25.5% Of US Electricity Coming From Renewable Energy


usa renewable energy increases

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

US Renewable Energy Growth drives the US electricity mix as wind, solar, and hydropower rise while coal, natural gas, and nuclear decline, boosting market share month over month and year over year across the grid.

 

Key Points

US Renewable Energy Growth tracks rising wind, solar, and hydro shares in the mix as coal, gas, and nuclear decline.

✅ Wind and solar surpass nuclear in April share

✅ Renewables reach 29.3% of US electricity in April

✅ Coal and natural gas shares trend lower since 2020

 

Electricity generated by renewable energy sources continues to grow month over month and year over year in the United States. In April 2022, the share of US electricity coming from renewable energy was up to 29.3%, surpassing a record April level reported previously in national data. That was up from 24.8% in April 2020 and 25.7% in April 2021.

Looking at the first four months of the year, renewables provided 25.5% of US electricity, and were the second-most U.S. source in 2020 as well, while the figure for January–April 2020 was 21.7% and the figure for January–April 2021 was 22.5%.

Coal power (20.2% of US electricity) was down year over year in this time period (from 22% in January–April 2021), even as renewables surpassed coal in 2022 nationwide, but is admittedly still a bit higher than it was in January–April 2020 (16.8%).

Electricity from natural gas is also down year over year, but only very slightly (34.7% for both years). Though, it has dropped significantly since January–April 2020 (39.6%).

Electricity from nuclear power continued to take a steady, step-by-step tumble.

Wind & Solar Power Growth Strong
As reported earlier, April was the first month that wind and solar power provided more electricity than nuclear across the United States. Wind and solar power provided 21% of US electricity, while nuclear power provided 17.8% of US electricity (coal, incidentally, also provided 17.8% of US electricity, but wind and solar had provided more electricity than coal in some previous months as well).

Wind and solar power’s combined market share for the first four months of the year was up from just 14.6% in 2020 and 18.4% in 2021.

Looking at their growth year over year, you can see strong and continuous expansion of solar-provided electricity and wind-provided electricity, amid favorable government plans that have supported deployment.

Solar grew from 2.9% in January–April 2020 to 3.6%in January–April 2021 to, eventually, 4.4% in January–April 2022, with solar's 2022 share rising to 4.7% for the full year. Wind rose from 9.2% to 10.3% to 12.2%.

Together, wind and solar were up from 12.1% in January–April 2020 to 13.9% in January–April 2021, reflecting a surge in wind power within the U.S. electricity mix over this period, to 16.7% January–April 2022.

Hydropower (6.5%) is holding approximately the same position as the same period in 2021 (6.5%), but it is down a significant chunk from April 2020 (8.2%).

 

Related News

Related News

Harbour Air eyes 2023 for first electric passenger flights

Harbour Air Electric Seaplanes pioneer zero-emission aviation with battery-powered de Havilland Beaver flights, pursuing Transport Canada certification for safe, fossil fuel-free service across Vancouver Island routes connecting Vancouver, Victoria, Nanaimo, and beyond.

 

Key Points

Battery-powered, zero-emission floatplanes by Harbour Air pursuing Transport Canada certification to carry passengers.

✅ 29-minute test flight on battery power alone

✅ New lighter, longer-lasting battery supplier partnership

✅ Aiming to electrify entire 42-aircraft Beaver/Otter fleet

 

Float plane operator Harbour Air is getting closer to achieving its goal of flying to and from Vancouver Island without fossil fuels, following its first point-to-point electric flight milestone.

A recent flight of the company’s electric de Havilland Beaver test plane saw the aircraft remain aloft for 29 minutes on battery power alone, a sign of an emerging aviation revolution underway.

Harbour Air president Randy Wright says the company has joined with a new battery supplier to provide a lighter and longer-lasting power source, a high-flying example of research investment in the sector.

The company hopes to get Transport Canada certification to start carrying passengers on electric seaplanes by 2023, as projects like the electric-ready Kootenay Lake ferry come online.

"This is all new to Transport, so they've got to make sure it's safe just like our aircraft that are running today,” Wright said Wednesday. “They're working very hard at this to get this certified because it's a first in the world."

Parallel advances in marine electrification, such as electric ships on the B.C. coast, are informing clean-transport goals across the province.

Before the pandemic, Harbour Air flew approximately 30,000 commercial flights annually, along corridors also served by BC Ferries hybrid ships today, between Vancouver, Victoria, Nanaimo, Whistler, Seattle, Tofino, Salt Spring Island, the Sunshine Coast and Comox.

Wright says the company plans to eventually electrify its entire fleet of 42 de Havilland Beaver and Otter aircraft, reflecting a broader shift that includes CIB-backed electric ferries in B.C.

 

Related News

View more

Italy : Enel Green Power and Sapio sign an agreement to supply green hydrogen produced by NextHy in Sicily

Sicily Green Hydrogen accelerates decarbonization via renewable energy, wind farm electrolysis, hydrogen storage, and distribution from Enel Green Power and Sapio at the NextHy industrial lab in Carlentini and Sortino Sicily hub.

 

Key Points

Sicily Green Hydrogen is an Enel-Sapio plan to produce hydrogen via wind electrolysis for industrial decarbonization.

✅ 4 MW electrolyzer powered by Carlentini wind farm

✅ Estimated 200+ tons annual green H2 production capacity

✅ Market distribution managed by Sapio across Sicily

 

This green hydrogen will be produced at the Sicilian industrial plant, an innovative hub that puts technology at the service of the energy transition, echoing hydrogen innovation funds that support similar goals worldwide

Activating a supply of green hydrogen produced using renewable energy from the Carlentini wind farm in eastern Sicily is the focus of the agreement signed by Enel Green Power and Sapio. The agreement provides for the sale to Sapio of the green hydrogen that will be produced, stored in clean energy storage facilities and made available from 2023 at the Carlentini and Sortino production sites, home to Enel Green Powers futuristic NextHy innitiative. Sapio will be responsible for developing the market and handling the distribution of renewable hydrogen to the end customer.

In contexts where electrification is not easily achievable, green hydrogen is the key solution for decarbonization as it is emission-free and offers a potential future for power companies alongside promising development prospects, commented Salvatore Bernabei, CEO of Enel Green Power. For this reason we are excited about the agreement with Sapio. It is an agreement that looks to the future by combining technological innovation and sustainable production.

Sapio is strongly committed to contributing to the EUs achievement of the UN SDGs, commented Alberto Dossi, President of the Sapio Group, and with this project we are taking a firm step towards sustainable development in our country. The agreement with EGP also gives us the opportunity to integrate green hydrogen into our business model, as jurisdictions propose hydrogen-friendly electricity rates to grow the hydrogen economy, which is based on our strong technological expertise in hydrogen and its distribution over 100 years in business. In this way we will also be able to give further support to the industrial activities we are already carrying out in Sicily.

The estimated 200+ tons of production capacity of the Sicilian hub is the subject of the annual supply foreseen in the agreement. Once fully operational, the green hydrogen will be produced mainly by a 4 MW electrolyzer, which is powered exclusively by the renewable energy of the existing wind farm, and to a lesser extent by the state-of-the-art electrolysis systems tested in the platform. Launched by Enel Green Power in September 2021, NextHys Hydrogen Industrial Lab is a unique example of an industrial laboratory in which production activity is constantly accompanied by technological research. In addition to the sectors reserved for full-scale production, there are also areas dedicated to testing new electrolyzers, components such as valves and compressors, and innovative storage solutions based on liquid and solid means of storage: in line with Enels open-ended approach, this activity will be open to the collaboration of more than 25 entities including partners, stakeholders and innovative startups. The entire complex is currently undergoing an environmental impact assessment at the Sicily Regions Department of Land and Environment.

It is an ambitious project with a sustainable energy source at its heart that will be developed at every link in the chain: thanks to the agreement with Sapio, in fact, at NextHy green hydrogen will now not only be produced, stored and moved on an industrial scale, but also purchased and used by companies that have understood that green hydrogen is the solution for decarbonizing their production processes. In this context, this experimental approach that is open to external contributions will allow the Enel Green Power laboratory team to test the project on an industrial scale, so as to create the best conditions for a commercial environment that can make the most of all present and future technologies for the generation, storage and transport of green hydrogen, including green hydrogen microgrids that demonstrate scalable integration. It is an initiative consistent with Enels Open Innovability spirit: meeting the challenges of the energy transition by focusing on innovation, ideas and their transformation into reality.

 

Related News

View more

Tesla’s Solar Installations Hit New Low, but Musk Predicts Huge Future for Energy Business

Tesla Q2 2020 earnings highlight resilient electric vehicles as production and deliveries outpace legacy automakers, while Gigafactory Austin advances, solar installations slump, and energy storage, Megapack, and free cash flow expand despite COVID-19 disruptions.

 

Key Points

Tesla posted a fourth consecutive profit, strong cash, EV resilience, solar slump, and rising energy storage.

✅ Fourth straight profit and $418M free cash flow

✅ EV output and deliveries fell just 5% year over year

✅ Solar hit record low; storage rose 61% to 419 MWh

 

Tesla survived the throes of the coronavirus pandemic relatively unscathed, chalking up its fourth sequential quarterly profit for the first time on Wednesday.

On the energy front, however, things were much more complicated: Tesla reported its worst-ever quarter for solar installations but huge growth in its battery business, amid expectations for cheaper, more powerful batteries expected in coming years. CEO Elon Musk nevertheless predicted the energy business will one day rival its car division in scale.

But today, Tesla's bottom line is all about electric vehicles, and the temporary halt of activity at Tesla's Fremont factory due to local health orders didn’t put much of a dent in vehicle production and delivery. Both figures declined 5 percent compared to the same quarter in 2019. In contrast, Q2 vehicle sales at legacy carmakers Ford, GM and Fiat Chrysler declined by one-third or more year-over-year, even as the U.S. EV market share dipped in early 2024 for context.

The costs of factory closures and a $101 million CEO award milestone for Elon Musk didn’t stop Tesla from achieving $418 million in free cash flow, a major improvement over the prior quarter. Cash and cash equivalents grew by $535 million to $8.6 billion during the quarter.


Musk praised his employees for “exceptional execution.” 

“There were so many challenges, too numerous to name, but they got it done,” he said on an investor call Wednesday.

Musk also confirmed that Tesla will build a new Gigafactory in Austin, Texas, five minutes from the airport. The 2,000-acre campus will abut the Colorado River and is “basically going to be an ecological paradise,” he said. The new Texas factory will build the Cybertruck, Semi, Model 3 and Model Y for the Eastern half of North America. Fremont, California will produce the S and X, and make Model 3 and Model Y for the West, in a state where EVs exceed 20% of sales according to recent data.

 

Return of the Tesla solar slump

This was the first entire quarter affected by the coronavirus response, which threw the rooftop solar industry into turmoil by cutting off in-person sales. Other installers scrambled to shift to digital-first sales strategies, but Tesla had already done so months before lockdowns were imposed.

Q2, then, offers a test case on whether Tesla’s pivot to passive online sales made it better able to deal with stay-at-home orders than its peers. The other publicly traded solar installers have not yet reported their Q2 performance, but Tesla delivered its worst-ever quarterly solar figures: Installations totaled just 27 megawatts. That’s a 7 percent decline from Q2 2019, its previous worst quarter ever for solar.

Musk did not address that weak performance in his remarks to investors, opting instead to highlight the company’s late-June decision to offer the cheapest solar pricing in the country. “We’re the company to go to,” he said of rooftop solar. “It’s only going to get better later this year.”

But the sales slump indicates Tesla’s online sales model could not withstand a historically tough season for residential solar.

"Every single residential installer in the country is going to have a bad Q2 because of the initial impacts of COVID on the market," said Austin Perea, senior solar analyst at Wood Mackenzie. "It's hard to disaggregate the impacts of COVID from their own individual strategies."

Tesla's 23 percent decline in quarter-over-quarter solar installations was not as bad as the expected Q2 decline across the rooftop solar industry, Perea added.

On the vehicle side, Tesla’s sales declined less than did those of major automakers. It’s possible that the same pattern will hold for solar; a less severe drop than those seen by Sunrun or Vivint could be claimed as a victory of sorts. But this quarter made clear that Q2 2019 was not the bottom for Tesla’s solar operation, which once led the residential market as SolarCity but significantly diminished since Tesla acquired it in 2016.


Tesla currently stands in third place for residential solar installers. But No. 1 installer Sunrun said this month that it will acquire No. 2 installer Vivint Solar, making Tesla the second-largest installer by default. That major consolidation in the rooftop solar market went unremarked upon in Tesla's investor call.

Solar and energy storage revenue currently equate to just 7 percent of the company's automotive revenue. But Musk reiterated his prediction that this won’t always be the case. “Long term, Tesla Energy will be roughly the same size as Tesla Automotive,” he said on Wednesday's call.

The grid storage business offered more reason for optimism: Capacity deployed grew 61 percent from the first quarter, rising to 419 megawatt-hours. The prepackaged, large-format Megapack product turned its first profit that quarter.

 

"Difficult to predict" performance in the second half of 2020
Tesla withdrew its financial guidance last quarter in light of the upheaval across the global economy. It refrained from setting new guidance now.

“Although we have successfully ramped vehicle production back to prior levels, it remains difficult to predict whether there will be further operational interruptions or how global consumer sentiment will evolve, given risks to the EV boom noted by analysts, in the second half of 2020,” the earnings report notes.

The company asserted it will still deliver 500,000 vehicles this year regardless of externalities, a goal that aligns with broader EV sales momentum in 2024 trends. It already has sufficient production capacity installed to reach that, Tesla said. But with 179,387 cars delivered so far, Tesla faces an uphill climb to ship more cars in the second half.

Wall Street maintained its buoyant confidence in Tesla's share price, despite rising competition in China noted by rivals. It closed at $1,592 before the earnings announcement, rising to $1,661 in after-hours trading.

 

Related News

View more

This Thin-Film Turns Heat Waste From Electronics Into Electricity

Pyroelectric Energy Harvesting captures low-grade heat via thin-film materials, converting temperature fluctuations into power for waste heat recovery in electronics, vehicles, and industrial machinery, offering a thermoelectric alternative for microelectronics and exascale systems.

 

Key Points

Thin-film pyroelectric harvesting turns temperature changes into electricity, enabling low-grade waste heat recovery.

✅ Converts low-grade heat fluctuations into usable power

✅ Thin-film design suits microelectronics and edge devices

✅ Alternative to thermoelectrics for waste heat recovery

 

The electronic device you are reading this on is currently producing a modest to significant amount of waste heat that emerging thermoelectric materials could help recover in principle. In fact, nearly 70% of the energy produced annually in the US is ultimately wasted as heat, much of it less than 100 degrees Celsius. The main culprits are computers and other electronic devices, vehicles, as well as industrial machinery. Heat waste is also a big problem for supercomputers, because as more circuitry is condensed into smaller and smaller areas, the hotter those microcircuits get.

It’s also been estimated that a single next-generation exascale supercomputer could feasibly use up to 10% of the energy output of just one coal-fired power station, and that nearly all of that energy would ultimately be wasted as heat.

What if it were possible to convert that heat energy into a useable energy source, and even to generate electricity at night from temperature differences as well?

#google#

It’s not a new idea, of course. In fact the possibility of thermoelectric energy generation, where thermal energy is turned into electricity was recognised as early as 1821, around the same time that Michael Faraday developed the electric motor.

Unfortunately, when the heat source is ‘low grade’, aka less than 100 degrees Celsius, a number of limitations arise, and related approaches for nighttime renewable generation face similar challenges as well. For it to work well, you need materials that have quite high electrical conductivity, but low thermal conductivity. It’s not an easy combination to come by.

Taking a different approach, researchers at the University of California, Berkeley, have developed thin-film that uses pyroelectric harvesting to capture heat-waste and convert heat to electricity in prototype demonstrations. The findings were published today in Nature Materials.

 

Related News

View more

Building Energy Celebrates the Beginning of Operations and Electricity Generation

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

View more

Wind, solar, batteries make up 82% of 2023 utility-scale US pipeline

US Renewable Energy Capacity 2023 leads new utility-scale additions, with solar, wind, and battery storage surging; EIA data cite tax incentives, lower costs, and smart grid upgrades driving grid reliability and decarbonization.

 

Key Points

In 2023, renewables dominate new US utility-scale capacity: 54% solar, 7.1 GW wind, 8.6 GW battery storage, per EIA.

✅ 54% of 2023 US additions are solar, a record year

✅ 7.1 GW wind and 8.6 GW batteries expand grid resources

✅ Storage, smart grids, incentives boost reliability and growth

 

Wind, solar, and batteries make up 82% of 2023’s expected new utility-scale power capacity in the US, highlighting wind power's surge alongside solar and storage, according to the US Energy Information Administration’s (EIA) “Preliminary Monthly Electric Generator Inventory.”

As of January 2023, the US was operating 73.5 gigawatts (GW) of utility-scale solar capacity, which aligns with rising solar generation trends across the US – about 6% of the country’s total.

But solar makes up just over half of new US generating capacity expected to come online in 2023, supported by favourable government plans across key markets. And if it all goes as expected, it will be the most solar capacity added in a single year in the US. It will also be the first year that more than half of US capacity additions are solar, underscoring solar's No. 3 renewable ranking in the U.S. mix.

As of January 2023, 141.3 GW of wind capacity was operating in the US, reflecting wind's status as the most-used renewable nationwide – about 12% of the US total. Another 7.1 GW are planned for 2023. Tax incentives, lower wind turbine construction costs, and new renewable energy targets are spurring the growth. 

And developers also plan to add 8.6 GW of battery storage power capacity to the grid this year, supporting record solar and storage buildouts across the market, and that’s going to double total US battery power capacity.

However, differences in the amount of electricity that different types of power plants can produce mean that wind and solar made up about 17% of the US’s utility-scale capacity in 2021, but produced 12% of electricity, even as renewables surpassed coal nationally in 2022. Solutions such as energy storage, smart grids, and infrastructure development will help bridge that gap.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.