Canada's race to net-zero and the role of renewable energy


canada net zero race

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Canada Net-Zero demands renewable energy deployment, leveraging hydropower to integrate wind, solar, and storage, scaling electrification, cutting oil and gas emissions, aligning policy, carbon pricing, and investment to deliver a clean grid by 2050.

 

Key Points

A national goal to cut emissions 40-45% by 2030 and reach economy-wide net-zero by 2050 through clean electrification.

✅ Hydropower balances intermittent wind and solar.

✅ Policy, carbon pricing, and investment accelerate deployment.

✅ Clean energy jobs surge as oil and gas decline.

 

As the UN climate talks draw near, Canada has enormous work left to do to reach its goals of reducing greenhouse gas emissions. Collectively, Canadians have to cut overall greenhouse-gas emissions by 40 to 45 per cent below 2005 levels by 2030 and achieve net-zero by 2050 across the economy.

And whereas countries like the U.K. have dramatically slashed their emissions levels, Canada's one of the few nations where emissions keep skyrocketing, and where fossil fuel extraction keeps increasing every year despite our climate targets.

Changes in national emissions and fossil fuel extraction since 1950, for G7 nations plus Norway and Australia
Graphic by Barry Saxifrage in Sep.15 article,Canada's climate solution? Keep increasing fossil fuels extraction.
Given its track record, and the IEA's finding that Canada will need more electricity to hit net-zero, how will Canada achieve its goal of getting to net-zero by 2050?

As Trudeau seeks to cement his political legacy, these are the MPs he’s considering for cabinet
By Andrew Perez | Opinion | October 25th 2021
In the upcoming online Conversations event on Thursday, 11 a.m. PT/2 p.m. ET, host and Canada's National Observer deputy managing editor David McKie will discuss how cleaning up Canada's electricity and renewable energy can put the country on track to hitting its targets with Clean Energy Canada executive director Merran Smith, Canadian Institute for Climate Choices senior economist Dale Beugin, and WaterPower Canada CEO Anne-Raphaëlle Audouin.

Getting to net-zero grid through renewable electricity
“If we wanted to be powered by 100 per cent renewable electricity, including proposals for a fully renewable electricity grid by 2030, Canada is one of the countries where this is actually possible,” said Audouin.

She says for that to happen, it would take a slate of clean energy providers working together to fill the gaps, rather than competing for market dominance.

“You couldn't power Canada just with wind and solar, even with batteries. That being said, renewables happen to work very well together ” she said. “Hydropower already makes up more than 90 per cent of Canada’s renewable generation and 60 per cent of the country’s total electricity needs are currently met thanks to this flexible, dispatchable, abundant source of baseload renewable electricity. It isn’t a stretch of the imagination to envision hydropower and wind and solar working increasingly together to clean up our grid. In fact, hydropower already backs up and allows intermittent renewable energies like wind and solar onto the grid.”

She noted that while hydropower alone won't be the solution, its long history and indisputable suite of attributes — hydroelectricity has been in Canada since the 1890s — will make it a key part of the clean energy transition required to replace coal, natural gas and oil, which still make up around 20 per cent of Canada's power sources.

Canada's vast access to water, wind, biomass, solar, geothermal, and ocean energy, and a federal government that has committed to climate goals, makes us well-positioned to lead the way to a net-zero future and eventually the electrification of our economy. So, what's holding the country back?

The new reality for renewables
According to Clean Energy Canada, it's possible to grow the clean energy sector, but only if businesses invest massively in renewables and governments give guidance and oversight informed by the implications of decarbonizing Canada's electricity grid research.

A recent modelling study from Clean Energy Canada and Navius Research exploring the energy picture here in Canada over the next decade shows our clean energy sector is expected to grow by about 50 per cent by 2030 to around 640,000 people. Already, the clean energy industry provides 430,500 jobs — more than the entire real estate sector — and that growth is expected to accelerate as our dependence on oil and gas decreases. In fact, clean energy jobs in Alberta are predicted to jump 164 per cent over the next decade.

Currently, provinces with the most hydropower generation are also the ones with the lowest electricity rates, reflecting that electricity has been a nationwide climate success in Canada. Wind and solar are now on par, or even more competitive, than natural gas, and that could have big implications for other major sectors of the economy. Grocery giant Loblaws (which owns brands including President's Choice, Joe Fresh, and Asian grocery chain T&T) deployed its fleet of fully electric delivery trucks in recent years, and Hydro-Québec just signed a $20-billion agreement to help power and decarbonize the state of New York over the next 25 years.

In The New Reality, Smith writes that many carbon-intensive industries, such as the mining sector, could also potentially benefit from the increased demand for certain natural resources — like lithium and nickel — as the world switches to electric vehicles and clean power.

“Oil and gas may have dominated Canada’s energy past, but it’s Canada’s clean energy sector that will define its new reality,” Smith emphasized.

Despite its vast potential to be one of the world's clean energy leaders, Canada has a long way to getting on the path to net zero. Even though the country is home to some of the world's leading cleantech companies, such as B.C.-based clean hydrogen fuel cell providers Ballard Power and Loop Energy and Nova Scotia-based carbon utilization company CarbonCure, the country continues to expand fossil fuel extraction to the point that emissions are projected to jump to around 1,500 MtCO2 worth by 2030.

 

Related News

Related News

The American EV boom is about to begin. Does the US have the power to charge it?

EV Charging Infrastructure accelerates with federal funding, NEVI corridors, and Level 2/3 DC fast charging to cut range anxiety, support apartment dwellers, and scale to 500,000 public chargers alongside tax credits and state mandates.

 

Key Points

The network of public and private hardware, software, and policies enabling reliable Level 2/3 EV charging at scale.

✅ $7,500/$4,000 tax credits spur adoption and charger demand

✅ NEVI funding builds 500,000 public, reliable DC fast chargers

✅ Equity focus: apartment, curbside, bidirectional and inductive tech

 

Speaking in front of a line of the latest electric vehicles (EVs) at this month’s North American International Auto Show, President Joe Biden declared: “The great American road trip is going to be fully electrified.”

Most vehicles on the road are still gas guzzlers, but Washington is betting big on change, with EV charging networks competing to expand as it hopes that major federal investment will help reach a target set by the White House for 50% of new cars to be electric by 2030. But there are roadblocks – specifically when it comes to charging them all. “Range anxiety,” or how far one can travel before needing to charge, is still cited as a major deterrent for potential EV buyers.

The auto industry recently passed the 5% mark of EV market share – a watershed moment, arriving ahead of schedule according to analysts, before rapid growth. New policies at the state and local level could very well spur that growth: the Inflation Reduction Act, which passed this summer, offers tax credits of $4,000 to purchase a used EV and up to $7,500 for certain new ones. In August, California, the nation’s largest state and economy, announced rules that would ban all new gas-powered cars by 2035, as part of broader grid stability efforts in the state. New York plans to follow.

So now, the race is on to provide chargers to power all those new EVs.

The administration’s target of 500,000 public charging units by 2030 is a far cry from the current count of nearly 50,000, according to the Department of Energy’s estimate. And those new chargers will have to be fast – what’s known as Level 2 or 3 charging – and functional in order to create a truly reliable system, even as state power grids face added demands across regions. Today, many are not.

Last week, the White House approved plans for all 50 states, along with Washington DC, and Puerto Rico, to set up chargers along highways, unlocking $1.5bn in federal funding to that end, as US automakers’ charger buildout to complement public funds. The money comes from the landmark infrastructure bill passed last year, which invests $7.5bn for EV charging in total.

But how much of that money is spent is largely going to be determined at the local level, amid control over charging debates among stakeholders. “It’s a difference between policy and practice,” said Drew Lipsher, the chief development officer at Volta, an EV charging provider. “Now that the federal government has these policies, the question becomes, OK, how does this actually get implemented?” The practice, he said, is up to states and municipalities.

As EV demand spikes, a growing number of cities are adopting policies for EV charging construction. In July, the city of Columbus passed an “EV readiness” ordinance, which will require new parking structures to host charging stations proportionate to the number of total parking spots, with at least one that is ADA-accessible. Honolulu and Atlanta have passed similar measures.

One major challenge is creating a distribution model that can meet a diversity of needs.

At the moment, most EV owners charge their cars at home with a built-in unit, which governments can help subsidize. But for apartment dwellers or those living in multi-family homes, that’s less feasible. “When we’re thinking about the largest pieces of the population, that’s where we need to really be focusing our attention. This is a major equity issue,” said Alexia Melendez Martineau, the policy manager at Plug-In America, an EV consumer advocacy group.

Bringing power to people is one such solution. In Hoboken, New Jersey, Volta is working with the city to create a streetside charging network. “The network will be within a five-minute walk of every resident,” said Lipsher. “Hopefully this is a way for us to really import it to cities who believe public EV charging infrastructure on the street is important.” Similarly, in parts of Los Angeles – as in Berlin and London – drivers can get a charge from a street lamp.

And there may be new technologies that could help, exciting experts and EV enthusiasts alike. That could include the roads themselves charging EVs through a magnetizable concrete technology being piloted in Indiana and Detroit. And bidirectional charging, where, similar to solar panels, drivers can put their electricity back into the grid – or perhaps even to another EV, through what’s known as electric vehicle supply equipment (EVSE). Nissan approved the technology for their Leaf model this month.

 

Related News

View more

California allows electric school buses only from 2035

California Electric School Bus Mandate 2035 sets zero-emission requirements, outlines funding, state reimbursement, fleet electrification, infrastructure, and cost estimates, highlighting exemptions for frontier districts and alignment with clean transportation and climate policy goals.

 

Key Points

California's 2035 policy requires all new school buses be zero-emission, with funding and limited rural exemptions.

✅ Mandates zero-emission purchases for new school buses from 2035

✅ Estimates $5B transition cost with state reimbursement support

✅ Frontier districts may apply for 5-year extensions

 

California Governor Gavin Newsom has signed a new legislation requiring that from 2035, all newly ordered or contracted school buses must be zero-emission, a move aligned with California's push for expanded EV grid capacity statewide.

The state estimates that switching to electric school buses will cost around five billion dollars over the next decade, a projection reflecting electric bus challenges seen globally. That is because a diesel equivalent costs about 200,000 dollars less than a battery-electric version, as highlighted by critical analyses of California policy. And “the California Constitution requires the state to reimburse local agencies and school districts for certain costs mandated by the state.”

There are about 23,800 school buses on the road in California. About 500 are already electric, with conversion initiatives expected to expand the total, and 2,078 electric buses have been ordered.

There are – as always- exceptions to the rule. So-called “frontier districts,” which have less than 600 students or are in a county with a population density of less than ten persons per square mile, can file for a five-year extension, drawing on lessons from large electric bus fleets about route length and charging constraints. However, they must “reasonably demonstrate that a daily planned bus route for transporting pupils to and from school cannot be serviced through available zero-emission technology in 2035.”

Califonia is the fifth US state to mandate electric school buses, and jurisdictions like British Columbia are deploying electric school buses as well. Connecticut, Maryland, Maine, and New York implemented similar legislation, while California continues broader zero-emission freight adoption with Volvo VNR electric trucks entering service across the state.

 

Related News

View more

Vancouver seaplane airline completes first point-to-point flight with prototype electric aircraft

Harbour Air Electric Seaplane completes a point-to-point test flight, showcasing electric aircraft innovation, zero-emission short-haul travel, H55 battery technology, and magniX propulsion between Vancouver and Victoria, advancing sustainable aviation and urban air mobility.

 

Key Points

Retrofitted DHC-2 Beaver testing zero-emission short-haul flights with H55 batteries and magniX propulsion.

✅ 74 km in 24 minutes, Vancouver to Victoria test route

✅ H55 battery pack and magniX electric motor integration

✅ Aims to certify short-haul, zero-emission commercial service

 

A seaplane airline in Vancouver says it has achieved a new goal in its development of an electric aircraft.

Harbour Air Seaplanes said in a release about its first electric passenger flights timeline that it completed its first direct point-to-point test flight on Wednesday by flying 74 kilometres in 24 minutes from a terminal on the Fraser River near Vancouver International Airport to a bay near Victoria International Airport.

"We're really excited about this project and what it means for us and what it means for the electric aviation revolution to be able to keep pushing that forward," said Erika Holtz, who leads the project for the company.

Harbour Air, founded in 1982, uses small propeller planes to fly commercial flights between the Lower Mainland, Seattle, Vancouver Island, the Gulf Islands and Whistler.

In the last few years it has turned its attention to becoming a leader in green urban mobility, as seen with electric ships on the B.C. coast, which would do away with the need to burn fossil fuels, a major contributor to climate change, for air travel.

In December 2019, a pilot flew one of Harbour Air's planes — a more than 60-year-old DHC-2 de Havilland Beaver floatplane that had been outfitted with a Seattle-based company's electric propulsion system, magniX — for three minutes over Richmond.

Since then, the company has continued to fine-tune the plane and conduct test flights in order to meet federally regulated criteria for Canada's first commercial electric flight, showing it can safely fly with passengers.

Harbour Air's new fully electric seaplane flew over the Fraser River for three minutes today in its debut test flight.
Holtz said flying point-to-point this week was a significant step forward.

"Having this electric aircraft be able to prove that it can do scheduled flights, it moves us that step closer to being able to completely convert our entire fleet to electric," she said.

All the test flights so far have been made with only a pilot on board.

Vancouver seaplane company to resume test flights with electric commercial airplane
The ePlane will stay in Victoria for the weekend as part of an open house put on by the B.C. Aviation Museum before returning to Richmond.

A yellow seaplane flies over a body of water with the Vancouver skyline visible in the background.
A prototype all-electric floatplane made by B.C.'s Harbour Air Seaplanes on a test flight in Vancouver in 2021. (Harbour Air Seaplanes)
Early in Harbour Air's undertaking to develop an all-electric airplane, experts who study the aviation sector said Harbour Air would have to find a way to make the plane light enough to carry heavy lithium batteries and passengers, without exceeding weight limits for the plane.

Werner Antweiler, a professor of economics at UBC's Sauder School of Business who studies the commercialization of novel technologies around mobility, said in 2021 that Harbour Air's challenge would be proving to regulators that the plane was safe to fly and the batteries powerful enough to complete short-haul flights with power to spare.

In April 2021 Harbour Air partnered with Swiss company H55 to incorporate its battery technology, reflecting ongoing research investment to limit weight and improve the distance the plane could fly.

Shawn Braiden, a vice-president with Harbour Air, said the company is trying to get as much power as possible from the lightest possible batteries, a challenge shared by BC Ferries' hybrid ships as well. 

"It's a balancing act," he said.

In December, Harbour Air announced it had begun work on converting a second de Havilland Beaver to an all-electric airplane, copying the original prototype.

The plan is to retrofit version two of the ePlane with room for a pilot plus three passengers. If certified for commercial use, it could become one of the first all-electric commercial passenger planes operating in the world.

Seth Wynes, a post-doctoral fellow at Concordia University who has studied how to de-carbonize the aviation industry, said Harbour Air's progress on its eplane project won't solve the pollution problem of long-haul flights, but could inspire other short-haul airlines to follow suit, alongside initiatives like electric ferries in B.C. that expand low-carbon transportation. 

"It's also just really helpful to pilot these technologies and get them going where they can be scaled up and used in a bunch of different places around the world," he said. "So that's why Harbour Air making progress on this front is exciting."

 

Related News

View more

4 European nations to build North Sea wind farms

North Sea Offshore Wind Farms will deliver 150 GW by 2050 as EU partners scale renewable energy, offshore turbines, grid interconnectors, and REPowerEU goals to cut emissions, boost energy security, and reduce Russian fossil dependence.

 

Key Points

A joint EU initiative to build 150 GW of offshore wind by 2050, advancing REPowerEU, decarbonization, and energy security.

✅ Targets at least 150 GW of offshore wind by 2050

✅ Backed by Belgium, Netherlands, Germany, and Denmark

✅ Aligns with REPowerEU, grid integration, and emissions cuts

 

Four European Union countries plan to build North Sea wind farms capable of producing at least 150 gigawatts of energy by 2050 to help cut carbon emissions that cause climate change, with EU wind and solar surpassing gas last year, Danish media have reported.

Under the plan, wind turbines would be raised off the coasts of Belgium, the Netherlands, Germany and Denmark, where a recent green power record highlighted strong winds, daily Danish newspaper Jyllands-Posten said.

The project would mean a tenfold increase in the EU's current offshore wind capacity, underscoring how renewables are crowding out gas across Europe today.

“The North Sea can do a lot," Danish Prime Minister Frederiksen told the newspaper, adding the close cooperation between the four EU nations "must start now.”

European Commission President Ursula von der Leyen, German Chancellor Olaf Scholz, Dutch Prime Minister Mark Rutte and Belgian Prime Minister Alexander De Croo are scheduled to attend a North Sea Summit on Wednesday in Esbjerg, 260 kilometers (162 miles) west of Copenhagen.

In Brussels, the European Commission moved Wednesday to jump-start plans for the whole 27-nation EU to abandon Russian energy amid the Kremlin’s war in Ukraine. The commission proposed a nearly 300 billion-euro ($315 billion) package that includes more efficient use of fuels and a faster rollout of renewable power, even as stunted hydro and nuclear output may hobble recovery efforts.

The investment initiative by the EU's executive arm is meant to help the bloc start weaning themselves off Russian fossil fuels this year, even as Europe is losing nuclear power during the transition. The goal is to deprive Russia, the EU’s main supplier of oil, natural gas and coal, of tens of billions in revenue and strengthen EU climate policies.

“We are taking our ambition to yet another level to make sure that we become independent from Russian fossil fuels as quickly as possible,” von der Leyen said in Brussels when announcing the package, dubbed REPowerEU.

The EU has pledged to reduce carbon dioxide emissions by 55% compared with 1990 levels by 2030, and to get to net zero emissions by 2050, with a recent German renewables milestone underscoring the pace of change.

The European Commission has set an overall target of generating 300 gigawatts of offshore energy of by 2050, though grid expansion challenges in Germany highlight hurdles.

Along with climate change, the war in Ukraine has made EU nations eager to reduce their dependency on Russian natural gas and oil. In 2021, the EU imported roughly 40% of its gas and 25% of its oil from Russia.

At a March 11 summit, EU leaders agreed in principle to phase out Russian gas, oil and coal imports by 2027.

 

Related News

View more

Winds of Change: Vineyard Wind Ushers in a New Era for Clean Energy

Vineyard Wind Offshore Wind Farm delivers clean power to Massachusetts near Martha's Vineyard, with 62 turbines and 800 MW capacity, advancing renewable energy, cutting carbon, lowering costs, and driving net-zero emissions and green jobs.

 

Key Points

An 800 MW Massachusetts offshore project of 62 turbines supplying clean power to 400,000+ homes and cutting emissions.

✅ 800 MW powering 400,000+ MA homes and businesses

✅ 62 turbines, 13 MW each, 15 miles from Martha's Vineyard

✅ Cuts 1.6M tons CO2 annually; boosts jobs and port infrastructure

 

The crisp Atlantic air off the coast of Martha's Vineyard carried a new melody on February 2nd, 2024. Five colossal turbines, each taller than the Statue of Liberty, began their graceful rotations, marking the historic moment power began flowing from Vineyard Wind, the first large-scale offshore wind farm in the United States, enabled by Interior Department approval earlier in the project timeline. This momentous occasion signifies a seismic shift in Massachusetts' energy landscape, one that promises cleaner air, lower energy costs, and a more sustainable future for generations to come.

Nestled 15 miles southeast of Martha's Vineyard and Nantucket, Vineyard Wind is a colossal undertaking. The project, a joint venture between Avangrid Renewables and Copenhagen Infrastructure Partners, will ultimately encompass 62 turbines, each capable of generating a staggering 13 megawatts. Upon full completion later this year, Vineyard Wind will power over 400,000 homes and businesses across Massachusetts, contributing a remarkable 800 megawatts to the state's energy grid.

But the impact of Vineyard Wind extends far beyond mere numbers. This trailblazing project holds immense environmental significance. By harnessing the clean and inexhaustible power of the wind, Vineyard Wind is projected to annually reduce carbon emissions by a staggering 1.6 million metric tons – equivalent to taking 325,000 cars off the road. This translates to cleaner air, improved public health, and a crucial step towards mitigating the climate crisis.

Governor Maura Healey hailed the project as a "turning point" in Massachusetts' clean energy journey. "Across the Commonwealth, homes and businesses will now be powered by clean, affordable energy, contributing to cleaner air, lower energy costs, and pushing us closer to achieving net-zero emissions," she declared.

Vineyard Wind's impact isn't limited to the environment; it's also creating a wave of economic opportunity. Since its inception in 2017, the project has generated nearly 2,000 jobs, with close to 1,000 positions filled by union workers thanks to a dedicated Project Labor Agreement. Construction has also breathed new life into the New Bedford Marine Commerce Terminal, with South Coast construction activity accelerating around the port, transforming it into the nation's first port facility specifically designed for offshore wind, showcasing the project's commitment to local infrastructure development.

"Every milestone on Vineyard Wind 1 is special, but powering up these first turbines stands apart," emphasized Pedro Azagra, CEO of Avangrid Renewables. "This accomplishment reflects the years of dedication and collaboration that have defined this pioneering project. Each blade rotation and megawatt flowing to Massachusetts homes is a testament to the collective effort that brought offshore wind power to the United States."

Vineyard Wind isn't just a project; it's a catalyst for change. It perfectly aligns with Massachusetts' ambitious clean energy goals, which include achieving net-zero emissions by 2050 and procuring 3,200 megawatts of offshore wind by 2028, while BOEM lease requests in the Northeast continue to expand the development pipeline across the region. As Energy and Environmental Affairs Secretary Rebecca Tepper stated, "Standing up a new industry is no easy feat, but we're committed to forging ahead and growing this sector to lower energy costs, create good jobs, and build a cleaner, healthier Commonwealth."

The launch of Vineyard Wind transcends Massachusetts, serving as a beacon for the entire U.S. offshore wind industry, as New York's biggest offshore wind farm moves forward to amplify regional momentum. This demonstration of large-scale development paves the way for further investment and growth in this critical clean energy source. However, the journey isn't without its challenges, and questions persist about reaching 1 GW on the grid nationwide as stakeholders navigate timelines. Concerns regarding potential impacts on marine life and visual aesthetics remain, requiring careful consideration and ongoing community engagement.

Despite these challenges, Vineyard Wind stands as a powerful symbol of hope and progress. It represents a significant step towards a cleaner, more sustainable future, powered by renewable energy sources at a time when U.S. offshore wind is about to soar according to industry outlooks. It's a testament to the collaborative effort of policymakers, businesses, and communities working together to tackle the climate crisis. As the turbines continue their majestic rotations, they carry a message of hope, reminding us that a brighter, more sustainable future is within reach, powered by the wind of change.

Additional Considerations:

  • The project boasts a dedicated Fisheries Innovation Fund, fostering collaboration between the fishing and offshore wind industries to ensure sustainable coexistence.
  • Vineyard Wind has invested in education and training programs, preparing local residents for careers in the burgeoning wind energy sector.
  • The project's success opens doors for further offshore wind development in the U.S., such as Long Island proposals gaining attention, paving the way for a clean energy revolution.

 

Related News

View more

What cities can learn from the biggest battery-powered electric bus fleet in North America

Canadian Electric Bus Fleet leads North America as Toronto's TTC deploys 59 battery-electric, zero-emission buses, advancing public transit decarbonization with charging infrastructure, federal funding, lower maintenance, and lifecycle cost savings for a low-carbon urban future.

 

Key Points

Canada's leading battery-electric transit push, led by Toronto's TTC, scaling zero-emission buses and charging.

✅ Largest battery-electric bus fleet in North America

✅ TTC trials BYD, New Flyer, Proterra for range and reliability

✅ Charging infrastructure, funding, and specs drive 2040 zero-emissions

 

The largest battery-powered electric bus fleet in North America is Canadian. Toronto's transit system is now running 59 electric buses from three suppliers, and Edmonton's first electric bus is now on the road as well. And Canadian pioneers such as Toronto offer lessons for other transit systems aiming to transition to greener fleets for the low-carbon economy of the future.

Diesel buses are some of the noisier, more polluting vehicles on urban roads. Going electric could have big benefits, even though 18% of Canada's 2019 electricity from fossil fuels remains a factor.

Emissions reductions are the main reason the federal government aims to add 5,000 electric buses to Canada's transit and school fleets by the end of 2024. New funding announced this week as part of the government's fall fiscal update could also give programs to electrify transit systems a boost.

"You are seeing huge movement towards all-electric," said Bem Case, the Toronto Transit Commission's head of vehicle programs. "I think all of the transit agencies are starting to see what we're seeing ... the broader benefits."

While Vancouver has been running electric trolley buses (more than 200, in fact), many cities (including Vancouver) are now switching their diesel buses to battery-electric buses in Metro Vancouver that don't require overhead wires and can run on regular bus routes.

The TTC got approval from its board to buy its first 30 battery-electric buses in November 2017. Its plan is to have a zero-emissions fleet by 2040.

That's a crucial part of Toronto's plan to meet its 2050 greenhouse gas targets, which requires 100 per cent of vehicles to transition to low-carbon energy by then.

But Case said the transition can't happen overnight. 


Finding the right bus
For one thing, just finding the right bus isn't easy.

"There's no bus, by any manufacturer, that's been in service for the entire life of a bus, which is 12 years," Case said.

"And so really, until then, we don't have enough experience, nor does anyone else in the industry, have enough experience to commit to an all-electric fleet immediately."

In fact, Case said, there are only three manufacturers that make suitable long-range buses — the kind needed in a city the size of Toronto.

Having never bought electric buses before, the city had no specifications for what it needed in an electric bus, so it decided to try all three suppliers: Winnipeg-based New Flyer; BYD, which is headquartered in Shenzhen, China, but built the TTC buses at its Newmarket, Ont. facility; and California-based Proterra.

They all had their strengths and weaknesses, based on their backgrounds as a traditional non-electric bus manufacturer, a battery maker and a vehicle technology and design startup, respectively.

"Each bus type has its own potential challenges." Case said all three manufacturers are working to resolve any adoption challenges as quickly as possible.

But the biggest challenge of all, Case said, is getting the infrastructure in place. 

"There's no playbook, really, for implementing charging infrastructure," he said.

Each bus type needed their own chargers, in some cases using different types of current. Each type has been installed in a different garage in partnership with local utility Toronto Hydro.

Buying and installing them represented about $70 million, or about half the cost of acquiring Toronto's first 60 electric buses. The $140 million project was funded by the federal Public Transit Infrastructure Fund.

Case said it takes about three hours to charge a battery that has been fully depleted. To maximize use of the bus, it's typically put on a long route in the morning, covering 200 to 250 kilometres. Then it's partially charged and put on a shorter run in the late afternoon.

"That way we get as much mileage on the buses as we can."


Cost and reliability?
Besides the infrastructure cost of chargers, each electric bus can cost $200,000 to $500,000 more per bus than an average $750,000 diesel bus. 

Case acknowledges that is "significantly" more expensive, but it is offset by fuel savings over time, as electricity costs are cheaper. Because the electric buses have fewer parts than diesel buses, maintenance costs are also about 25 per cent lower and the buses are expected to be more reliable.

As with many new technologies, the cost of electric buses is also falling over time.

Case expects they will eventually get to the point where the total life-cycle cost of an electric and a diesel bus are comparable, and the electric bus may even save money in the long run.

As of this fall, all but one of the 60 new electric buses have been put into service. The last one is expected to hit the road in early December.

Summer testing showed that air conditioning the buses reduced the battery capacity by about 15 per cent. 

But the TTC needs to see how much of the battery capacity is consumed by heating in winter, at least when the temperature is above 5 C. Below that, a diesel-powered heater kicks in.

Once testing is complete, the TTC plans to develop specifications for its electric bus fleet and order 300 more in 2023, for delivery between 2023 and 2025.


Potential benefits
Even with some diesel heating, the TTC estimates electric buses reduce fuel usage by 70 to 80 per cent. If its whole fleet were switched to electric buses, it could save $50 million to $70 million in fuel a year and 150 tonnes of greenhouse gases per bus per year, or 340,000 tonnes for the entire fleet.

Other than greenhouse gases, electric buses also generate fewer emissions of other pollutants. They're also quieter, creating a more comfortable urban environment for pedestrians and cyclists.

But the benefits could potentially go far beyond the local city.

"If the public agencies start electrifying their fleet and their service is very demanding, I think they'll demonstrate to the broader transportation industry that it is possible," Case said.

"And that's where you'll get the real gains for the environment."

Alex Milovanoff, a postdoctoral researcher in the University of Toronto's department of civil engineering, did a U of T EV study that suggested electrified transit has a crucial role to play in the low-carbon economy of the future.

His calculations show that 90 per cent of U.S. passenger vehicles — 300 million — would need to be electric by 2050 to reach targets under the global Paris Agreement to fight climate change.

And that would put a huge strain on resources, including both the mining of metals, such as lithium and cobalt, that are used in electric vehicle batteries and the electrical grid itself.

A better solution, he showed, was combining the transition to electric vehicles with a reduction in the number of private vehicles, and higher usage of transit, cycling and walking.

"Then that becomes a feasible picture," he said.

What's needed to make the transition
But in order to make that happen, governments need to make investments and navigate the 2035 EV mandate debate on timelines, he added.

That includes subsidies for buying electric buses and building charging stations so transit agencies don't need to make fares too high. But it also includes more general improvements to the range and reliability of transit infrastructure.

"Electrifying the bus fleet is only efficient if we have a large public transit fleet and if we have many buses on the road and if people take them," Milovanoff said.

In its fall economic update on Monday, the federal government announced $150 million over three years to speed up the installation of zero-emission vehicle infrastructure.

Josipa Petrunic, CEO of the Canadian Urban Transit Research and Innovation Consortium, a non-profit organization focused on zero-carbon mobility and transportation, said that in the past, similar funding has paid for high-powered charging systems for transit systems in B.C. and Ontario. But that's only a small part of what's needed, she said.

"Infrastructure Canada needs to come to the table with the cash for the buses and the whole rest of the system."

She said funding is needed for:

Feasibility studies to figure out how many and what kinds of buses are needed for different routes in different transit systems.

Targets and incentives to motivate transit systems to make the switch.

Incentives to encourage Canadian procurement to build the industry in Canada.

Technology to collect and share data on the performance of electric vehicles so transit systems can make the best-possible decisions to meet the needs of their riders.

Petrunic said that a positive side-effect of electrifying transit systems is that the infrastructure can support, in addition to buses, electric trucks for moving freight.

"It's not a lot given that we have 15,000 buses out there in the transit fleet," she said.

"But we should be able to get a lot further ahead if we match the city commitments to zero emissions with federal and provincial funding for jobs creating zero-emissions technologies."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.