it easier to build and connect new public electric vehicle (EV) chargers to the province’s world-class clean electricity grid. Starting May 27, 2024, all local utilities will follow a streamlined process for EV charging connections that will make it easier to set up new charging stations and, as network progress to date shows, support the adoption of electric vehicles in Ontario.

“As the number of EV owners in Ontario continues to grow, our government is making it easier to put shovels in the ground to build the critical infrastructure needed for drivers to charge their vehicles where and when they need to,” said Todd Smith, Minister of Energy. “This is just another step we are taking to reduce red tape, increase EV adoption, and use our clean electricity supply to support the electrification of Ontario’s transportation sector.”

Today, each of Ontario’s 58 local electricity utilities have different procedures for connecting new public EV charging stations, with different timelines, information requirements and responsibilities for customers.

In response to Minister Smith’s Letter of Direction, which called on the Ontario Energy Board (OEB) to take steps to facilitate the efficient integration of EV’s into the provincial electricity system, including vehicle-to-building charging applications, the OEB issued provincewide, streamlined procedures that all local utilities must follow for installing and connecting new EV charging infrastructure. This new procedure includes the implementation of standardized forms, timelines, and information requirements which will make it easier for EV charging providers to deploy chargers in all regions of the province.

“Our government is paving the way to an electric future by building the EV charging infrastructure drivers need, where they need it,” said Prabmeet Sarkaria, Minister of Transportation. “By increasing the accessibility of public EV charging stations across the province, including for rural and northern communities, we are providing more sustainable and convenient travel options for drivers.”

“Having attracted over $28 billion in automotive investments in the last three years, our province is a leading jurisdiction in the global production and development of EVs,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade. “By making it easier to build public charging infrastructure, our government is supporting Ontario’s growing end-to-end EV supply chain and ensuring EV drivers can confidently and conveniently power their journeys.”

This initiative is part of the government’s larger plan to support the adoption of electric vehicles and make EV charging infrastructure more accessible, which includes:

  • The EV ChargeON program – a $91 million investment to support the installation of public EV chargers, including emerging V1G chargers to support grid-friendly deployment, outside of Ontario’s large urban centres, including at community hubs, Ontario’s highway rest areas, carpool parking lots, and Ontario Parks.
  • The new Ultra-Low Overnight price plan which allows customers who use more electricity at night, including those charging their EV, to save up to $90 per year by shifting demand to the ultra-low overnight rate period when provincewide electricity demand is lower and to participate in programs that let them sell electricity back to the grid when appropriate.
  • Making it more convenient for electric vehicle (EV) owners to travel the province with EV fast chargers now installed at all 20 renovated ONroute stations along the province’s busiest highways, the 400 and 401.

The initiative also builds on the government’s Driving Prosperity: The Future of Ontario’s Automotive Sector plan which aims to create a domestic EV battery ecosystem in the province, expand energy storage capacity, and position Ontario as a North American automotive innovation hub by working to support the continued transition to electric, low carbon, connected and autonomous vehicles.

Related News

Biden's Climate Bet Rests on Enacting a Clean Electricity Standard

Clean Electricity Standard drives Biden's infrastructure, grid decarbonization, and utility mandates, leveraging EPA regulation, renewables, nuclear, and carbon capture via reconciliation to reach 80% clean power by 2030 amid partisan Congress.

 

Key Points

A federal mandate to reach 80% clean U.S. power by 2030 using incentives and EPA rules to speed grid decarbonization.

✅ Targets 80% clean electricity by 2030 via Congress or reconciliation

✅ Mix of renewables, nuclear, gas with carbon capture allowed

✅ Backup levers: EPA rules, incentives, utility planning shifts

 

The true measure of President Biden’s climate ambition may be the clean electricity standard he tucked into his massive $2.2 trillion infrastructure spending plan.

Its goal is striking: 80% clean power in the United States by 2030.

The details, however, are vague. And so is Biden’s plan B if it fails—an uncertainty that’s worrisome to both activists and academics. The lack of a clear backup plan underscores the importance of passing a clean electricity standard, they say.

If the clean electricity standard doesn’t survive Congress, it will put pressure on the need to drive climate policy through targeted spending, said John Larsen, a power system analyst with the Rhodium Group, an economic consulting firm.

“I don’t think the game is lost at all if a clean electricity standard doesn’t get through in this round,” Larsen said. “But there’s a difference between not passing a clean electricity standard and passing the right spending package.”

In his few months in office, Biden has outlined plans to bring the United States back into the international Paris climate accord, pause oil and gas leasing on public lands, boost the electric vehicle market, and target clean energy investments in vulnerable communities, including plans to revitalize coal communities across the country, most affected by climate change.

But those are largely executive orders and spending proposals—even as early assessments show mixed results from climate law—and unlikely to last beyond his administration if the next president favors fossil fuel usage over climate policy. The clean electricity standard, which would decarbonize 80% of the electrical grid by 2030, is different.

It transforms Biden’s climate vision from a goal into a mandate. Passing it through Congress makes it that much harder for a future administration to undo. If Biden is in office for two terms, the United States would see a rate of decarbonization unparalleled in its history that would set a new bar for most of the world’s biggest economies.

But for now, the clean electricity standard faces an uncertain path through Congress and steep odds to getting enacted. That means there’s a good chance the administration will need a plan B, observers said.

Exactly what kind of climate spending can pass Congress is the very question the White House and congressional Democrats will be working on in the next few months, including upgrades to an aging power grid that affect renewables and EVs, as the infrastructure bill proceeds through Congress.

Negotiations are fraught already. Congress is almost evenly split between a party that wants to curtail the use of fossil fuels and another that wants to grow them, and even high energy prices have not necessarily triggered a green transition in the marketplace.

Senate Minority Leader Mitch McConnell (R-Ky.) said last week that “100% of my focus is on stopping this new administration.” He made similar comments at the start of the Obama administration and blocked climate policy from getting through Congress. He also said last week that no Republican senators would vote for Biden’s infrastructure spending plan.

A clean electricity standard has been referred to as the “backbone” of Biden’s climate policy—a way to ensure his policies to decarbonize the economy outlast a future president who would seek to roll back his climate work. Advocates say hitting that benchmark is an essential milestone in getting to a carbon-free grid by 2035. Much of President Obama’s climate policy, crafted largely through regulations and executive orders, proved vulnerable to President Trump’s rollbacks.

Biden appears to have learned from those lessons and wants to chart a new course to mitigate the worst effects of climate change. He’s using his majority in the House and Senate to lock in whatever he can before the 2022 midterms, when Democrats are expected to lose the House.

To pass a clean electricity standard, virtually every Democrat must be on board, and even then, the only chance of success is to pass a bill through the budget reconciliation process that can carry a clean electricity standard. Some Senate Democrats have recently hinted that they were willing to split the bill into pieces to get it through, while others are concerned that although this approach might win some GOP support on traditional infrastructure such as roads and bridges, it would isolate the climate provisions that make up more than half of the bill.

The most durable scenario for rapid electricity-sector decarbonization is to lock in a bipartisan clean electricity standard into legislation with 60 votes in the Senate, said Mike O’Boyle, the director of electricity policy for Energy Innovation. Because that’s highly unlikely—if not impossible—there are other paths that could get the United States to the 80% goal within the next decade.

“The next best approach is to either, or in combination, pursue EPA regulation of power plant pollution from existing and new power plants as well as to take a reconciliation-based approach to a clean electricity standard where you’re basically spending federal dollars to provide incentives to drive clean electricity deployment as opposed to a mandate per se,” he said.

Either way, O’Boyle said the introduction of the clean electricity standard sets a new bar for the federal government that likely would drive industry response even if it doesn’t get enacted. He compared it to the Clean Power Plan, Obama’s initiative to limit power plant emissions. Even though the plan never came to fruition, because of a Clean Power Plan rollback, it left a legacy that continues years later and wasn’t negated by a president who prioritized fossil fuels over the climate, he said.

“It never got enacted, but it still created a titanic shift in the way utilities plan their systems and proactively reposition themselves for future carbon regulation of their electricity systems,” O’Boyle said. “I think any action by the Biden administration or by Congress through reconciliation would have a similar catalytic function over the next couple years.”

Some don’t think a clean electricity standard has a doomed future. Right now, its provisions are vague. But they can be filled in in a way that doesn’t alienate Republicans or states more hesitant toward climate policy, said Sally Benson, an engineering professor at Stanford University and an expert on low-carbon energy systems. The United States is overdue for a federal mandate that lasts through multiple administrations. The only way to ensure that happens is to get Republican support.

She said that might be possible by making the clean electricity standard more flexible. Mandate the goals, she said, not how states get there. Going 100% renewable is not going to sell in some states or with some lawmakers, she added. For some regions, flexibility will mean keeping nuclear plants open. For others, it would mean using natural gas with carbon capture, Benson said.

While it might not meet the standards some progressives seek to end all fossil fuel usage, it would have a better chance of getting enacted and remaining in place through multiple presidents, she said. In fact, a clean electricity standard would provide a chance for carbon capture, which has been at the center of Republican climate policy proposals. Benson said carbon capture is not economical now, but the mandate of a standard could encourage investments that would drive the sector forward more rapidly.

“If it’s a plan that people see as shutting the door to nuclear or to natural gas plus carbon capture, I think we will face a lot of pushback,” she said. “Make it an inclusive plan with a specific goal of getting to zero emissions and there’s not one way to do it, meaning all renewables—I think that’s the thing that could garner a lot of industrial support to make progress.”

In addition to industry, Biden’s proposed clean electricity standard would drive states to do more, said Larsen of the Rhodium Group. Several states already have their own version of a clean energy standard and have driven much of the national progress on carbon emissions reduction in the last four years, he said. Biden has set a new benchmark that some states, including those with some of the biggest economies in the United States, would now likely exceed, he said.

“It is rare for the federal government to get out in front of leading states in clean energy policy,” he said. “This is not usually how climate policy diffusion works from the state level to the federal level; usually it’s states go ahead and the federal government adopts something that’s less ambitious.”

 

Related News

View more

Spread of Electric Cars Sparks Fights for Control Over Charging

Utility-Controlled EV Charging shapes who builds charging stations as utilities, regulators, and private networks compete over infrastructure, grid upgrades, and pricing, impacting ratepayers, competition, and EV adoption across states seeking cleaner transport.

 

Key Points

Utility-controlled EV charging is utilities building charging networks affecting rates, competition and grid costs.

✅ Regulated investment may raise rates before broader savings.

✅ Private firms warn monopolies stifle competition and innovation.

✅ Regulators balance access, equity, and grid upgrade needs.

 

Electric vehicles are widely seen as the automobile industry’s future, but a battle is unfolding in states across America over who should control the charging stations that could gradually replace fuel pumps.

From Exelon Corp. to Southern California Edison, utilities have sought regulatory approval to invest millions of dollars in upgrading their infrastructure as state power grids adapt to increased charging demand, and, in some cases, to own and operate chargers.

The proposals are sparking concerns from consumer advocates about higher electric rates and oil companies about subsidizing rivals. They are also drawing opposition from startups that say the successors to gas stations should be open to private-sector competition, not controlled by monopoly utilities.

That debate is playing out in regulatory commissions throughout the U.S. as states and utilities promote wider adoption of electric vehicles. At stake are charging infrastructure investments expected to total more than $13 billion over the next five years, as an American EV boom accelerates, according to energy consulting firm Wood Mackenzie. That would cover roughly 3.2 million charging outlets.

Calvin Butler Jr., who leads Exelon’s utilities business, said many states have grown more open to the idea of utilities becoming bigger players in charging as electric vehicles have struggled to take off in the U.S., where they make up only around 2% of new car sales.

“When the utilities are engaged, there’s quicker adoption because the infrastructure is there,” he said.

Major auto makers including General Motors Co. and Ford Motor Co. are accelerating production of electric vehicles, and models like Tesla’s Model 3 are shaping utility planning, and a number of states have set ambitious EV goals—most recently California, which aims to ban the sale of new gasoline-powered cars by 2035. But a patchy charging-station network remains a huge impediment to mass EV adoption.

Democratic presidential candidate Joe Biden has called for building more than 500,000 new public charging outlets in a decade as part of his plan to combat climate change, amid Biden’s push to electrify the transportation sector. But exactly how that would happen is unclear. The U.S. currently has fewer than 100,000 public outlets, according to the Energy Department. President Trump, who has weakened federal tailpipe emissions targets, hasn’t put forward an electric-vehicle charging plan, though he backed a 2019 transportation bill that would have provided $1 billion in grants to build alternative fueling infrastructure, including for electric vehicles.

Charging access currently varies widely by state, as does utility involvement, with many utilities bullish course on EV charging to support growth, which can range from providing rebates on home chargers to preparing sites for public charging—and even owning and operating the equipment needed to juice up electric vehicles.

As of September, regulators in 24 states had signed off on roughly $2.6 billion of utility investment in transportation electrification, according to Atlas Public Policy, a Washington, D.C., policy firm. More than half of that spending was authorized in California, where electric vehicle adoption is highest.

Nearly a decade ago, California blocked utilities from owning most charging equipment, citing concerns about potentially stifling competition. But the nation’s most populous state reversed course in 2014, seeking to spur electrification.

Regulators across the country have since been wrestling with similar questions, generating a patchwork of rules.

Maryland regulators signed off last year on a pilot program allowing subsidiaries of Exelon and FirstEnergy Corp. to own and operate public charging stations on government property, provided that the drivers who use them cover at least some of the costs.

Months later, the District of Columbia rejected an Exelon subsidiary’s request to own public chargers, saying independent charging companies had it covered.

Some charging firms argue utilities shouldn’t be given monopolies on car charging, though they might need to play a role in connecting rural customers and building stations where they would otherwise be uneconomical.

“Maybe the utility should be the supplier of last resort,” said Cathy Zoi, chief executive of charging network EVgo Services LLC, which operates more than 800 charging stations in 34 states.

Utility charging investments generally are expected to raise customers’ electricity bills, at least initially. California recently approved the largest charging program by a single utility to date: a $436 million initiative by Southern California Edison, an arm of Edison International, as the state also explores grid stability opportunities from EVs. The company said it expects the program to increase the average residential customer’s bill by around 50 cents a month.

But utilities and other advocates of electrification point to studies indicating greater EV adoption could help reduce electricity rates over time, by giving utilities more revenue to help cover system upgrades.

Proponents of having utilities build charging networks also argue that they have the scale to do so more quickly, which would lead to faster EV adoption and environmental improvements such as lower greenhouse gas emissions and cleaner air. While the investments most directly help EV owners, “they accrue immediate benefits for everyone,” said Jill Anderson, a Southern California Edison senior vice president.

Some consumer advocates are wary of approving extensive utility investment in charging, citing the cost to ratepayers.

“It’s like, ‘Pay me now, and maybe someday your rates will be less,’” said Stefanie Brand, who advocates on behalf of ratepayers for the state of New Jersey, where regulators have yet to sign off on any utility proposals to invest in electric vehicle charging. “I don’t think it makes sense to build it hoping that they will come.”

Groups representing oil-and-gas companies, which stand to lose market share as people embrace electric vehicles, also have criticized utility charging proposals.

“These utilities should not be able to use their monopoly power to use all of their customers’ resources to build investments that definitely won’t benefit everybody, and may or may not be economical at this point,” said Derrick Morgan, who leads federal and regulatory affairs at the American Fuel & Petrochemical Manufacturers, a trade organization.

Utility executives said their companies have long been used to further government policy objectives deemed to be in the public interest, drawing on lessons from 2021 to guide next steps, such as improving energy efficiency.

“This isn’t just about letting market forces work,” said Mike Calviou, senior vice president for strategy and regulation at National Grid PLC’s U.S. division.

 

Related News

View more

Biden's proposed tenfold increase in solar power would remake the U.S. electricity system

US Solar Power 2050 Target projects 45% electricity from solar, advancing decarbonization with clean energy, wind, nuclear, hydropower, hydrogen, and scalable energy storage, while modernizing the grid and transmission to cut emissions and create jobs.

 

Key Points

A goal for solar to supply ~45% of US electricity by 2050, backed by energy storage and other low-carbon generation.

✅ Requires 1,050-1,570 GW solar and matching storage capacity

✅ Utility-scale buildout uses ~10M acres; rooftop 10-20% of capacity

✅ Complemented by wind, nuclear, hydropower, hydrogen, and flexible turbines

 

President Joe Biden has called for major clean energy investments as a way to curb climate change and generate jobs. On Sept. 8, 2021, the White House released a report produced by the U.S. Department of Energy that found that solar power could generate up to 45% of the U.S. electricity supply by 2050, compared to less than 4% today, with about 3% in 2020 noted by industry observers. The Conversation asked Joshua D. Rhodes, an energy technology and policy researcher at the University of Texas at Austin, what it would take to meet this target.

Why such a heavy focus on solar power? Doesn’t a low-carbon future require many types of clean energy, even though wind and solar could meet about 80% of demand according to some research?
The Energy Department’s Solar Futures Study lays out three future pathways for the U.S. grid: business as usual; decarbonization, meaning a massive shift to low-carbon and carbon-free energy sources; and decarbonization with economy-wide electrification of activities that are powered now by fossil fuels.

It concludes that the latter two scenarios would require approximately 1,050-1,570 gigawatts of solar power, which would meet about 44%-45% of expected electricity demand in 2050, even as renewables approach one-fourth of U.S. generation in the near term. For perspective, one gigawatt of generating capacity is equivalent to about 3.1 million solar panels or 364 large-scale wind turbines.

The rest would come mostly from a mix of other low- or zero-carbon sources, including wind, nuclear, hydropower, biopower, geothermal and combustion turbines run on zero-carbon synthetic fuels such as hydrogen. Energy storage capacity – systems such as large installations of high-capacity batteries – would also expand at roughly the same rate as solar, with record growth in solar and storage anticipated by industry in coming years.

One advantage solar power has over many other low-carbon technologies is that most of the U.S. has lots of sunshine. Wind, hydropower and geothermal resources aren’t so evenly distributed: There are large zones where these resources are poor or nonexistent.

Relying more heavily on region-specific technologies would mean developing them extremely densely where they are most abundant. It also would require building more high-voltage transmission lines to move that energy over long distances, which could increase costs and draw opposition from landowners – a key reason the grid isn't yet 100% renewable according to experts – in many regions.

Is generating 45% of U.S. electricity from solar power by 2050 feasible?
I think it would be technically possible but not easy. It would require an accelerated and sustained deployment far larger than what the U.S. has achieved so far, even as the cost of solar panels has fallen dramatically, and wind, solar and batteries are 82% of the utility-scale pipeline across the country. Some regions have attained this rate of growth, albeit from low starting points and usually not for long periods.

The Solar Futures Study estimates that producing 45% of the nation’s electricity from solar power by 2050 would require deploying about 1,600 gigawatts of solar generation. That’s a 1,450% increase from the 103 gigawatts that are installed in the U.S. today, even as wind and solar trend toward 30% of U.S. electricity in some outlooks. For perspective, there are currently about 1,200 gigawatts of electricity generation capacity of all types on the U.S. power grid.

The report assumes that 10%-20% of this new solar capacity would be deployed on homes and businesses. The rest would be large utility-scale deployments, mostly solar panels, plus some large-scale solar thermal systems that use mirrors to reflect the sun to a central tower.

Assuming that utility-scale solar power requires roughly 8 acres per megawatt, this expansion would require approximately 10.2 million to 11.5 million acres. That’s an area roughly as big as Massachusetts and New Jersey combined, although it’s less than 0.5% of total U.S. land mass.

I think goals like these are worth setting, but are good to reevaluate over time to make sure they represent the most prudent path.

 

Related News

View more

More than half of new U.S. electric-generating capacity in 2023 will be solar

U.S. 2023 Utility-Scale Capacity Additions highlight surging solar power, expanding battery storage, wind projects, natural gas plants, and new nuclear reactors, boosting grid reliability in Texas and California with record planned installations.

 

Key Points

Planned grid expansions led by solar and battery storage, with wind, natural gas, and nuclear increasing U.S. capacity.

✅ 29.1 GW solar planned; Texas and California lead installations.

✅ 9.4 GW battery storage to more than double current capacity.

✅ Natural gas, wind, and 2.2 GW nuclear round out additions.

 

Developers plan to add 54.5 gigawatts (GW) of new utility-scale electric-generating capacity to the U.S. power grid in 2023, according to our Preliminary Monthly Electric Generator Inventory. More than half of this capacity will be solar power (54%), even as coal generation increase has been reported, followed by battery storage (17%).

 

Solar

U.S. utility-scale solar capacity has been rising rapidly EIA summer outlook since 2010. Despite its upward trend over the past decade 2018 milestone, additions of utility-scale solar capacity declined by 23% in 2022 compared with 2021. This drop in solar capacity additions was the result of supply chain disruptions and other pandemic-related challenges. We expect that some of those delayed 2022 projects will begin operating in 2023, when developers plan to install 29.1 GW of solar power in the United States. If all of this capacity comes online as planned, 2023 will have the most new utility-scale solar capacity added in a single year, more than doubling the current record (13.4 GW in 2021).

In 2023, the most new solar capacity, by far, will be in Texas (7.7 GW) and California (4.2 GW), together accounting for 41% of planned new solar capacity.

 

Battery storage

U.S. battery storage capacity has grown rapidly January generation jump over the past couple of years. In 2023, U.S. battery capacity will likely more than double. Developers have reported plans to add 9.4 GW of battery storage to the existing 8.8 GW of battery storage capacity.

Battery storage systems are increasingly installed with wind and solar power projects. Wind and solar are intermittent sources of generation; they only produce electricity when the wind is blowing or the sun is shining. Batteries can store excess electricity from wind and solar generators for later use. In 2023, we expect 71% of the new battery storage capacity will be in California and Texas, states with significant solar and wind capacity.

 

Natural gas

Developers plan to build 7.5 GW of new natural-gas fired capacity record natural gas output in 2023, 83% of which is from combined-cycle plants. The two largest natural gas plants expected to come online in 2023 are the 1,836 megawatt (MW) Guernsey Power Station in Ohio and the 1,214 MW CPV Three Rivers Energy Center in Illinois.

 

Wind

In 2023, developers plan to add 6.0 GW of utility-scale wind capacity, as renewables poised to eclipse coal in global power generation. Annual U.S. wind capacity additions have begun to slow, following record additions of more than 14 GW in both 2020 and 2021.

The most wind capacity will be added in Texas in 2023, at 2.0 GW. The only offshore wind capacity expected to come online this year is a 130.0 MW offshore windfarm in New York called South Fork Wind.

 

Nuclear

Two new nuclear reactors at the Vogtle nuclear power plant in Georgia nuclear and net-zero are scheduled to come online in 2023, several years later than originally planned. The reactors, with a combined 2.2 GW of capacity, are the first new nuclear units built in the United States in more than 30 years.

Developers and power plant owners report planned additions to us in our annual and monthly electric generator surveys. In the annual survey, we ask respondents to provide planned online dates for generators coming online in the next five years. The monthly survey tracks the status of generators coming online based on reported in-service dates.

 

 

Related News

View more

0 to 180 km in 10 minutes: B.C. Hydro rolls out faster electric vehicle charging

B.C. Hydro fast EV charging stations roll out 180 kW DC fast chargers, power sharing, and rural network expansion in Surrey, Manning Park, Mackenzie, and Tumbler Ridge to ease range anxiety across northern B.C.

 

Key Points

180 kW DC chargers with power sharing, expanding B.C.'s rural EV network to cut range anxiety and speed up recharging.

✅ 180 kW DC fast charging: ~180 km added in about 10 minutes

✅ Power sharing enables two vehicles to use one unit simultaneously

✅ Expands rural charging coverage to cut range anxiety for northern B.C.

 

B.C. Hydro has unveiled plans to install new charging stations it says can add as much as 180 kilometres worth of range to the average electric vehicle in 10 minutes.

The utility says the new 180-kilowatt units will be added to its network, expanding stations in southern B.C. as soon as this fall, with even more scheduled to arrive in 2024.

The first communities to get the new faster-charge stations are Surrey, Manning Park and, north of Prince George, Mackenzie and Tumbler Ridge, while the Lillooet fast-charging site is already operational.

B.C. Hydro president Chris O'Riley says both current and prospective electric vehicle owners have said they want improved coverage in more rural parts of the province in order to address range anxiety, as the utility has warned of a potential EV charging bottleneck if demand outpaces infrastructure.

"We are listening to feedback from our customers," he said.

The new stations will also be the first from B.C. Hydro to offer power sharing, which lets two different vehicles use the same unit to charge at the same time.

The adoption of electric vehicles in B.C. is much higher in southern urban areas than rural, northern ones, according to statistics from the provincial government made available in 2022, as the province leads the country in going electric according to recent reports.

The figures showed about one in every 45 people owns a zero-emission vehicle in the southwest regions of the province, but that number drops to one in 232 in the Kootenays, where the region makes electric cars a priority through local initiatives, and one in 414 in northern B.C.

The number of public charging stations closely corresponds to the number of zero-emission vehicles in various regions.

The Vancouver area has more than 500 fast-charging ports, according to ChargeHub, a website that tracks charging stations in North America. 

In contrast, the route from Prince George to Fort Nelson via Dawson Creek along Highway 97, part of the B.C. Electric Highway network connecting the region — a distance of more than 800 kilometres — has just three locations where a vehicle can be charged to 80 per cent power in an hour or less, creating challenges for people hoping to travel the route.

The disparity is also clear in a just-published analysis from the non-profit Community Energy Association, which acts as an advisory group to government associations. 

It found that while there is roughly one charging port every three square kilometres in Metro Vancouver, the number drops to one every 250 square kilometres in the Regional District of East Kootenay and one every 3,500 square kilometres in the Peace River Regional District, in the province's northeast.

"The more infrastructure we can get across the region ... the more the adoption of electric vehicles will increase," said the association's director of transportation initiatives, Danielle Weiss.

"We are excited to hear that B.C. Hydro is also viewing rural areas as a key focus for their new, enhanced charging technology."

B.C. Hydro says it currently has 153 charging units at 84 locations across the province with plans to add an additional 3,000 ports over the next 10 years, with provincial EV charger rebates supporting home and workplace installations as well.

 

Related News

View more

Space-based solar power, once for science fiction, is gaining interest.

Space-Based Solar Power enables wireless energy transfer from orbital solar arrays, using microwave beaming to rectennas on Earth, delivering clean baseload power beyond weather and night limits, as demonstrated by Caltech and NASA.

 

Key Points

Space-based solar power beams microwaves from arrays to rectennas, delivering clean electricity beyond weather and night.

✅ Caltech demo proved wireless power transfer in space.

✅ Microwaves beam to rectennas for grid-scale clean energy.

✅ Operates above clouds, enabling continuous baseload supply.

 

Ali Hajimiri thinks there’s a better way to power the planet — one that’s not getting the attention it deserves. The Caltech professor of electrical engineering envisages thousands of solar panels floating in space, unobstructed by clouds and unhindered by day-night cycles, effectively generating electricity from the night sky for continuous delivery, wirelessly transmitting massive amounts of energy to receivers on Earth.

This year, that vision moved closer to reality when Mr. Hajimiri, together with a team of Caltech researchers, proved that wireless power transfer in space was possible: Solar panels they had attached to a Caltech prototype in space successfully converted electricity into microwaves and beamed those microwaves to receivers, as a demonstration of beaming power from space to devices about a foot away, lighting up two LEDs.

The prototype also beamed a tiny but detectable amount of energy to a receiver on top of their lab’s building in Pasadena, Calif. The demonstration marks a first step in the wireless transfer of usable power from space to Earth, and advances in low-cost solar batteries could help store and smooth that power flow — a power source that Mr. Hajimiri believes will be safer than direct sun rays. “The beam intensity is to be kept less than solar intensity on earth,” he said.

Finding alternative energy sources is one of the topics that will be discussed by leaders in business, science and public policy, including wave energy, during The New York Times Climate Forward event on Thursday. The Caltech demonstration was a significant moment in the quest to realize space-based solar power, amid policy moves such as a proposed tenfold increase in U.S. solar that would remake the U.S. electricity system — a clean energy technology that has long been overshadowed by other long-shot clean energy ideas, such as nuclear fusion and low-cost clean hydrogen.

If space-based solar can be made to work on a commercial scale, said Nikolai Joseph, a NASA Goddard Space Flight Center senior technology analyst, and integrate with peer-to-peer energy sharing networks, such stations could contribute as much as 10 percent of global power by 2050.

The idea of space-based solar energy has been around since at least 1941, when the science-fiction writer Isaac Asimov set one of his short stories, “Reason,” on a solar station that beamed energy by microwaves to Earth and other planets.

In the 1970s, when a fivefold increase in oil prices sparked interest in alternative energy, NASA and the Department of Energy conducted the first significant study on the topic. In 1995, under the direction of the physicist John C. Mankins, NASA took another look and concluded that investments in space-launch technology were needed to lower the cost and move closer to cheap abundant electricity before space-based solar power could be realized.

“There was never any doubt about it being technically feasible,” said Mr. Mankins, now president of Artemis Innovation Management Solutions, a technology consulting group. “The cost was too prohibitive.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.