Power Producers Oppose Legislation Helping Millstone Nuclear Plant


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Millstone Nuclear Legislation faces opposition from Calpine, Dynegy, NRG, and EPSA, as Connecticut debates market access, ratepayer impacts, renewable and low-carbon procurement, and Dominion transparency amid low natural gas and power prices.

 

Key Points

A Connecticut plan to expand Millstone's market access while balancing ratepayer costs, competition and low carbon goals.

✅ Guarantees market access via low-carbon procurement process

✅ Raises concerns over rates, competition, and transparency

✅ Positions nuclear alongside renewables in Connecticut policy

 

Power producers are set to announce Tuesday their opposition to legislation that would guarantee markets for the Millstone nuclear plant, calling it special treatment for one energy source in Connecticut.

Legislation has yet to be drafted, but it could follow a measure that failed last year, proposing to boost Millstone's access to electricity markets amid a broader market overhaul in Connecticut that lawmakers are weighing.

Calpine Corp., Dynegy, NRG Energy and the Electric Power Supply Association say state assistance to Millstone could drive up energy costs for businesses and residents, echoing arguments that in deregulated electricity markets subsidies are unnecessary and distortive, the companies and trade association say the legislature should require Dominion Resources Inc., Millstone's parent company, to make public its financial records to prove it needs a change in state law.

"This legislation would carve out a significant part of the market in the region for one company under different terms than anything we could hope for," said John E. Shelk, president and chief executive officer of the Electric Power Supply Association.

Thomas F. Farrell II, chief executive officer of Dominion, told investor analysts on a conference call to discuss fourth-quarter earnings last week that power prices have been "under some pressure."

Referring to the possibility of favorable legislation, Dominion is "hopeful that things will improve there," he said.

Shelk said Farrell's comment is an admission that "this is all about the drag Millstone is having on the corporate parent."

"The Connecticut legislature has proposed a competitive process to reduce retail electric rates, and amid debates like ACORE's FERC filing on subsidy proposals state energy officials would determine whether it is in ratepayers' best interests," Dominion spokesman Kevin Hennessy said.

Several nuclear plants around the country, unable to compete with low natural gas prices, have shut, even as New England weighs transmission proposals like the Maine-Quebec transmission line to access lower-carbon power options.

"There was a trend and a very distressing trend," Reed, D-Branford, said at a public hearing last month.

The plan that failed last year would have allowed nuclear energy to participate in a competitive purchase of renewable or low-carbon electric power, including contentious imports such as the Northern Pass hydropower project that has stirred debate, in a process administered by the state. If Millstone were to be selected, it would be guaranteed a market as natural gas prices decline.

Dan Weekley, vice president of corporate affairs at Dominion, rejected a proposal that the company's financial records be opened for public inspection, saying any information would be irrelevant.

"What is in the customers' and the ultimate ratepayers' best interests?" he asked at the public hearing. "What is the best price for consumers?"

AARP Connecticut said it also will oppose Millstone legislation. A legislative proposal could reclassify power generated by the plant as renewable fuel, allowing Dominion to undercut the cost of other renewable fuels and receive a higher price for its power, AARP said.

Related News

Ontario looks to build on electricity deal with Quebec

Ontario-Quebec Electricity Deal explores hydro imports, terawatt hours, electricity costs, greenhouse gas cuts, and baseload impacts, amid debates on Pickering nuclear operations and competitive procurement in Ontario's long-term energy planning.

 

Key Points

A proposed hydro import deal from Quebec, balancing costs, emissions, and reliability for Ontario electricity customers.

✅ Draft 20-year, 8 TWh offer reported by La Presse disputed

✅ Ontario seeks lower costs and GHG cuts versus alternatives

✅ Not a baseload replacement; Pickering closure not planned

 

Ontario is negotiating a possible energy swap agreement to buy electricity from Quebec, but the government is disputing a published report that it is preparing to sign a deal for enough electricity to power a city the size of Ottawa.

La Presse reported Tuesday that it obtained a copy of a draft, 20-year deal that says Ontario would buy eight terawatt hours a year from Quebec – about 6 per cent of Ontario’s consumption – whether the electricity is consumed or not.

Ontario Energy Minister Glenn Thibeault’s office said the province is in discussions to build on an agreement signed last year for Ontario to import up to two terawatt hours of electricity a year from Quebec.

 

But his office released a letter dated late last month to his Quebec counterpart, in which Mr. Thibeault said the offer extended in June was unacceptable because it would increase the average residential electricity bill by $30 a year.

“I am hopeful that your continued support and efforts will help to further discussions between our jurisdictions that could lead to an agreement that is in the best interest of both Ontario and Quebec,” Mr. Thibeault wrote July 27 to Pierre Arcand.

Ontario would prepare a “term sheet” for the next stage of discussions ahead of the two ministers meeting at the Energy and Mines Ministers Conference later this month in New Brunswick, Mr. Thibeault wrote.

Any future agreements with Quebec will have to provide a reduction in Ontario electricity rates compared with other alternatives and demonstrate measurable reductions in greenhouse gas emissions, he wrote.

Progressive Conservative Leader Patrick Brown said Ontario doesn’t need eight terawatt hours of additional power and suggested it means the Liberal government is considering closing power facilities such as the Pickering nuclear plant early.

A senior Energy Ministry official said that is not on the table. The government has said it intends to keep operating two units at Pickering until 2022, and the other four units until 2024.

Even if the Quebec offer had been accepted, the energy official said, that power wouldn’t have replaced any of Ontario’s baseload power because it couldn’t have been counted on 24 hours a day, 365 days a year.

The Society of Energy Professionals said Mr. Thibeault was right to reject the deal, but called on him to release the Long-Term Energy Plan – which was supposed to be out this spring – before continuing negotiations.

Some commentators have argued for broader reforms to address Ontario's hydro system challenges, urging policymakers to review all options as negotiations proceed.

The Ontario Energy Association said the reported deal would run counter to the government’s stated energy objectives amid concerns over electricity prices in the province.

“Ontarians will not get the benefit of competition to ensure it is the best of all possible options for the province, and companies who have invested in Ontario and have employees here will not get the opportunity to provide alternatives,” president and chief executive Vince Brescia said in a statement. “Competitive processes should be used for any new significant system capacity in Ontario.”

The Association of Power Producers of Ontario said it is concerned the government is even considering deals that would “threaten to undercut a competitive marketplace and long-term planning.”

“Ontario already has a surplus of energy, so it’s very difficult to see how this deal or any other sole-source deal with Quebec could benefit the province and its ratepayers,” association president and CEO David Butters said in a statement.

The Ontario Waterpower Association also said such a deal with Quebec would “present a significant challenge to continued investment in waterpower in Ontario.”

 

Related News

View more

Several Milestones Reached at Nuclear Power Projects Around the World

Nuclear Power Construction Milestones spotlight EPR builds, Hualong One steam generators, APR-1400 grid integration, and VVER startups, with hot functional testing, hydrostatic checks, and commissioning advancing toward fuel loading and commercial operation.

 

Key Points

Key reactor project steps, from testing and grid readiness to startup, marking progress toward safe commercial operation.

✅ EPR units advance through cold and hot functional testing

✅ Hualong One installs 365-ton steam generators at Fuqing 5

✅ APR-1400 and VVER projects progress toward grid connection

 

The world’s nuclear power industry has been busy in the new year, with several construction projects, including U.S. reactor builds, reaching key milestones as 2018 began.

 

EPR Units Making Progress

Four EPR nuclear units are under construction in three countries: Olkiluoto 3 in Finland began construction in August 2005, Flamanville 3 in France began construction in December 2007, and Taishan 1 and 2 in China began construction in November 2009. Each of the new units is behind schedule and over budget, but recent progress may signal an end to some of the construction difficulties.

EDF reported that cold functional tests were completed at Flamanville 3 on January 6. The main purpose of the testing was to confirm the integrity of primary systems, and verify that components important to reactor safety were properly installed and ready to operate. More than 500 welds were inspected while pressure was held greater than 240 bar (3,480 psi) during the hydrostatic testing, which was conducted under the supervision of the French Nuclear Safety Authority.

With cold testing successfully completed, EDF can now begin preparing for hot functional tests, which verify equipment performance under normal operating temperatures and pressures. Hot testing is expected to begin in July, with fuel loading and reactor startup possible by year end. The company also reported that the total cost for the unit is projected to be €10.5 billion (in 2015 Euros, excluding interim interest).

Olkiluoto 3 began hot functional testing in December. Teollisuuden Voima Oyj—owner and operator of the site—expects the unit to produce its first power by the end of this year, with commercial operation now slated to begin in May 2019.

Although work on Taishan 1 began years after Olkiluoto 3 and Flamanville 3, it is the furthest along of the EPR units. Reports surfaced on January 2 that China General Nuclear (CGN) had completed hot functional testing on Taishan 1, and that the company expects the unit to be the first EPR to startup. CGN said Taishan 1 would begin commercial operation later this year, with Taishan 2 following in 2019.

 

Hualong One Steam Generators Installed

Another Chinese project reached a notable milestone on January 8. China National Nuclear Corp. announced the third of three steam generators had been installed at the Hualong One demonstration project, which is being constructed as Unit 5 at the Fuqing nuclear power plant.

The Hualong One pressurized water reactor unit, also known as the HPR 1000, is a domestically developed design, part of China’s nuclear program, based on a French predecessor. It has a 1,090 MW capacity. The steam generators reportedly weigh 365 metric tons and stand more than 21 meters tall. The first steam generator was installed at Fuqing 5 on November 10, with the second placed on Christmas Eve.

 

Barakah Switchyard Energized

In the United Arab Emirates, more progress has been made on the four South Korean–designed APR-1400 units under construction at the Barakah nuclear power plant. On January 4, Emirates Nuclear Energy Corp. (ENEC) announced that the switchyard for Units 3 and 4 had been energized and connected to the power grid, a crucial step in Abu Dhabi toward completion. Unit 2’s main power transformer, excitation transformer, and auxiliary power transformer were also energized in preparation for hot functional testing on that unit.

“These milestones are a result of our extensive collaboration with our Prime Contractor and Joint Venture partner, the Korea Electric Power Corporation (KEPCO),” ENEC CEO Mohamed Al Hammadi said in a press release. “Working together and benefitting from the experience gained when conducting the same work on Unit 1, the teams continue to make significant progress while continuing to implement the highest international standards of safety, security and quality.”

In 2017, ENEC and KEPCO achieved several construction milestones including installation and concrete pouring for the reactor containment building liner dome section on Unit 3, and installation of the reactor containment liner plate rings, reactor vessel, steam generators, and condenser on Unit 4.

Construction began on the four units (Figure 1) in July 2012, May 2013, September 2014, and September 2015, respectively. Unit 1 is currently undergoing commissioning and testing activities while awaiting regulatory review and receipt of the unit’s operating license from the Federal Authority for Nuclear Regulation, before achieving 100% power in a later phase. According to ENEC, Unit 2 is 90% complete, Unit 3 is 79% complete, and Unit 4 is 60% complete.

 

VVER Units Power Up

On December 29, Russia’s latest reactor to commence operation—Rostov 4 near the city of Volgodonsk—reached criticality, as other projects like Leningrad II-1 advance across the fleet, and was operated at its minimum controlled reactor power (MCRP). Criticality is a term used in the nuclear industry to indicate that each fission event in the reactor is releasing a sufficient number of neutrons to sustain an ongoing series of reactions, which means the neutron population is constant and the chain reaction is stable.

“The transfer to the MCRP allows [specialists] to carry out all necessary physical experiments in the critical condition of [the] reactor unit (RU) to prove its design criteria,” Aleksey Deriy, vice president of Russian projects for ASE Engineering Co., said in a press release. “Upon the results of the experiments the specialists will decide on the RU powerup.”

Rostov 4 is a VVER-1000 reactor with a capacity of 1,000 MW. The site is home to three other VVER units: Unit 1 began commercial operation in 2001, Unit 2 in 2010, and Unit 3 in 2015.

 

Related News

View more

Why power companies should be investing in carbon-free electricity

Noncarbon Electricity Investment Strategy helps utilities hedge policy uncertainty, carbon tax risks, and emissions limits by scaling wind, solar, and CCS, avoiding stranded assets while balancing costs, reliability, and climate policy over decades.

 

Key Points

A strategy for utilities to invest 20-30 percent of capacity in low carbon sources to hedge emissions and carbon risks.

✅ Hedges future carbon tax and emissions limits

✅ Targets 20-30 percent of new generation from clean sources

✅ Reduces stranded asset risk and builds renewables capacity

 

When utility executives make decisions about building new power plants, a lot rides on their choices. Depending on their size and type, new generating facilities cost hundreds of millions or even billions of dollars. They typically will run for 40 or more years — 10 U.S. presidential terms. Much can change during that time.

Today one of the biggest dilemmas that regulators and electricity industry planners face is predicting how strict future limits on greenhouse gas emissions will be. Future policies will affect the profitability of today’s investments. For example, if the United States adopts a carbon tax 10 years from now, it could make power plants that burn fossil fuels less profitable, or even insolvent.

These investment choices also affect consumers. In South Carolina, utilities were allowed to charge their customers higher rates to cover construction costs for two new nuclear reactors, which have now been abandoned because of construction delays and weak electricity demand. Looking forward, if utilities are reliant on coal plants instead of solar and wind, it will be much harder and more expensive for them to meet future emissions targets, even as New Zealand's electrification push accelerates abroad. They will pass the costs of complying with these targets on to customers in the form of higher electricity prices.

With so much uncertainty about future policy, how much should we be investing in noncarbon electricity generation in the next decade? In a recent study, we proposed optimal near-term electricity investment strategies to hedge against risks and manage inherent uncertainties about the future.

We found that for a broad range of assumptions, 20 to 30 percent of new generation in the coming decade should be from noncarbon sources such as wind and solar energy across markets. For most U.S. electricity providers, this strategy would mean increasing their investments in noncarbon power sources, regardless of the current administration’s position on climate change.

Many noncarbon electricity sources — including wind, solar, nuclear power and coal or natural gas with carbon capture and storage — are more expensive than conventional coal and natural gas plants. Even wind power, which is often mentioned as competitive, is actually more costly when accounting for costs such as backup generation and energy storage to ensure that power is available when wind output is low.

Over the past decade, federal tax incentives and state policies designed to promote clean electricity sources spurred many utilities to invest in noncarbon sources. Now the Trump administration is shifting federal policy back toward promoting fossil fuels. But it can still make economic sense for power companies to invest in more expensive noncarbon technologies if we consider the potential impact of future policies.

How much should companies invest to hedge against the possibility of future greenhouse gas limits? On one hand, if they invest too much in noncarbon generation and the federal government adopts only weak climate policies throughout the investment period, utilities will overspend on expensive energy sources.

On the other hand, if they invest too little in noncarbon generation and future administrations adopt stringent emissions targets, utilities will have to replace high-carbon energy sources with cleaner substitutes, which could be extremely costly.

 

Economic modeling with uncertainty

We conducted a quantitative analysis to determine how to balance these two concerns and find an optimal investment strategy given uncertainty about future emissions limits. This is a core choice that power companies have to make when they decide what kinds of plants to build.

First we developed a computational model that represents the sectors of the U.S. economy, including electric power. Then we embedded it within a computer program that evaluates decisions in the electric power sector under policy uncertainty.

The model explores different electric power investment decisions under a wide range of future emissions limits with different probabilities of being implemented. For each decision/policy combination, it computes and compares economy-wide costs over two investment periods extending from 2015 to 2030.

We looked at costs across the economy because emissions policies impose costs on consumers and producers as well as power companies. For example, they may lead to higher electricity, fuel or product prices. By seeking to minimize economy-wide costs, our model identifies the investment decision that produces the greatest overall benefits to society.

 

More investments in clean generation make economic sense

We found that for a broad range of assumptions, the optimal investment strategy for the coming decade is for 20 to 30 percent of new generation to be from noncarbon sources. Our model identified this as the best level because it best positions the United States to meet a wide range of possible future policies at a low cost to the economy.

From 2005-2015, we calculated that about 19 percent of the new generation that came online was from noncarbon sources. Our findings indicate that power companies should put a larger share of their money into noncarbon investments in the coming decade.

While increasing noncarbon investments from a 19 percent share to a 20 to 30 percent share of new generation may seem like a modest change, it actually requires a considerable increase in noncarbon investment dollars. This is especially true since power companies will need to replace dozens of aging coal-fired power plants that are expected to be retired.

In general, society will bear greater costs if power companies underinvest in noncarbon technologies than if they overinvest. If utilities build too much noncarbon generation but end up not needing it to meet emissions limits, they can and will still use it fully. Sunshine and wind are free, so generators can produce electricity from these sources with low operating costs.

In contrast, if the United States adopts strict emissions limits within a decade or two, they could prevent carbon-intensive generation built today from being used. Those plants would become “stranded assets” — investments that are obsolete far earlier than expected, and are a drain on the economy.

Investing early in noncarbon technologies has another benefit: It helps develop the capacity and infrastructure needed to quickly expand noncarbon generation. This would allow energy companies to comply with future emissions policies at lower costs.

 

Seeing beyond one president

The Trump administration is working to roll back Obama-era climate policies such as the Clean Power Plan, and to implement policies that favor fossil generation. But these initiatives should alter the optimal strategy that we have proposed for power companies only if corporate leaders expect Trump’s policies to persist over the 40 years or more that these new generating plants can be expected to run.

Energy executives would need to be extremely confident that, despite investor pressure from shareholders, the United States will adopt only weak climate policies, or none at all, into future decades in order to see cutting investments in noncarbon generation as an optimal near-term strategy. Instead, they may well expect that the United States will eventually rejoin worldwide efforts to slow the pace of climate change and adopt strict emissions limits.

In that case, they should allocate their investments so that at least 20 to 30 percent of new generation over the next decade comes from noncarbon sources. Sustaining and increasing noncarbon investments in the coming decade is not just good for the environment — it’s also a smart business strategy that is good for the economy.

 

Related News

View more

Despite delays, BC Hydro says crews responded well to 'atypical' storm

BC Hydro Ice Storm Response to Fraser Valley power outages highlights freezing rain impacts, round the clock crews, infrastructure challenges, and climate change risks across the Lower Mainland during winter weather and restoration efforts.

 

Key Points

A plan for freezing rain events that prioritizes safety, rapid repairs, and clear communication to restore power.

✅ Prioritizes hazards, critical loads, and public safety first

✅ Deploys crews, contractors, and equipment across affected areas

✅ Addresses climate risks without costly undergrounding expansion

 

Call it the straw that broke the llama's back.

The loss of power during recent Fraser Valley ice storms meant Jennifer Quick, who lives on a Mission farm, had no running water, couldn't cook with appliances and still had to tend to a daughter sick with stomach flu.

As if that wasn't enough, she had to endure the sight of her shivering llamas.

"I brought them outside at one point and when I brought them back in, they had icicles on their fur," she said, adding the animals stayed in the warmth of their barn from then on.

For three and a half days, Quick and her family were among more than 160,000 BC Hydro customers in the Fraser Valley left in the dark after ice storms whipped through the region.

BC Hydro expects to get all customers back online Tuesday, five days after the storm hit.

And with another storm possibly on the horizon, the utility is defending its response to the treacherous weather, noting that windstorm power outages can be widespread.

BC Hydro spokesperson Mora Scott said the utility has a "best in class" storm response system, similar to PG&E winter storm prep in the U.S.

"In a typical storm situation we normally have 95 per cent of our customers back up within 24 hours. Ice storms are different and obviously this was an atypical storm for us," she said.

Scott said that in this case, the utility got power back on for 75 per cent of customers within 24 hours. It took the work of 450 employees called in from around B.C., working around the clock, a mobilization echoed by Sudbury Hydro crews after a storm, she said.

The work was complicated by trees falling near crews, icy roads, low visibility and even substations so frozen over the ice had to be melted off with blowtorches.

She said that in the long term, BC Hydro has no plans to make changes to how it responds to extreme ice storms or how infrastructure is built.

"Seeing ice build up in the Lower Mainland like this is a rare event," she said. "So to build for extremes like that probably doesn't make a lot of sense."

 

Climate change will bring storms

But CBC meteorologist Johanna Wagstaffe said that might not always be the case as climate change continues to impact our planet.

"The less severe winter events, like light snowfall, will happen less often," she said. "But the disruptive events — like last week's storm — will actually happen more often and we are already seeing this shift happen."

Marc Eliesen, a former CEO of BC Hydro in the early 1990s, said the utility needs to keep that in mind when planning for worst-case scenarios.

"This [storm] is a condition characteristic of the weather in the east, particularly in Ontario and Quebec, where freezing rain outages in Quebec are more common, which is organized to deal with freezing rain and heavy snow on the lines," he said. "This is a new phenomenon for British Columbia."

Eliesen questions whether BC Hydro has adequate equipment and crew training to deal with ice storms if they become more frequent, pointing to Hydro One storm restoration in Ontario as a comparison.

 

'Always something we can learn'

Scott disagrees with some of Eliesen's points.

She said some of the crews called in to deal with the recent storm come from northern B.C. and the Interior and have plenty of experience with snow.

"There's always something we can learn in every major storm situation," she said.

The idea of putting power lines underground was raised by some CBC readers and listeners, but Scott said running underground lines is five to 10 times the cost of running lines on pole, so it is done sparingly. Besides, equipment like substations and transmission lines need to be kept aboveground.

Meanwhile, Wagstaffe said that beginning Thursday, wintry weather could return to the Lower Mainland.

 

Related News

View more

Coal CEO blasts federal agency's decision on power grid

FERC Rejects Trump Coal Plan, denying subsidies for coal-fired and nuclear plants as energy policy shifts toward natural gas and renewables, citing no grid reliability threat and warning about electricity prices and market impacts.

 

Key Points

FERC unanimously rejected subsidies for coal and nuclear plants, finding no grid reliability risk from retirements.

✅ Unanimous FERC vote rejects coal and nuclear compensation

✅ Cites no threat to grid reliability from plant retirements

✅ Opponents warned subsidies would distort power markets and prices

 

A decision by an independent energy agency to reject the Trump administration’s electricity pricing plan to bolster the coal industry could lead to more closures of coal-fired power plants and the loss of thousands of jobs, a top coal executive said Tuesday.

Robert Murray, CEO of Ohio-based Murray Energy Corp., called the action by the Federal Energy Regulatory Commission “a bureaucratic cop-out” that will raise the cost of electricity and jeopardize the reliability and security of the nation’s electric grid.

“While FERC commissioners sit on their hands and refuse to take the action directed by Energy Secretary Rick Perry and President Donald Trump, the decommissioning of more coal-fired and nuclear plants could result, further jeopardizing the reliability, resiliency and security of America’s electric power grids,” Murray said. “It will also raise the cost of electricity for all Americans.”

The five-member energy commission voted unanimously Monday to reject Trump’s plan to reward nuclear and coal-fired power plants for adding reliability to the nation’s power grid. The plan would have made the plants eligible for billions of dollars in government subsidies and help reverse a tide of bankruptcies and loss of market share suffered by the once-dominant coal industry as utilities' shift to natural gas and renewable energy continues.

The Republican-controlled commission said there’s no evidence that any past or planned retirements of coal-fired power plants pose a threat to reliability of the nation’s electric grid.

Murray disputed that and said the recent cold snap that hit the East Coast showed coal’s value, as power users in the Southeast were asked to cut back on electricity usage because of a shortage of natural gas. “If it were not for the electricity generated by our nation’s coal-fired and nuclear power plants, we would be experiencing massive brownouts risk and blackouts in this country,” he said.

Murray Energy is the largest privately owned coal company in the United States, with mining operations in Ohio, Illinois, Kentucky, Utah and West Virginia. Robert Murray, a Trump friend and political supporter, has been pushing hard for federal assistance for his industry. The Associated Press reported last year that Murray asked the Trump administration to issue an emergency order protecting coal-fired power plants from closing. Murray warned that failure to act could cause thousands of coal miners to be laid off and force his largest customer, Ohio-based FirstEnergy Solutions, into bankruptcy.

Perry ultimately rejected Murray’s request, but later asked energy regulators to boost coal and nuclear plants as the administration moved to replace the Clean Power Plan with a more limited approach.

The plan drew widespread opposition from business and environmental groups that frequently disagree with each other, even as some coal and business interests backed the EPA's Affordable Clean Energy rule in court.

Jack Gerard, president and CEO of the American Petroleum Institute, said Tuesday that the Trump plan was “far too narrow” in its focus on power sources that maintain a 90-day fuel supply.

API, the largest lobbying group for oil and gas industry, supports coal and other energy sources, Gerard said, “but we should not put our eggs in an individual basket defined as a 90-day fuel supply (while) unnecessarily intervening in private markets.”

 

Related News

View more

Electricity sales in the U.S. actually dropped over the past 7 years

US Electricity Sales Decline amid population growth and GDP gains, as DOE links reduced per capita consumption to energy efficiency, warmer winters, appliances, and bulbs, while hotter summers and rising AC demand may offset savings.

 

Key Points

US electricity sales fell 3% since 2010 despite population and GDP growth, driven by efficiency gains and warmer winters.

✅ DOE links drops to efficiency and warmer winters

✅ Per capita residential use fell about 7% since 2010

✅ Rising AC demand may offset winter heating savings

 

Since 2010, the United States has grown by 17 million people, and the gross domestic product (GDP) has increased by $3.6 trillion. Yet in that same time span, electricity sales in the United States actually declined by 3%, according to data released by the U.S. Department of Energy (DOE), even as electricity prices rose at a 41-year pace nationwide.

The U.S. decline in electricity sales is remarkable given that the U.S. population increased by 5.8% in that same time span. This means that per capita electricity use fell even more than that; indeed, the Department of Energy pegs residential electricity sales per capita as having declined by 7%, even as inflation-adjusted residential bills rose 5% in 2022 nationwide.

There are likely multiple reasons for this decline in electricity sales. Department of Energy analysts suggest that, at least in part, it is due to increased adoption of energy-efficient appliances and bulbs, like compact fluorescents. Indeed, the DOE notes that there is a correlation between consumer spending on “energy efficiency” and a reduction in per capita electricity sales, while utilities invest more in delivery infrastructure to modernize the grid.

Yet the DOE also notes that states with a greater increase in warm weather days had a corresponding decrease in electricity sales, as milder weather can reduce power demand across years. In southern states, the effect was most dramatic: for instance, from 2010 to 2016, Florida had a 56% decrease in cold weather days that would require heating and as a result, saw a 9% decrease in per capita electricity sales.

The moral is that warm winters save on electricity. But if global temperatures continue to rise, and summers become hotter, too, this decrease in winter heating spending may be offset by the increased need to run air conditioning in the summer, and given how electricity and natural gas prices interact, overall energy costs could shift. Indeed, it takes far more energy to cool a room than it does to heat it, for reasons related to the basic laws of thermodynamics. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.