GM turns 100 - but is the future electric?

By New York Times


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Chevrolet Volt is expected to be the icing on General MotorsÂ’ 100th birthday cake. The much-promoted sedan, which will operate as an electric car in typical local driving, is intended to provide a jump-start for the companyÂ’s second century.

The timing of the event is fortuitous, for much more is riding on the Volt than whether a new model using experimental technologies will be a hit. For if the Volt succeeds, it could put the troubled company on a whole new path after 10 decades tethered to the internal-combustion engine. If it fails, it could drag GM, and perhaps the entire struggling American auto industry, even further behind Asian competitors.

It was on Sept. 16, 1908, that William Crapo Durant filed the incorporation papers that formed GM, with a revitalized Buick as its foundation. The centennial should be a time of joy at the company. But, with losses since 2005 approaching $70 billion, and Toyota having accelerated past GM into the No. 1 spot in global auto sales, the companyÂ’s staff wonÂ’t be dancing in party hats.

Instead of toasting the glory days when GM owned half of the United States car and truck market — its share peaked at 51 percent in 1962 amid suggestions that it should be broken up under antitrust laws — GM executives are looking expectantly ahead to November 2010. That’s when the Volt, expected to break cover this week in close to final form, is due to reach customers.

By mobilizing its formidable marketing resources, GM has piqued interest in the Volt. Anticipation is high; when unauthorized photos and surreptitious video footage emerged recently, they spread across the Internet with viral intensity.

The interest goes beyond the usual curiosity about the styling and features of a wholly new model. The public, like industry veterans and seasoned experts, seems to grasp the potential: the Volt could revive DetroitÂ’s fortunes while loosening OPECÂ’s stranglehold.

Burt Rutan, the aerospace visionary whose accomplishments include the Voyager round-the-world aircraft and who is also an electric-car enthusiast, is among the believers. “I expect the Chevy Volt to be both a success and a transportation game-changer,” he said.

Though electric cars were common in the early 20th century, gasoline models had won out by the 1920s. Since then, the concept has surfaced again and again, but never in a car with mass-market appeal. Still, throughout the 20th century GM was developing breakthroughs in electrical systems — coil ignitions, electric starters, computerized powertrains and digital infotainment systems — that mainly ended up advancing its fossil-fueled vehicles.

But at the same time, GM researchers were quietly investigating alternatives to internal combustion. In the 1960s, the research and development staff experimented with fuel cells, hybrids and plug-in electric cars.

By the mid-1990s, GM took a gamble that electric propulsion was ready for public consumption. It leased 1,100 two-seat EV1 commuter cars, based on the Impact electric concept car.

The EV1 was stymied by its short range — sometimes only 50 miles on a charge. And unlike the Volt it had no backup power if the batteries ran down. Yet the EV1 had a devoted following, and lessees protested when GM took back the cars to crush them. GM called the EV1 a $1 billion learning experience.

Those lessons, and recent knowledge gained developing vastly superior lithium-ion batteries, are the VoltÂ’s great enablers. But despite widespread enthusiasm for GMÂ’s brilliant 2007 Volt concept car, there are growing doubts about the VoltÂ’s chances of success.

Some of that uncertainty can be traced to GMÂ’s reluctance to put its cards on the table, potentially ceding a competitive advantage more than two years before the car goes on sale.

But there is also considerable doubt about whether lithium-ion batteries can meet the public’s high expectations for range and durability. It is clear that both Toyota and Honda, which have done lithium-ion research, are taking a wait-and-see approach toward lithium-ion — and may actually be moving to other technologies. (All current hybrid cars use nickel-metal-hydride batteries, an older but hardly ideal technology.)

Finally, there are questions about the cost. GM executives concede that they are revising the price upward. While the company initially hinted at a $30,000 starting price, executives have recently suggested that the Volt might end up in the mid- to high-$40,000 range.

What is not in doubt is that the Volt will be a four-passenger, front-drive compact sedan. But the high-style design of the Volt concept, which captivated crowds at the 2007 Detroit auto show, has given way to a more conventional look that fits without flamboyance into the Chevrolet family. Recent spy photos reveal that the roof has been raised and the window sills altered, presumably to provide a more usable passenger cabin.

GM still stands behind its pledge that the Volt will be able to travel at least 40 miles with no exhaust emissions on a fully charged battery. The sole propulsion source is a 160-horsepower alternating-current motor. The 1.4-liter gas engine runs only when necessary to power a generator, which in turn supplies electrical current to both the battery pack and the drive motor.

The concept had a turbocharged 3-cylinder; the production car will have a naturally aspirated 4-cylinder.

Electric motors, generators and engines are old hat at GM, in contrast to the VoltÂ’s lithium-ion battery pack, a leap into uncharted territory. The 400-pound T-shaped pack provides 16 kilowatt-hours of electricity (equivalent to 21 horsepower for one hour), and is nestled between and behind the seats.

After studying lithium-ion batteries for decades, GM began working last year with two organizations to move them from the lab onto the road. The development partners are Compact Power, a subsidiary of the Korean battery maker LG Chem, and Continental Automotive Systems of Germany, using battery cells designed by A123Systems of Watertown, Mass. GM recently decided which of two competing lithium-ion chemistries it will use and which company will make the batteries, but it has made no public announcement.

The Volt is such a departure from the fossil-fuel age that there are different views on how to categorize it. Mr. Rutan calls it a “proper hybrid” because owners have the option of driving on electricity or on a combination of electricity and gasoline. Most engineers prefer “series hybrid,” which means an electrically driven car that employs a second form of power conversion to supplement the battery’s energy reserve.

GM hopes to distinguish the Volt from ordinary hybrids by labeling it an electric car. Plugging into a standard household socket for six or so hours to charge the batteries, and topping off the 12-gallon gas tank, will provide 400 miles of driving range, GM says.

An electric car that spews no emissions and consumes only a few pennies’ worth of energy commuting to work, while also capable of several hundred miles of range, is the better mousetrap that appeals to green advocates and auto industry pundits alike. The actor Ed Begley Jr., a former EV1 leaseholder who owns a Toyota Prius, said: “I think the Volt’s going to be good for everybody. None of us needs a sledgehammer to install a carpet tack. By that, I mean most trips are short — to and from work, to a restaurant or store.”

Mr. Begley said he and his wife used their Prius for long trips, and an electric car (a 2003 Toyota RAV4 EV) in town.

“The arrival of the Volt and other electric cars will reduce not only America’s dependence on foreign oil, but also the smog I experience every day in L.A.,” he said.

Chris Paine, who wrote and directed the documentary “Who Killed the Electric Car?” concurs. “GM seems motivated and ahead of the competition,” he said. “It’s a cultural shift of huge proportions for a vast auto company to embrace the concept of a car that’s more than an internal-combustion engine.

“Of course, there are huge technical and financial challenges,” he added. Still, “The price of oil and consumer interest in change should make the Volt a success.”

Industry watchers are more cautious in their optimism. Csaba Csere, editor in chief of Car and Driver magazine, said, “The Volt could put GM in the most positive light it’s enjoyed in 30 years, but its success depends on solving two issues: battery durability and cost.”

Mr. Csere (pronounced CHED-uh) noted that lithium-ion batteries had proved successful in laptop computers. “But to serve the car world, they’ll have to last 10 years, versus the typical two- or three-year laptop lifespan.”

Manahem Anderman, president of Advanced Automotive Batteries and an electric-car consultant, is also unconvinced. “Without three or four years to test battery life in both the laboratory and in the field, prudent engineering steps have to be bypassed,” he said. “Lacking long-term data, GM might have to include the cost of a battery replacement in the Volt’s price.”

Mr. Anderman added: “Rushing to deliver 60,000 electric vehicles per year poses a phenomenal risk. The business case for a vehicle with a $10,000 battery is problematic. I predict GM will end up building only a few thousand of them.” He said he did not expect the Volt “to be either a commercial success or a long-term benefit” to GM’s image.

An auto industry analyst, Jim Hall of 2953 Analytics in Birmingham, Mich., takes a more sanguine view. “You’ve got to consider the Volt an investment in new technology,” he said. “As was the case with the Prius, GM won’t earn a profit during the life cycle of the first-generation Volt, but they will gain a foot in the door with this new technology.”

GM has said that its next-generation Saturn Vue hybrid, due in fall 2010, will also receive lithium-ion batteries and be capable of plug-in recharging.

Robert C. Stempel, the former chairman of both General Motors and Energy Conversion Devices, the Michigan company that developed the nickel-metal-hydride battery, relishes what lies ahead. “The Volt has the possibility of being one of the most successful vehicles in GM history,” he said.

While the Volt is on track to be the first quasi-electric car capable of replacing the conventional sedan, there is no guarantee that it will trump the Prius to become the new green-car king.

Mr. Hall said: “If GM were alone in this initiative, the Volt probably would be enough to boost it back to the top of the technological heap. But in Toyota City, there’s a seven-story tower called the Electric Powertrain Building. And Chrysler has a hybrid project called ENVI that’s progressing more quickly than expected. So the best that can be hoped is that the Volt will move GM to the front row of companies with contemporary propulsion technology.”

Maintaining front-row status is the key to a GM that thrives in its second century. David Cole, the chairman of the Center for Automotive Research in Ann Arbor, Mich., put a fine point on what lies ahead. “The plug-in hybrid is the most notable technological advancement of the past 50 years,” he said. “GM’s challenge is making them profitable and continuing to invent a broad range of advanced vehicles.”

Related News

A new material made from carbon nanotubes can generate electricity by scavenging energy from its environment

Carbon Nanotube Solvent Electricity enables wire-free electrochemistry as organic solvents like acetonitrile pull electrons, powering alcohol oxidation and packed bed reactors, energy harvesting, and micro- and nanoscale robots via redox-driven current.

 

Key Points

Solvent-driven electron extraction from carbon nanotube particles generates current for electrochemistry.

✅ 0.7 V per particle via solvent-induced electron flow

✅ Packed bed reactors drive alcohol oxidation without wires

✅ Scalable for micro- and nanoscale robots; energy harvesting

 

MIT engineers have discovered a new way of generating electricity, alongside advances in renewable power at night that broaden what's possible, using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an organic solvent, draws electrons out of the particles, generating a current, unlike devices based on a cheap thermoelectric material that rely on heat, that could be used to drive chemical reactions or to power micro- or nanoscale robots, the researchers say.

"This mechanism is new, and this way of generating energy is completely new," says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. "This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires."

In a new study describing this phenomenon, the researchers showed that they could use this electric current to drive a reaction known as alcohol oxidation—an organic chemical reaction that is important in the chemical industry.

Strano is the senior author of the paper, which appears today in Nature Communications. The lead authors of the study are MIT graduate student Albert Tianxiang Liu and former MIT researcher Yuichiro Kunai. Other authors include former graduate student Anton Cottrill, postdocs Amir Kaplan and Hyunah Kim, graduate student Ge Zhang, and recent MIT graduates Rafid Mollah and Yannick Eatmon.

Unique properties
The new discovery grew out of Strano's research on carbon nanotubes—hollow tubes made of a lattice of carbon atoms, which have unique electrical properties. In 2010, Strano demonstrated, for the first time, that carbon nanotubes can generate "thermopower waves." When a carbon nanotube is coated with layer of fuel, moving pulses of heat, or thermopower waves, travel along the tube, creating an electrical current that exemplifies turning thermal energy into electricity in nanoscale systems.

That work led Strano and his students to uncover a related feature of carbon nanotubes. They found that when part of a nanotube is coated with a Teflon-like polymer, it creates an asymmetry, distinct from conventional thermoelectric materials approaches, that makes it possible for electrons to flow from the coated to the uncoated part of the tube, generating an electrical current. Those electrons can be drawn out by submerging the particles in a solvent that is hungry for electrons.

To harness this special capability, the researchers created electricity-generating particles by grinding up carbon nanotubes and forming them into a sheet of paper-like material. One side of each sheet was coated with a Teflon-like polymer, and the researchers then cut out small particles, which can be any shape or size. For this study, they made particles that were 250 microns by 250 microns.

When these particles are submerged in an organic solvent such as acetonitrile, the solvent adheres to the uncoated surface of the particles and begins pulling electrons out of them.

"The solvent takes electrons away, and the system tries to equilibrate by moving electrons," Strano says. "There's no sophisticated battery chemistry inside. It's just a particle and you put it into solvent and it starts generating an electric field."

Particle power
The current version of the particles can generate about 0.7 volts of electricity per particle. In this study, the researchers also showed that they can form arrays of hundreds of particles in a small test tube. This "packed bed" reactor, unlike thin-film waste-heat harvesters for electronics, generates enough energy to power a chemical reaction called an alcohol oxidation, in which an alcohol is converted to an aldehyde or a ketone. Usually, this reaction is not performed using electrochemistry because it would require too much external current.

"Because the packed bed reactor is compact, it has more flexibility in terms of applications than a large electrochemical reactor," Zhang says. "The particles can be made very small, and they don't require any external wires in order to drive the electrochemical reaction."

In future work, Strano hopes to use this kind of energy generation to build polymers using only carbon dioxide as a starting material. In a related project, he has already created polymers that can regenerate themselves using carbon dioxide as a building material, in a process powered by solar energy and informed by devices that generate electricity at night as a complement. This work is inspired by carbon fixation, the set of chemical reactions that plants use to build sugars from carbon dioxide, using energy from the sun.

In the longer term, this approach could also be used to power micro- or nanoscale robots. Strano's lab has already begun building robots at that scale, which could one day be used as diagnostic or environmental sensors. The idea of being able to scavenge energy from the environment, including approaches that produce electricity 'out of thin air' in ambient conditions, to power these kinds of robots is appealing, he says.

"It means you don't have to put the energy storage on board," he says. "What we like about this mechanism is that you can take the energy, at least in part, from the environment."

 

Related News

View more

Senate Democrats push for passage of energy-related tax incentives

Senate Renewable Energy Tax Credits face Finance Committee scrutiny, with Democrats urging action on tax extenders, clean energy incentives, and climate policy, while Republicans cite prior wins in wind, biodiesel, and EV credits.

 

Key Points

Legislative incentives debated in the Senate Finance Committee to extend and align clean energy tax benefits.

✅ Democrats press hearings and action on energy tax policy

✅ Focus on clean energy, EVs, wind, biodiesel, and resilience

✅ Grassley cites prior extenders; disputes push for bigger subsidies

 

A group of 27 Democratic senators is calling for action in the Senate Finance Committee on extending energy-related tax credits and examining new tax proposals, especially those that incentivize renewable energy projects and align with FERC action on aggregated DERs across the grid.

Sen. Ron Wyden, D-Ore., the ranking Democrat on the Senate Finance Committee, who recently introduced a wildfire-resilient grid bill with Sen. Merkley, led the group of Democrats in writing a letter Tuesday to Sen. Charles Grassley, R-Iowa, who chairs the committee.

“Despite numerous opportunities, including in the recent tax extenders package, the Finance Committee has failed to take action on the dozens of energy tax proposals pending before it,” they wrote. “It is critical that the Committee move to address these issues in a timely manner, along with much needed policy changes that heed warnings on regulatory rollbacks to combat the damage and growing dangers caused by global climate change.”

The number of Americans ages 65 and over is projected to nearly double by 2060. And most would prefer to age in place and hiresenior caregivers if needed.

They pointed out that the Senate Finance Committee hasn’t held a single hearing on energy tax policy during the previous congressional term, and has yet to hold one in the current one.

“The sole energy tax-related recommendation of the Committee’s temporary policy task forces was ignored in the tax extender legislation passed in December 2019, along with nearly all proposals put forward in members’ legislation this Congress,” they wrote. “This Committee must fulfill its role in examining members’ energy tax proposals and in bolstering our nation’s efforts to combat climate change, including a clean electricity standard approach that sets firm targets.”

They noted that In 2019, the global average temperature was the second highest ever recorded and the past decade was the hottest ever. The lawmakers pointed to raging wildfires and increased flooding in the western part of the U.S., as well as challenges in California’s power system during the transition, causing unprecedented destruction over the past several years. They called for tax incentives for renewable energy to help combat climate change.

“Gaps in the tax code have disadvantaged complementary technologies that could improve climate resiliency and provide additional emissions reductions,” they wrote. “While power sector emissions continue to decrease, emissions from transportation, heavy industry and agriculture have stayed level or increased over the past 10 years, even amid $5 gas not spurring a green shift in consumer behavior. The United States is not on pace to meet its international climate commitments, to say nothing of the reductions necessary to stave off the worst potential outcomes of global warming.”

Grassley reacted to the letter, noting that he had worked to get tax extenders legislation passed, even as some states consider bans on clean energy use by utilities. "I begged Democrats for a year to help me get an extenders package passed, about half of which were green energy policies, so this rings hollow," he said in a statement Tuesday. "We wouldn’t have a wind energy credit or a biodiesel credit but for me, let alone an extension of either. Democrats were holding up these green energy provisions in an attempt to get a big expansion of taxpayer subsidies for rich Tesla owners."

 

Related News

View more

How Alberta’s lithium-laced oil fields can fuel the electric vehicle revolution

Alberta Lithium Brine can power EV batteries via direct lithium extraction, leveraging oilfield infrastructure and critical minerals policy to build a low-carbon supply chain with clean energy, lower emissions, and domestic manufacturing advantages.

 

Key Points

Alberta lithium brine is subsurface saline water rich in lithium, extracted via DLE to supply EV batteries.

✅ Uses direct lithium extraction from oilfield brines

✅ Leverages Alberta infrastructure and skilled workforce

✅ Supports EV battery supply chain with lower emissions

 

After a most difficult several months, Canadians are cautiously emerging from their COVID-19 isolation and confronting a struggling economy.
There’s a growing consensus that we need to build back better from COVID-19, and to position for the U.S. auto sector’s pivot to electric vehicles as supply chains evolve. Instead of shoring up the old economy as we did following the 2008 financial crisis, we need to make strategic investments today that will prepare Canada for tomorrow’s economy.

Tomorrow’s energy system will look very different from today’s — and that tomorrow is coming quickly. The assets of today’s energy economy can help build and launch the new industries required for a low-carbon future. And few opportunities are more intriguing than the growing lithium market.

The world needs lithium – and Alberta has plenty

It’s estimated that three billion tonnes of metals will be required to generate clean energy by 2050. One of those key metals – lithium, a light, highly conductive metal – is critical to the construction of battery electric vehicles (BEV). As global automobile manufacturers design hundreds of new BEVs, demand for lithium is expected to triple in the next five years alone, a trend sharpened by pandemic-related supply risks for automakers.

Most lithium today originates from either hard rock or salt flats in Australia and South America. Alberta’s oil fields hold abundant deposits of lithium in subsurface brine, but so far it’s been overlooked as industrial waste. With new processing technologies and growing concerns about the security of global supplies, this is set to change. In January, Canada and the U.S. finalized a Joint Action Plan on Critical Minerals to ensure supply security for critical minerals such as lithium and to promote supply chains closer to home, aligning with U.S. efforts to secure EV metals among allies worldwide.

This presents a major opportunity for Canada and Alberta. Lithium brine will be produced much like the oil that came before it. This lithium originates from many of the same reservoirs responsible for driving both Alberta’s economy and the broader transportation fuel sector for decades. The province now has extensive geological data and abundant infrastructure, including roads, power lines, rail and well sites. Most importantly, Alberta has a highly trained workforce. With very little retooling, the province could deliver significant volumes of newly strategic lithium.

Specialized technologies known as direct lithium extraction, or DLE, are being developed to unlock lithium-brine resources like those in Canada. In Alberta, E3 Metals* has formed a development partnership with U.S. lithium heavyweight Livent Corporation to advance and pilot its DLE technology. Prairie Lithium and LiEP Energy formed a joint venture to pilot lithium extraction in Saskatchewan. And Vancouver’s Standard Lithium is already piloting its own DLE process in southern Arkansas, where the geology is very similar to Alberta and Saskatchewan.

Heavy on quality, light on emissions

All lithium produced today has a carbon footprint, most of which can be tied back to energy-intensive processing. The purity of lithium is essential to battery safety and performance, but this comes at a cost when lithium is mined with trucks and shovels and then refined in coal-heavy China.

As automakers look to source more sustainable raw materials, battery recycling will complement responsible extraction, and Alberta’s experience with green technologies such as renewable electricity and carbon capture and storage can make it one of the world’s largest suppliers of zero-carbon lithium.

Beyond raw materials

The rewards would be considerable. E3 Metals’ Alberta project alone could generate annual revenues of US$1.8 billion by 2030, based on projected production and price forecasts. This would create thousands of direct jobs, as initiatives like a lithium-battery workforce initiative expand training, and many more indirectly.

To truly grow this industry, however, Canada needs to move beyond its comfort zone. Rather than produce lithium as yet another raw-commodity export, Canadians should be manufacturing end products, such as batteries, for the electrified economy, with recent EV assembly deals underscoring Canada’s momentum. With nickel and cobalt refining, graphite resources and abundant petrochemical infrastructure already in place, Canada must aim for a larger piece of the supply chain.

By 2030, the global battery market is expected to be worth $116 billion annually. The timing is right to invest in a strategic commodity and grow our manufacturing sector. This is why the Alberta-based Energy Futures Lab has called lithium one of the ‘Five big ideas for Alberta’s economic recovery.’  The assets of today’s energy economy can be used to help build and launch new resource industries like lithium, required for the low-carbon energy system of the future.

Industry needs support

To do this, however, governments will have to step up the way they did a generation ago. In 1975, the Alberta government kick-started oil-sands development by funding the Alberta Oil Sands Technology and Research Authority. AOSTRA developed a technology called SAGD (steam-assisted gravity drainage) that now accounts for 80% of Alberta’s in situ oil-sands production.

Canada’s lithium industry needs similar support. Despite the compelling long-term economics of lithium, some industry investors need help to balance the risks of pioneering such a new industry in Canada. The U.S. government has recognized a similar need, with the Department of Energy’s recent US$30 million earmarked for innovation in critical minerals processing and the California Energy Commission’s recent grants of US$7.8 million for geothermal-related lithium extraction.

To accelerate lithium development in Canada, this kind of leadership is needed. Government-assisted financing could help early-stage lithium-extraction technologies kick-start a whole new industry.

Aspiring lithium producers are also looking for government’s help to repurpose inactive oil and gas wells. The federal government has earmarked $1 billion for cleaning up inactive Alberta oil wells. Allocating a small percentage of that total for repurposing wells could help transform environmental liabilities into valuable clean-energy assets.

The North American lithium-battery supply chain will soon be looking for local sources of supply, and there is room for Canada-U.S. collaboration as companies turn to electric cars, strengthening regional resilience.
 

 

Related News

View more

SaskPower to buy more electricity from Manitoba Hydro

SaskPower-Manitoba Hydro Power Sale outlines up to 215 MW of clean hydroelectric baseload for Saskatchewan, supporting renewable energy targets, lower greenhouse gas emissions, and interprovincial transmission line capacity starting 2022 under a 30-year agreement.

 

Key Points

A long-term deal supplying up to 215 MW of hydroelectric baseload from Manitoba to Saskatchewan to cut emissions.

✅ Up to 215 MW delivered starting 2022 via new intertie

✅ Supports 40% GHG reduction target by 2030

✅ 30-year term; complements wind and solar integration

 

Saskatchewan's Crown-owned electric utility has made an agreement to buy more hydroelectricty from Manitoba.

A term sheet providing for a new long--term power sale has been signed between Manitoba Hydro and SaskPower which will see up to 215 megawatts flow from Manitoba to Saskatchewan, as new turbine investments advance in Manitoba, beginning in 2022.

SaskPower has two existing power purchase agreements with Manitoba Hydro that were made in 2015 and 2016, but the newest one announced Monday is the largest, as financial pressures at Manitoba Hydro continue.

SaskPower President and CEO Mike Marsh says in a news release that the clean, hydroelectric power represents a significant step forward when it comes to reaching the utility's goal of reducing greenhouse gas emissions by 40 per cent by 2030, aligning with progress on renewable electricity by 2030 initiatives.

Marsh says it's also reliable baseload electricity, which SaskPower will need as it adds more intermittent generation options like wind and solar.

SaskPower says a final legal contract for the sale is expected to be concluded by mid-2019 and be in effect by 2022, and the purchase agreement would last up to 30 years.

"Manitoba Hydro has been a valued neighbour and business partner over the years and this is a demonstration of that relationship," Marsh said in the news release.

The financial terms of the agreement are not being released, though SaskPower's latest annual report offers context on its finances.

Both parties say the sale will partially rely on the capacity provided by a new transmission line planned for construction between Tantallon, Sask. and Birtle, Man. that was previously announced in 2015 and is expected to be in service by 2021.

"Revenues from this sale will assist in keeping electricity rates affordable for our Manitoba customers, while helping SaskPower expand and diversify its renewable energy supply," Manitoba Hydro president and CEO Kelvin Shepherd said in the utility's own news release.

In 2015, SaskPower signed a 25 megawatt agreement with Manitoba Hydro that lasts until 2022. A 20-year agreement for 100 megawatts was signed in 2016 and comes into effect in 2020, and SaskPower is also exploring a purchase from Flying Dust First Nation to further diversify supply.

The deals are part of a memorandum of understanding signed in 2013 involving up to 500 megawatts.
 

 

Related News

View more

Ameren, Safe Electricity urge safety near downed lines

Downed Power Line Vehicle Safety: Follow stay-in-the-car protocol, call 911, avoid live wires and utility poles, and use the bunny hop to escape only for fire. Electrical hazards demand emergency response caution.

 

Key Points

Stay in the car, call 911, and use a bunny hop escape only if fire threatens during downed power line incidents.

✅ Stay in vehicle; tell bystanders to keep back and call 911.

✅ Exit only for fire; jump clear and bunny hop away.

✅ Treat all downed lines as live; avoid paths to ground.

 

Ameren Illinois and Safe Electricity are urging the public to stay in their cars and call 911 in the event of an accident involving a power pole that brings down power lines on or around the car.

In a media simulation Tuesday at the Ameren facility on West Lafayette Avenue, Ameren Illinois employees demonstrated the proper way to react if a power line has fallen on or around a vehicle, as some utilities consider on-site staffing measures during outbreaks. Although the situation might seem rare, Illinois motorists alone hit 3,000 power poles each year, said Krista Lisser, communications director for Safe Energy.

“We want to get the word out that, if you hit a utility pole and a live wire falls on your vehicle, stay in your car,” Lisser said. “Our first reaction is we panic and think we need to get out, a sign of the electrical knowledge gap many people have. That’s not the case, you need to stay in because, when that live wire comes down, electricity is all around you. You may not see it, it may not arc, it may not flash, you may not know if there’s electricity there.”

Should someoneinvolved in such an accident see a good Samaritan attempting to help, he should try to tell the would-be rescuer to stay back to prevent injury to the Samaritan, Ameren Illinois Communications Executive Brian Bretsch said.

“We have seen instances where someone comes up and wants to help you,” Bretsch said. “You want to yell, ‘Please stay away from the vehicle. Everyone is OK. Please stay away.’ You’ll see … instances every now and then where the Samaritan will come up, create that path to ground and get injured, and there are also climbers seeking social media glory who put themselves at risk.”

The only instance in which one should exit a car in the vicinity of a downed wire is if the vehicle is on fire and there is no choice but to exit. In that situation, those in the car should “bunny hop” out of the car by jumping from the car without touching the car and the ground at the same time, Bretsch and Lisser said.

After the initial jump, those escaping the vehicle should continue jumping with both feet together and hands tucked in and away from danger until they are safely clear of the downed wire.

It’s important for everyone to be informed, because an encounter with a live wire could easily result in serious injury, as in the Hydro One worker injury case, or death, Lisser said.

“They’re so close to our roads, especially in our rural communities, that it’s quite a common occurrence,” Lisser said. “Just stay away from (downed lines), especially after storms and amid grid oversight warnings that highlight reliability risks … Always treat a downed line as a live wire. Never assume the line is dead.”

 

Related News

View more

3-layer non-medical masks now recommended by Canada's top public health doctor

Canada Three-Layer Mask Recommendation advises non-medical masks with a polypropylene filter layer and tightly woven cotton, aligned with WHO guidance, to curb COVID-19 aerosols indoors through better fit, coverage, and public health compliance.

 

Key Points

PHAC advises three-layer non-medical masks with a polypropylene filter to improve indoor COVID-19 protection.

✅ Two fabric layers plus a non-woven polypropylene filter

✅ Ensure snug fit: cover nose, mouth, chin without gaps

✅ Aligns with WHO guidance for aerosols and droplets

 

The Public Health Agency of Canada is now recommending Canadians choose three-layer non-medical masks with a filter layer to prevent the spread of COVID-19, even as an IEA report projects higher electricity needs for net-zero, as they prepare to spend more time indoors over the winter.

Chief Public Health Officer Dr. Theresa Tam made the recommendation during her bi-weekly pandemic briefing in Ottawa Tuesday, as officials also track electricity grid security amid critical infrastructure concerns.

"To improve the level of protection that can be provided by non-medical masks or face coverings, we are recommending that you consider a three-layer nonmedical mask," she said.

 

Trust MedProtect For All Your Mask Protection

www.medprotect.ca/collections/protective-masks

According to recently updated guidelines, two layers of the mask should be made of a tightly woven fabric, such as cotton or linen, and the middle layer should be a filter-type fabric, such as non-woven polypropylene fabric, as Canada explores post-COVID manufacturing capacity for PPE.

"We're not necessarily saying just throw out everything that you have," Tam told reporters, suggesting adding a filter can help with protection.

The Public Health website now includes instructions for making three-layer masks, while national goals like Canada's 2050 net-zero target continue to shape recovery efforts.

The World Health Organization has recommended three layers for non-medical masks since June, and experts note that cleaning up Canada's electricity is critical to broader climate resilience. When pressed about the sudden change for Canada, Tam said the research has evolved.

"This is an additional recommendation just to add another layer of protection. The science of masks has really accelerated during this particular pandemic. So we're just learning again as we go," she said.

"I do think that because it's winter, because we're all going inside, we're learning more about droplets and aerosols, and how indoor comfort systems from heating to air conditioning costs can influence behaviors."

She also urged Canadians to wear well-fitted masks that cover the nose, mouth and chin without gaping, as the federal government advances emissions and EV sales regulations alongside public health guidance.

Trust MedProtect For All Your Mask Protection

www.medprotect.ca/collections/protective-masks

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.