25.5% Of US Electricity Coming From Renewable Energy


usa renewable energy increases

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

US Renewable Energy Growth drives the US electricity mix as wind, solar, and hydropower rise while coal, natural gas, and nuclear decline, boosting market share month over month and year over year across the grid.

 

Key Points

US Renewable Energy Growth tracks rising wind, solar, and hydro shares in the mix as coal, gas, and nuclear decline.

✅ Wind and solar surpass nuclear in April share

✅ Renewables reach 29.3% of US electricity in April

✅ Coal and natural gas shares trend lower since 2020

 

Electricity generated by renewable energy sources continues to grow month over month and year over year in the United States. In April 2022, the share of US electricity coming from renewable energy was up to 29.3%, surpassing a record April level reported previously in national data. That was up from 24.8% in April 2020 and 25.7% in April 2021.

Looking at the first four months of the year, renewables provided 25.5% of US electricity, and were the second-most U.S. source in 2020 as well, while the figure for January–April 2020 was 21.7% and the figure for January–April 2021 was 22.5%.

Coal power (20.2% of US electricity) was down year over year in this time period (from 22% in January–April 2021), even as renewables surpassed coal in 2022 nationwide, but is admittedly still a bit higher than it was in January–April 2020 (16.8%).

Electricity from natural gas is also down year over year, but only very slightly (34.7% for both years). Though, it has dropped significantly since January–April 2020 (39.6%).

Electricity from nuclear power continued to take a steady, step-by-step tumble.

Wind & Solar Power Growth Strong
As reported earlier, April was the first month that wind and solar power provided more electricity than nuclear across the United States. Wind and solar power provided 21% of US electricity, while nuclear power provided 17.8% of US electricity (coal, incidentally, also provided 17.8% of US electricity, but wind and solar had provided more electricity than coal in some previous months as well).

Wind and solar power’s combined market share for the first four months of the year was up from just 14.6% in 2020 and 18.4% in 2021.

Looking at their growth year over year, you can see strong and continuous expansion of solar-provided electricity and wind-provided electricity, amid favorable government plans that have supported deployment.

Solar grew from 2.9% in January–April 2020 to 3.6%in January–April 2021 to, eventually, 4.4% in January–April 2022, with solar's 2022 share rising to 4.7% for the full year. Wind rose from 9.2% to 10.3% to 12.2%.

Together, wind and solar were up from 12.1% in January–April 2020 to 13.9% in January–April 2021, reflecting a surge in wind power within the U.S. electricity mix over this period, to 16.7% January–April 2022.

Hydropower (6.5%) is holding approximately the same position as the same period in 2021 (6.5%), but it is down a significant chunk from April 2020 (8.2%).

 

Related News

Related News

Alberta renewable energy surge could power 4,500 jobs

Alberta Renewable Energy Boom highlights corporate investments, power purchase agreements, wind and solar capacity gains, grid decarbonization, and job growth, adding 2 GW and $3.7B construction since 2019 in an open electricity market.

 

Key Points

Alberta's PPA-driven wind and solar surge adds 2 GW, cuts grid emissions, creates jobs, and accelerates private builds.

✅ 2 GW added since 2019 via corporate PPAs

✅ Open electricity market enables direct deals

✅ Strong wind and solar resources boost output

 

Alberta has seen a massive increase in corporate investment in renewable energy since 2019, and capacity from those deals is set to increase output by two gigawatts —  enough to power roughly 1.5 million homes. 

“Our analysis shows $3.7 billion worth of renewables construction by 2023 and 4,500 jobs,” Nagwan Al-Guneid, the director of Business Renewables Centre Canada, says. 

The centre is an initiative of the environmental think tank Pembina Institute and provides education and guidance for companies looking to invest in renewable energy or energy offsets across Canada. Its membership is made up of renewable energy companies.

The addition of two gigawatts is over two times the amount of renewable energy added to the grid between 2010 and 2017, according to the Canadian Energy Regulator. 

We’re tripling our Prairies coverage
The Narwhal’s newly minted Prairies bureau is here to bring you stories on energy and the environment you won’t find anywhere else. Stay tapped in by signing up for a weekly dose of our ad‑free, independent journalism.

“This is driven directly by what we call power purchase agreements,” Al-Guneid says. “We have companies from across the country coming to Alberta.”

So far this year, 191 megawatts of renewable energy will be added through purchase agreements, according to the Business Renewables Centre, as diversified energy sources can make better projects overall.

Alberta’s electricity system is unique in Canada — an open market where companies can ink deals directly with private power producers to sell renewable energy and buy a set amount of electricity produced each year, either for use or for offset credits. The financial security provided by those contracts helps producers build out more renewable projects without market risks. Purchasers get cheap renewable energy or credits to meet internal or external emissions goals. 

It differs from other provinces, many of which rely on large hydro capacity and where there is a monopoly, often government-owned, on power supply. 

In those provinces, investment in renewables largely depends on whether the company with the monopoly is in a buying mood, says Blake Shaffer, an economics professor at the University of Calgary who studies electricity markets. 

That’s not the case in Alberta, where the only real regulatory hurdle is applying to connect a project to the grid.

“Once that’s approved, you can just go ahead and build it, and you can sell it,” Shaffer says.

That sort of flexibility has attracted some big investments, including two deals with Amazon in 2021 to purchase 455 megawatts worth of solar power from Calgary-based Greengate Power. There are also big investments from oil companies looking to offset emissions.

The investments are allowing Alberta to decarbonize its grid, largely with the backing of the private sector. 

Shaffer says Alberta is the “renewables capital in Canada,” a powerhouse in both green and fossil energy by many measures.

“That just shocks people because of course their association with Alberta is nothing about renewables, but oil and gas,” Shaffer says. “But it really is the investment centre for renewables in the entire country right now.”

Alberta has ‘embarrassing’ riches in wind energy and solar power
It’s not just the market that is driving Alberta’s renewables boom. According to Shaffer there are three other key factors: an embarrassment of wind and solar riches, the need to transition away from a traditionally dirty, coal-reliant grid and the current high costs of energy. 

Shaffer says the strong and seemingly non-stop winds coming off the foothills of the Rockies in the southwest of the province mean wind power is increasingly competitive and each turbine produces more energy compared to other areas. The same is true for solar, with an abundance of sunny days.

“Southern Alberta and southern Saskatchewan have the best solar insolation,” he says. “You put a panel in Vancouver, or you put a panel in Medicine Hat, and you’re gonna get about 50 per cent more energy out of that panel in Medicine Hat, and they’re gonna cost you the same.”

The spark that set off the surge in investments wasn’t strictly an open-market mechanism. Under the previous NDP government, the province brought in a program that allowed private producers to compete for government contracts, with some solar facilities contracted below natural gas demonstrating cost advantages.

The government agreed to a certain price and the producers were then allowed to sell their electricity on the open market. If the price dropped below what was guaranteed, the province would pay the difference. If, however, the price was higher, the developers would pay the difference to the government. 

 

Related News

View more

Spread of Electric Cars Sparks Fights for Control Over Charging

Utility-Controlled EV Charging shapes who builds charging stations as utilities, regulators, and private networks compete over infrastructure, grid upgrades, and pricing, impacting ratepayers, competition, and EV adoption across states seeking cleaner transport.

 

Key Points

Utility-controlled EV charging is utilities building charging networks affecting rates, competition and grid costs.

✅ Regulated investment may raise rates before broader savings.

✅ Private firms warn monopolies stifle competition and innovation.

✅ Regulators balance access, equity, and grid upgrade needs.

 

Electric vehicles are widely seen as the automobile industry’s future, but a battle is unfolding in states across America over who should control the charging stations that could gradually replace fuel pumps.

From Exelon Corp. to Southern California Edison, utilities have sought regulatory approval to invest millions of dollars in upgrading their infrastructure as state power grids adapt to increased charging demand, and, in some cases, to own and operate chargers.

The proposals are sparking concerns from consumer advocates about higher electric rates and oil companies about subsidizing rivals. They are also drawing opposition from startups that say the successors to gas stations should be open to private-sector competition, not controlled by monopoly utilities.

That debate is playing out in regulatory commissions throughout the U.S. as states and utilities promote wider adoption of electric vehicles. At stake are charging infrastructure investments expected to total more than $13 billion over the next five years, as an American EV boom accelerates, according to energy consulting firm Wood Mackenzie. That would cover roughly 3.2 million charging outlets.

Calvin Butler Jr., who leads Exelon’s utilities business, said many states have grown more open to the idea of utilities becoming bigger players in charging as electric vehicles have struggled to take off in the U.S., where they make up only around 2% of new car sales.

“When the utilities are engaged, there’s quicker adoption because the infrastructure is there,” he said.

Major auto makers including General Motors Co. and Ford Motor Co. are accelerating production of electric vehicles, and models like Tesla’s Model 3 are shaping utility planning, and a number of states have set ambitious EV goals—most recently California, which aims to ban the sale of new gasoline-powered cars by 2035. But a patchy charging-station network remains a huge impediment to mass EV adoption.

Democratic presidential candidate Joe Biden has called for building more than 500,000 new public charging outlets in a decade as part of his plan to combat climate change, amid Biden’s push to electrify the transportation sector. But exactly how that would happen is unclear. The U.S. currently has fewer than 100,000 public outlets, according to the Energy Department. President Trump, who has weakened federal tailpipe emissions targets, hasn’t put forward an electric-vehicle charging plan, though he backed a 2019 transportation bill that would have provided $1 billion in grants to build alternative fueling infrastructure, including for electric vehicles.

Charging access currently varies widely by state, as does utility involvement, with many utilities bullish course on EV charging to support growth, which can range from providing rebates on home chargers to preparing sites for public charging—and even owning and operating the equipment needed to juice up electric vehicles.

As of September, regulators in 24 states had signed off on roughly $2.6 billion of utility investment in transportation electrification, according to Atlas Public Policy, a Washington, D.C., policy firm. More than half of that spending was authorized in California, where electric vehicle adoption is highest.

Nearly a decade ago, California blocked utilities from owning most charging equipment, citing concerns about potentially stifling competition. But the nation’s most populous state reversed course in 2014, seeking to spur electrification.

Regulators across the country have since been wrestling with similar questions, generating a patchwork of rules.

Maryland regulators signed off last year on a pilot program allowing subsidiaries of Exelon and FirstEnergy Corp. to own and operate public charging stations on government property, provided that the drivers who use them cover at least some of the costs.

Months later, the District of Columbia rejected an Exelon subsidiary’s request to own public chargers, saying independent charging companies had it covered.

Some charging firms argue utilities shouldn’t be given monopolies on car charging, though they might need to play a role in connecting rural customers and building stations where they would otherwise be uneconomical.

“Maybe the utility should be the supplier of last resort,” said Cathy Zoi, chief executive of charging network EVgo Services LLC, which operates more than 800 charging stations in 34 states.

Utility charging investments generally are expected to raise customers’ electricity bills, at least initially. California recently approved the largest charging program by a single utility to date: a $436 million initiative by Southern California Edison, an arm of Edison International, as the state also explores grid stability opportunities from EVs. The company said it expects the program to increase the average residential customer’s bill by around 50 cents a month.

But utilities and other advocates of electrification point to studies indicating greater EV adoption could help reduce electricity rates over time, by giving utilities more revenue to help cover system upgrades.

Proponents of having utilities build charging networks also argue that they have the scale to do so more quickly, which would lead to faster EV adoption and environmental improvements such as lower greenhouse gas emissions and cleaner air. While the investments most directly help EV owners, “they accrue immediate benefits for everyone,” said Jill Anderson, a Southern California Edison senior vice president.

Some consumer advocates are wary of approving extensive utility investment in charging, citing the cost to ratepayers.

“It’s like, ‘Pay me now, and maybe someday your rates will be less,’” said Stefanie Brand, who advocates on behalf of ratepayers for the state of New Jersey, where regulators have yet to sign off on any utility proposals to invest in electric vehicle charging. “I don’t think it makes sense to build it hoping that they will come.”

Groups representing oil-and-gas companies, which stand to lose market share as people embrace electric vehicles, also have criticized utility charging proposals.

“These utilities should not be able to use their monopoly power to use all of their customers’ resources to build investments that definitely won’t benefit everybody, and may or may not be economical at this point,” said Derrick Morgan, who leads federal and regulatory affairs at the American Fuel & Petrochemical Manufacturers, a trade organization.

Utility executives said their companies have long been used to further government policy objectives deemed to be in the public interest, drawing on lessons from 2021 to guide next steps, such as improving energy efficiency.

“This isn’t just about letting market forces work,” said Mike Calviou, senior vice president for strategy and regulation at National Grid PLC’s U.S. division.

 

Related News

View more

Completion of 1st fast-charging network 'just the beginning' for electric car owners in N.L.

Newfoundland EV Fast-Charging Network enables DC fast charging along the Trans-Canada Highway, from Port aux Basques to St. John's, with Level 3 stations, reducing range anxiety and accelerating electric vehicle adoption.

 

Key Points

A DC fast charging corridor with Level 3 stations every 70 km, enabling EV road trips and easing range anxiety.

✅ 14 Level 3 DC fast chargers across the Trans-Canada Highway

✅ Charges most EVs to 80% in under an hour, $15/hr prorated

✅ Expansion planned into Labrador with 19 additional fast chargers

 

The first electric vehicle fast-charging network is now up and running across Newfoundland, which the province's main energy provider hopes will make road trips easier for electric car owners and encourage more drivers to go electric in the future.

With the last of the 14 charging stations coming online in Corner Brook earlier this month, drivers now have a place to charge up about every 70 kilometres along the Trans-Canada Highway, where 10 new fast-charging stations in N.B. are being planned, from Port aux Basques to St. John's, along with one in Gros Morne National Park.

Jennifer Williams, president & CEO of Newfoundland and Labrador Hydro, says many potential electric vehicle owners have been hesitant to give up on gasoline without fast chargers available across the island.

"The majority of people who were interested in EVs said one of the major barriers to them was indeed not having a fast-charging network that they could access," she said.

"We really believe that this is going to help people cross over and become an EV owner."

The charging network was first announced in October 2019, with an eye to having all 14 chargers up and running by the end of 2020. When work began, Newfoundland and Labrador was the only province in Canada without any publicly available Level 3 chargers, even as NB Power's public charging network was expanding elsewhere.

After some COVID-19 pandemic-related delays, the stations are now up and running and can charge most EVs to 80 per cent in less than an hour at a prorated cost of $15 an hour

"The pandemic did have some effect, but we're there now and we're really happy and this is just the beginning," said Williams.

Public charging becoming 'a non-issue'
That's encouraging for Jon Seary, an electric car owner and a co-founder of advocacy group Drive Electric N.L. He says the lack of fast chargers has been the "deal breaker" for many people looking to buy electric vehicles.

"Now you can drive right across the province. You can choose to stop at any of these to top up," Seary said.

Joe Butler, who is also a co-founder of the group, says the fast chargers have already made trips easier as they've come online across the island.

"In the past, it was a major impediment, really, to get anywhere, but now it's changed dramatically," said Butler.

"I just came back from Gros Morne and I had two stops and I was home, so the convenience factor if you just travel occasionally outside of town makes all the difference."

Jon Seary and Joe Butler stand with a slower level-two charging station on Kenmount Road in St. John's. 'We are at the cusp now of seeing a huge upswing in electric vehicle adoption,' Seary said. (Gavin Simms/CBC)
Seary said according to numbers from provincial motor vehicle registration, there were 195 electric cars on the road at the end of 2020, but he estimates that there are now closer to 300 vehicles in use in the province — with the potential for many more.

"We are at the cusp now of seeing a huge upswing in electric vehicle adoption," he said, even though Atlantic Canadians have been less inclined to buy EVs so far. 

"The cost of the cars is coming way down, and has come down. More places are selling them and the availability of public charging is becoming a non-issue as we put more and more charging stations out there."

The future is electric but the province's infrastructure is lagging behind, says non-profit
But Seary said there is still more work to be done to improve the province's charging infrastructure to catch up with other parts of the country. 

"We are lagging the rest of the country," Seary said, even as the N.W.T. encourages more residents to drive EVs through new initiatives.

"We have opportunities for federal funding for our charging infrastructure and it needs to be moving now. We have the surplus from Muskrat Falls to use and we have a climate that's not going to wait … this is the time to get going with this now."

Williams said together with Newfoundland Power, N.L. Hydro is now working on 19 more fast chargers to be placed elsewhere in the province and into Labrador, where the N.L. government has promoted EV adoption but infrastructure has lagged in some areas.

"We've heard very loudly and very clearly from the folks in Labrador, as well as other parts of the province, that they want to have charging stations in their neck of the woods too," she said.

"Putting them in Labrador, we believe that we'll help people get over that concern and that fear. There are EV owners in Labrador … so we believe it can work there as well."

With more chargers and electric vehicles comes less reliance on burning fossil fuels, and utilities like Nova Scotia Power are piloting vehicle-to-grid integration to amplify benefits, and Williams said 21 tonnes of greenhouse gas emissions have already been offset with the chargers as they've come online over the past few months.

"It actually does equate to as if you had powered a whole house all year, but the important part to remember [is that] these are an enabler. Putting these in place is enabling people to purchase electric vehicles," she said.

"You do 90 per cent of your charging at home, so if we're seeing about 20 tonnes has been offset in the short period of time they've been in service, for the vehicles that are charging at home, imagine how much they're actually offsetting. We figure it's well in excess of 200 tons."

 

Related News

View more

B.C. expands EV charging, leads country in going electric

BC EV Charging Network Funding accelerates CleanBC goals with new public fast-charging stations, supporting ZEV adoption, the Electric Highway, and rebates, lowering fuel costs and emissions across British Columbia under the Clean Transportation Action Plan.

 

Key Points

Funding to expand fast-charging stations, grow ZEV adoption, and advance CleanBC and the Electric Highway.

✅ $26M funds ~250 public fast-charging stations.

✅ Supports Electric Highway and remote access.

✅ Drives ZEV sales under CleanBC targets.

 

As British Columbians are embracing zero-emission vehicles faster than any other jurisdiction in Canada, the Province is helping them go electric with new incentives and $26 million in new funding for public charging stations.

“British Columbians are switching to clean energy and cleaner transportation in record numbers as part of our CleanBC plan and leading Canada in the transition to zero emission vehicles,” said Josie Osborne, Minister of Energy, Mines and Low Carbon Innovation, on Tuesday. “The new funding we are announcing today to expand B.C.’s public charging network will help get more EVs on the road, reduce our reliance on fossil fuels, and lower fuel costs for people.”

The Province’s newly released annual report about zero-emission vehicles (ZEV) shows they represented 18.1% of new light-duty passenger vehicles sold in 2022 – the highest percentage for any province or territory. To support British Columbians’ transition to electric vehicles and to help industry lower its emissions, year-end funding of $26 million will go toward the CleanBC Public Charging Program for light-duty vehicle charging.

The new funding will support approximately 250 more public light-duty fast-charging stations, including stations to complete the B.C. Electric Highway, a CleanBC Roadmap to 2030 commitment that will make recharging easier in every corner of the province.

The 2022 ZEV Update report highlights CleanBC Go Electric rebates and programs that have helped drive growth in the number of electric vehicles in B.C. The number of registered light-duty EVs rose from 5,000 in 2016 to more than 100,000 today – a 1,900% increase in the past six years. Last year, 30,004 zero-emission vehicles were bought in B.C., beating the previous record of 24,263 in 2021.

In addition, the report outlines progress in the installation of public charging stations across British Columbia, supported by B.C. Hydro expansion, which now has one of the largest public charging networks in Canada, with more than 3,800 charging stations at the end of 2022. That compares to just 781 charging stations in 2016.

The CleanBC Roadmap to 2030, released in 2021, details a range of expanded actions to accelerate the switch to cleaner transportation, including strengthening the Zero-Emission Vehicles Act to require 26% of light-duty vehicle sales to be ZEV by 2026, 90% by 2030 and 100% by 2035 – five years ahead of the original target, and implementing the Clean Transportation Action Plan.

George Heyman, Minister of Environment and Climate Change Strategy, said: “Transportation accounts for about 40% of emissions in B.C., which is why we are committed to accelerating requirements for ZEVs and setting new standards for medium- and heavy-duty vehicles. To support this uptake, we continue to expand B.C.’s electric vehicle charging network, including faster EV charging options, with a target of having 10,000 public EV charging stations by 2030.”

Blair Qualey, President and CEO, New Car Dealers Association of BC, said: “B.C.’s new car dealers are proud to be involved in a true partnership that has been so instrumental in B.C. establishing and maintaining a leadership position in zero-emission vehicle adoption. Ongoing investments that continue to support the CleanBC Go Electric rebate program, including home and workplace charging rebates, and the availability of adequate charging infrastructure for consumers and businesses will be critical to the Province meeting its ZEV mandate targets, while also creating the promise of a greener and stronger economic future for British Columbians.”

Harry Constantine, President, Vancouver Electric Vehicle Association, said: “Expanding the buildout of the Electric Highway and establishing a network of charging stations are critical steps for moving the adoption of electric vehicles forward as demand ramps up across B.C. This stands to benefit all British Columbians, including remote communities. We are very pleased to see the Province investing in these measures.”

 

Related News

View more

CEC Allocates $30 Million for 100-Hr Long-Duration Energy Storage Project

California Iron-Air Battery Storage Project delivers 100-hour long-duration energy storage, supported by a $30 CEC grant, using Form Energy technology at a PG&E substation to boost grid reliability, integrate renewables, and cut fossil reliance.

 

Key Points

California's 5 MW/500 MWh iron-air battery delivers 100-hour discharge, boosting reliability and renewable integration.

✅ 5 MW/500 MWh iron-air system at a PG&E substation

✅ 100-hour multiday storage enhances grid reliability

✅ CEC $30M grant backs non-lithium, long-duration tech

 

The California Energy Commission (CEC) has given the green light to a $30 million grant to Form Energy for the construction of an extraordinary long-duration energy storage project that will offer an unparalleled 100 hours of continuous grid discharge.

This ambitious endeavor involves the development of a 5-megawatt (MW) / 500 megawatt-hour iron-air battery storage project, representing the largest long-duration energy storage initiative in California. It also marks the state's inaugural utilization of this cost-effective technology, and joins ongoing procurements by utilities such as San Diego Gas & Electric to expand storage capacity statewide. The project's location is set at a substation owned by the Pacific Gas and Electric Company in Mendocino County, where it will supply power to local residents. The system is scheduled to commence operation by the conclusion of 2025, contributing to grid reliability and showcasing solutions aligned with the state's climate and clean energy objectives.

CEC Chair David Hochschild commented, "A multiday battery system is transformational for California's energy mix. This project will enhance our ability to harness excess renewables during nonpeak hours for use during peak demand, especially as we work toward a goal of 100 percent clean electricity."

This grant award represents one of three approvals within the framework of the CEC's Long-Duration Energy Storage program, a part of Governor Gavin Newsom's historic multi-billion-dollar commitment to combat climate change. This program fosters investment in the demonstration of non-lithium-ion technologies across the state, including green hydrogen microgrids, contributing to the creation of a diverse portfolio of energy storage technologies.

As of August, California had 6,600 MW of battery storage actively deployed statewide, a trend mirrored in regions like Ontario as well, operating within the prevailing industry standard of 4 to 6 hours of discharge. By year-end, this figure is projected to expand to 8,600 MW. Longer-duration storage, spanning from 8 to 100 hours, holds the potential to expedite the state's shift away from fossil fuels while reinforcing grid stability. California estimates that more than 48 gigawatts (GW) of battery storage and 4 GW of long-duration storage will be requisite to achieve the objective of 100 percent clean electricity by 2045.

Energy storage serves as a cornerstone of California's clean energy future, offering a means to capture and store surplus power generated by renewable resources, including emerging virtual power plant models that aggregate distributed assets. The state's battery infrastructure plays a pivotal role during the summer when electricity demand peaks in the early evening hours as solar resources decline, preceding the later surge in wind energy.

Iron-air battery technology operates on the principle of reversible rusting. These battery cells contain iron and air electrodes and are filled with a water-based, nonflammable electrolyte solution. During discharge, the battery absorbs oxygen from the air, converting iron metal into rust. During the charging phase, the application of an electrical current converts the rust back into iron, releasing oxygen. This technology is cost-competitive compared to lithium-ion battery production and complements broader clean energy BESS initiatives seen in New York.

 

Related News

View more

Should California accelerate its 100% carbon-free electricity mandate?

California 100% Clean Energy by 2030 proposes accelerating SB 100 with solar, wind, offshore wind, and battery storage to decarbonize the grid, enhance reliability, and reduce blackouts, leveraging transmission upgrades and long-duration storage solutions.

 

Key Points

Proposal to accelerate SB 100 to 2030, delivering a carbon-free grid via renewables, storage, and new transmission.

✅ Accelerates SB 100 to a 2030 carbon-free electricity target

✅ Scales solar, wind, offshore wind, and battery storage capacity

✅ Requires transmission build-out and demand response for reliability

 

Amid a spate of wildfires that have covered large portions of California with unhealthy air, an environmental group that frequently lobbies the Legislature in Sacramento is calling on the state to accelerate by 15 years California's commitment to derive 100 percent of its electricity from carbon-free sources.

But skeptics point to last month's pair of rolling blackouts and say moving up the mandate would be too risky.

"Once again, California is experiencing some of the worst that climate change has to offer, whether it's horrendous air quality, whether it's wildfires, whether it's scorching heat," said Dan Jacobson, state director of Environment California. "This should not be the new normal and we shouldn't allow this to become normal."

Signed by then-Gov. Jerry Brown in 2018, Senate Bill 100 commits California by 2045 to use only sources of energy that produce no greenhouse gas emissions to power the electric grid, a target that echoes Minnesota's 2050 carbon-free plan now under consideration.

Implemented through the state's Renewable Portfolio Standard, SB 100 mandates 60 percent of the state's power will come from renewable sources such as solar and wind within the next 10 years. By 2045, the remaining 40 percent can come from other zero-carbon sources, such as large hydroelectric dams, a strategy aligned with Canada's electricity decarbonization efforts toward climate pledges.

SB 100 also requires three state agencies _ the California Energy Commission, the California Public Utilities Commission and the California Air Resources Board _ to send a report to the Legislature reviewing various aspects of the legislation.

The topics include scenarios in which SB 100's requirements can be accelerated. Following an Energy Commission workshop earlier this month, Environment California sent a six-page note to all three agencies urging a 100 percent clean energy standard by 2030.

The group pointed to comments by Gov. Gavin Newsom after he toured the devastation in Butte County caused by the North Complex fire.

"Across the entire spectrum, our (state) goals are inadequate to the reality we are experiencing," Newsom said Sept. 11 at the Oroville State Recreation Area.

Newsom "wants to look at his climate policies and see what he can accelerate," Jacobson said. "And we want to encourage him to take a look at going to 100 percent by 2030."

Jacobson said Newsom cam change the policy by issuing an executive order but "it would probably take some legislative action" to codify it.

However, Assemblyman Jim Cooper, a Democrat from the Sacramento suburb of Elk Grove, is not on board.

"I think someday we're going to be there but we can't move to all renewable sources right now," Cooper said. "It doesn't work. We've got all these burned-out areas that depend upon electricity. How is that working out? They don't have it."

In mid-August, California experienced statewide rolling blackouts for the first time since 2001.

The California Independent System Operator _ which manages the electric grid for about 80 percent of the state _ ordered utilities to ratchet back power, fearing the grid did not have enough supply to match a surge in demand as people cranked up their air conditioners during a stubborn heat wave that lingered over the West.

The outages affected about 400,000 California homes and businesses for more than an hour on Aug. 14 and 200,000 customers for about 20 minutes on Aug. 15.

The grid operator, known as the CAISO for short, avoided two additional days of blackouts in August and two more in September thanks to household utility customers and large energy users scaling back demand.

CAISO Chief Executive Officer Steve Berberich said the outages were not due to renewable energy sources in California's power mix. "This was a matter of running out of capacity to serve load" across all hours, Berberich told the Los Angeles Times.

California has plenty of renewable resources _ especially solar power _ during the day. The challenge comes when solar production rapidly declines as the sun goes down, especially between 7 p.m. and 8 p.m. in what grid operators call the "net load peak."

The loss of those megawatts of generation has to be replaced by other sources. And in an electric grid, system operators have to balance supply and demand instantaneously, generating every kilowatt that is demanded by customers who expect their lighting/heating/air conditioning to come on the moment they flip a switch.

Two weeks after the rotating outages, the State Water Resources Control Board voted to extend the lives of four natural gas plants in the Los Angeles area. Natural gas accounts for the largest single source of California's power mix _ 34.23 percent. But natural gas is a fossil fuel, not a carbon-free resource.

Jacobson said moving the mandate to 2030 can be achieved by more rapid deployment of renewable sources across the state.

The Public Utilities Commission has already directed power companies to ramp up capacity for energy storage, such as lithium-ion batteries that can be used when solar production falls off.

Long-term storage is another option. That includes pumped hydro projects in which hydroelectric facilities pump water from one reservoir up to another and then release it. The ensuing rush of water generates electricity when the grid needs it.

Environment California also pointed to offshore wind projects along the coast of Central and Northern California that it estimates could generate as much as 3 gigawatts of power by 2030 and 10 gigawatts by 2040. Offshore wind supporters say its potential is much greater than land-based wind farms because ocean breezes are stronger and steadier.

Gary Ackerman, a utilities and energy consultant with more than four decades of experience in power issues affecting states in the West, said the 2045 mandate was "an unwise policy to begin with" and to accommodate a "swift transition (to 2030), you're going to put the entire grid and everybody in it at risk."

But Ackerman's larger concern is whether enough transmission lines can be constructed in California to bring the electricity where it needs to go.

"I believe Californians consider transmission lines in their backyard about the same way they think about low-income housing _ it's great to have, but not in my backyard," Ackerman said. "The state is not prepared to build the infrastructure that will allow this grandiose build-out."

Cooper said he worries about how much it will cost the average utility customer, especially low and middle-income households. The average retail price for electricity in California is 16.58 cents per kilowatt-hour, compared to 10.53 nationally, according to the U.S. Energy Information Administration.

"What's sad is, we've had 110-degree days and there are people up here in the Central Valley that never turned their air conditioners on because they can't afford that bill," Cooper said.

Jacobson said the utilities commission can intervene if costs get too high. He also pointed to a recent study from the Goldman School of Public Policy at UC Berkeley that predicted the U.S. can deliver 90 percent clean, carbon-free electric grid by 2035 that is reliable and at no extra cost in consumers' bills.

"Every time we wait and say, 'Oh, what about the cost? Is it going to be too expensive?' we're just making the cost unbearable for our kids and grandkids," Jacobson said. "They're the ones who are going to pay the billions of dollars for all the remediation that has to happen ... What's it going to cost if we do nothing, or don't go fast enough?"

The joint agency report on SB 100 from the Energy Commission, the Public Utilities Commission and the Air Resources Board is due at the beginning of next year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.